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Notation and conventions.

(0.1) In general, k denotes an arbitrary field, k̄ denotes an algebraic closure of k, and ks aFieldsNot

separable closure.

(0.2) If A is a commutative ring, we sometimes simply write A for Spec(A). Thus, for instance,A=SpecA

by an A-scheme we mean a scheme over Spec(A). If A→ B is a homomorphism of rings and X

is an A-scheme then we write XB = X ×A B rather than X ×Spec(A) Spec(B).

(0.3) If X is a scheme then we write |X| for the topological space underlying X and OX for itsSchemesNot

structure sheaf. If f : X → Y is a morphism of schemes we write |f |: |X| → |Y | and f ♯: OY →
f∗OX for the corresponding map on underlying spaces, resp. the corresponding homomorphism

of sheaves on Y . If x ∈ |X| we write k(x) for the residue field. If X is an integral scheme we

write k(X) for its field of rational functions.

If S is a scheme and X and T are S-schemes then we write X(T ) for the set of T -valued

points of X, i.e., the set of morphisms of S-schemes T → X. Often we simply write XT for

the base change of X to T , i.e., XT := X ×S T , to be viewed as a T -scheme via the canonical

morphism XT → T .

(0.4) If k is a field then by a variety over k we mean a separated k-scheme of finite type whichVarietyDef

is geometrically integral. Recall that a k-scheme is said to be geometrically integral if for some

algebraically closed field K containing k the scheme XK is irreducible and reduced. By EGA

IV, (4.5.1) and (4.6.1), if this holds for some algebraically closed overfield K then XK is integral

for every field K containing k. A variety of dimension 1 (resp. 2, resp. n > 3) is called a curve

(resp. surface, resp. n-fold).

By a line bundle (resp. a vector bundle of rank d) on a scheme X we mean a locally free

OX -module of rank 1 (resp. of rank d). By a geometric vector bundle of rank d on X we mean a

group scheme π: V→ X over X for which there exists a affine open covering X = ∪Uα such that

the restriction of V to each Uα is isomorphic to Gd
a over Uα. In particular this means that we

have isomorphisms of Uα-schemes ϕα: π−1(Uα)
∼−→ Uα×Ad, such that all transition morphisms

tα,β: Uα,β × Ad
ϕβ ◦ϕ−1

α−−−−−−→ Uα,β × Ad

are linear automorphisms of Uα,β × Ad over Uα,β := Uα ∩ Uβ ; this last condition means that

tα,β is given by a O(Uα,β)-linear automorphism of O(Uα,β)[x1, . . . , xd]. For d = 1 we obtain the

notion of a geometric line bundle.

If V is a geometric vector bundle of rank d onX then its sheaf of sections is a vector bundle of

rank d. Conversely, if E is a vector bundle of rank d on X then the scheme V := Spec
(
Sym(E ∨)

)

has a natural structure of a geometric vector bundle of rank d. These two constructions are

quasi-inverse to each other and establish an equivalence between vector bundles and geometric

vector bundles.

(0.5) In our definition of an étale morphism of schemes we follow EGA; this means that we onlyEtaleDef

require the morphism to be locally of finite type. Note that in some literature étale morphisms

are assumed to be quasi-finite. Thus, for instance, if S is a scheme and I is an index set, the

disjoint union
∐
i∈I S is étale over S according to our conventions, also if the set I is infinite.
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prime!of(0.6) If K is a number field then by a prime of K we mean an equivalence class of valuationsNumbFieldVal

of K. See for instance Neukirch [1], Chap. 3. The finite primes of K are in bijection with

the maximal ideals of the ring of integers OK . An infinite prime corresponds either to a real

embedding K →֒ R or to a pair {ι, ῑ} of complex embeddings K →֒ C.

If v is a prime of K, we have a corresponding homomorphism ordv: K
∗ → R and a normal-

ized absolute value || ||v . If v is a finite prime then we let ordv be the corresponding valuation,

normalized such that ordv(K
∗) = Z, and we define || ||v by

||x||v :=

{
(qv)

−ordv(x) if x 6= 0,

0 if x = 0,

where qv is the cardinality of the residue field at v. If v is an infinite prime then we let

||x||v =

{ |ι(x)| if v corresponds to a real embedding ι: K → R,

|ι(x)|2 if v corresponds to a pair of complex embeddings {ι, ῑ},

and we define ordv by the rule ordv(x) := − log
(
|ι(x)|

)
. Here | |: C→ R>0 is given by |a+ bi| =√

a2 + b2.
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Definition. Let p be a prime number. We say that a scheme X has characteristic p if the

unique morphism X → Spec(Z) factors through Spec(Fp) →֒ Spec(Z). This is equivalent to the

requirement that p ·f = 0 for every open U ⊂ X and every f ∈ OX(U). We say that a scheme X

has characteristic 0 if X → Spec(Z) factors through Spec(Q) →֒ Spec(Z). This is equivalent to

the requirement that n ∈ OX(U)∗ for every n ∈ Z \ {0} and every open U ⊂ X.

Note that if X → Y is a morphism of schemes and Y has characteristic p (with p a prime

number or p = 0) then X has characteristic p, too.

The absolute Frobenius. Let p be a prime number. Let Y be a scheme of characteristic p.

Then we have a morphism FrobY : Y → Y , called the absolute Frobenius morphism of Y ; it is

given by

(a) FrobY is the identity on the underlying topological space |Y |;
(b) Frob♯Y : OY → OY is given on sections by f 7→ fp.

To describe FrobY in another way, consider a covering {Uα} of Y by affine open subsets, say

Uα = Spec(Aα). The endomorphism of Aα given by f 7→ fp defines a morphism Frobα: Uα →
Uα. On the intersections Uα ∩ Uβ the morphisms Frobα and Frobβ agree, and by gluing we

obtain the absolute Frobenius morphism FrobY of Y . Note that Frobα is none other than the

absolute Frobenius morphism of the scheme Uα.

One readily verifies that for any morphism f : X → Y of schemes of characteristic p we have

a commutative diagram
X

FrobX−−−−→ X

f

y
yf

Y
FrobY−−−−→ Y .

(1)

AG:absFrob

The relative Frobenius. Let us now consider the relative situation, i.e., we fix a base

scheme S and consider schemes over S. If π: X → S is an S-scheme then in general the absolute

Frobenius morphism FrobX is not a morphism of S-schemes, unless for instance S = Spec(Fp).

To remedy this we define π(p): X(p/S) → S to be the pull-back of π: X → S via FrobS: S → S.

Thus, by definition we have X(p/S) = S ×FrobS ,S X and we have a cartesian diagram

X(p/S) h−−−−→ X

π(p)

y
yπ

S
FrobS−−−−→ S .

(2)

AG:X(p/S)

If there is no risk of confusion we often write X(p) for X(p/S); note however that in general this

scheme very much depends on the base scheme S over which we are working.

As the diagram (2) is cartesian, the commutative diagram (1), applied with Y = S, gives a

commutative diagram (nog aanpassen)

X

ց FX/S

X(p/S) W−−→ X

π(p)

y
yπ

S
FrobS−−−−→ S .

(3)

AG:relFrob

– 3 –



The morphism of S-schemes FX/S : X → X(p/S) is called the relative Frobenius morphism of X

over S. By its definition, FX/S is a morphism of S-schemes (in other words, π(p)
◦FX/S = π)

and W ◦FX/S is the absolute Frobenius of X.

Example. Suppose S = Spec(R) and X = Spec
(
R[t1, . . . , tm]/I

)
for some ideal I =

(f1, . . . , fn) ⊂ R[t1, . . . , tm]. Let f
(p)
i ∈ R[t1, . . . , tm] be the polynomial obtained from fi by

raising all coefficients (but not the variables!) to the pth power. Thus, if, in multi-index

notation, fi =
∑
cαt

α then f
(p)
i =

∑
cpαt

α. Then X(p) = Spec
(
R[t1, . . . , tm]/I(p)

)
with I(p) =

(f
(p)
1 , . . . , f

(p)
n ), and the relative Frobenius morphism FX/S : X → X(p) is given on rings by the

homomorphism

R[t1, . . . , tm]/I(p) −→ R[t1, . . . , tm]/I

with r 7→ r for all r ∈ R and tj 7→ tpj . Note that this is a well-defined homomorphism.

The morphism W : X(p) → X that appears in (3) does not have a standard name in the

literature. As one easily checks (see Exercise ??), FrobX/S ◦W : X(p) → X(p) equals the absolute

Frobenius morphism of X(p). Since an absolute Frobenius morphism is the identity on the

underlying topological space, it follows that FX/S : X → X(p) induces a homeomorphism |X| ∼−→
|X(p)|.

Formation of the relative Frobenius morphism is compatible with base change. This state-

ment means the following. Let π: X → S be an S-scheme. Let T → S be another scheme over S,

and consider the morphism πT : XT → T obtained from π by base-change. The first observation

is that (XT )(p/T ) is canonically isomorphic to (X(p/S))T . Identifying the two schemes, the rela-

tive Frobenius FXT /T of XT over T is equal to the pull-back (FX/S)T of the relative Frobenius

of X over S. Proofs of these assertions are left to the reader.

The absolute and relative Frobenii can be iterated. For the absolute Frobenius this is

immediate: FrobnY : Y → Y is simply the nth iterate of FrobY . The nth iterate of the relative

Frobenius is a morphism FnX/S : X → X(pn/S). Its definition is an easy generalization of the

definition of FX/S . Namely, we define π(pn): X(pn/S) → S as the pull-back of π: X → S via

FrobnS . Then FrobnX factors as

X
Fn

X/S−−−−→ X(pn/S) h(n)

−−−→ X

with π(pn)
◦FnX/S = π. Alternatively,

X(p2/S) =
(
X(p/S)

)(p/S)
, X(p3/S) =

(
X(p2/S)

)(p/S)
, etc.,

and

FnX/S =
(
X

FX/S−−−−→ X(p)
F

X(p)/S−−−−−→ X(p2) −→ · · ·
F

X(pn−1)/S−−−−−−−−→ X(pn)
)
.

The geometric Frobenius. Suppose S = Spec(Fq), with q = pn. If X is an S-scheme

then the nth iterate of the absolute Frobenius morphism FrobnX : X → X is a morphism of

S-schemes. In fact, FrobnX = FnX/S . We refer to πX := FrobnX as the geometric Frobenius of X.

More generally, suppose that S is a scheme over Spec(Fq). If X is an S-scheme then by

an Fq-structure on X we mean a scheme X0 → Spec(Fq) together with an isomorphism of

S-schemes X0⊗Fq
S ∼= X. In practice we usually encounter this notion in the situation that

S = Spec(K), where Fq ⊂ K is a field extension. Given an Fq-structure on X, the geometric

Frobenius morphism πX0
induces, by extension of scalars, a morphism πX : X → X; we again

refer to this morphism as the geometric Frobenius of X (relative to the given Fq-structure).
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group!definitionChapter I. Definitions and basic examples.

An abelian variety is a complete algebraic variety whose points form a group, in such a way that

the maps defining the group structure are given by morphisms. It is the analogue in algebraic

geometry of the concept of a compact complex Lie group. To give a more precise definition of

a abelian variety we take a suitable definition of a group and translate it into the language of

complete varieties.

(1.1) Definition. A group consists of a set G together with mapsGroupDef

m: G×G→ G (the group law) and i: G→ G (the inverse)

and a distinguished element

e ∈ G (the identity element)

such that we have the following equalities of maps.

(i) Associativity: m◦(m× idG) = m◦(idG ×m): G×G×G −→ G.

(ii) Defining property of the identity element:

m◦(e× idG) = j1: {e} ×G −→ G , and

m◦(idG × e) = j2: G× {e} −→ G ,

where j1 and j2 are the canonical identifications {e} × G
∼−→ G and G × {e} ∼−→ G,

respectively, and where we write e for the inclusion map {e} →֒ G.

(iii) Left and right inverse:

e◦π = m◦(idG × i)◦∆G = m◦(i× idG)◦∆G: G −→ G ,

where π: G→ {e} is the constant map and ∆G: G→ G×G is the diagonal map.

Written out in diagrams, we require the commutativity of the following diagrams.

(i) Associativity:
G×G×G idG×m−−−−−→ G×G

m×idG

y
ym

G×G −−−−−→
m

G .

(ii) Identity element:

{e} ×G e×idG−−−−→ G×G
j1 ց ւ m

G

and

G× {e} idG×e−−−−→ G×G
j2 ց ւ m

G .

(iii) Two-sided inverse:

G
π−→ {e}

(idG,i)

y
ye

G×G −→
m

G

and

G
π−→ {e}

(i,idG)

y
ye

G×G −→
m

G .

DefBasEx, 8 februari, 2012 (635)

– 5 –



group

abelian

right

translation

left

To simplify notation, one often simply writes the symbol G instead of the quadruple

(G,m, i, e), assuming it is clear what m, i and e are.

Adapting this definition to the category of varieties, we obtain the definition of a group

variety.

(1.2) Definition. A group variety over a field k is a k-variety X together with k-morphismsGrVarDef

m: X ×X → X (the group law) and i: X → X (the inverse)

and a k-rational point

e ∈ X(k) (the identity element)

such that we have the following equalities of morphisms:

(i)

m◦(m× idX) = m◦(idX ×m): X ×X ×X −→ X .

(ii)
m◦(e× idX) = j1: Spec(k)×X −→ X and

m◦(idX × e) = j2: X × Spec(k) −→ X ,

where j1: Spec(k)×X ∼−→ X and j2: X × Spec(k)
∼−→ X are the canonical isomorphisms.

(iii)

e◦π = m◦(idX × i)◦∆X/k = m◦(i× idX)◦∆X/k: X −→ X ,

where π: X → Spec(k) is the structure morphism.

Note that, since we are working with varieties, checking equality of two morphisms as in

(i)–(iii) can be done on k-rational points.

If X is a group variety then the set X(k) of k-rational points naturally inherits the structure

of a group. More generally, if T is any k-scheme then the morphisms m, i and e induce a group

structure on the set X(T ) of T -valued points of X. In this way, the group variety X defines

a contravariant functor from the category of k-schemes to the category of groups. In practice

it is often most natural to use this “functorial” point of view; we shall further discuss this

in Chapter III.

We can now define the main objects of study in this book.

(1.3) Definition. An abelian variety is a group variety which, as a variety, is complete.AbVardef

As we shall see, the completeness condition is crucial: abelian varieties form a class of group

varieties with very special properties.

A group is a homogeneous space over itself, either via left or via right translations. We

have this concept here too.

(1.4) Definition. Let X be a group variety over a field k, and let x ∈ X(k) be a k-rationalTranslDef

point. We define the right translation tx: X → X and the left translation t′x: X → X to be the

compositions

tx =
(
X ∼= X ×k Spec(k)

idX×x−−−−→ X ×k X m−→ X
)
,

and

t′x =
(
X ∼= Spec(k)×k X x×idX−−−−→ X ×k X m−→ X

)
.
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On points, these maps are given by tx(y) = m(y, x) and t′x(y) = m(x, y).

More generally, if T is a scheme over Spec(k) and x ∈ X(T ) is a T -valued point of X then

we define the right and left translations tx: XT → XT and t′x: XT → XT (with XT := X ×k T )

to be the compositions

tx =
(
XT
∼= XT ×T T

idXT
×xT−−−−−−→ XT ×T XT

m−→ XT

)
,

and

t′x =
(
XT
∼= T ×T XT

xT×idXT−−−−−−→ XT ×T XT
m−→ XT

)
,

where we write xT : T → XT for the morphism (x, idT ): T → X ×k T = XT .XT Txe
T

Figure 1.

Given a k-scheme T and two points x, y ∈ X(T ), one easily verifies that ty ◦tx = tm(x,y)

and t′x ◦t′y = t′m(x,y). In particular, it follows that ti(x) = t−1
x and t′i(x) = (t′x)

−1.

Geometrically, the fact that a group variety X is a principal homogenous space over itself

has the consequence that X, as a variety over k, “looks everywhere the same”. As a consequence

we obtain that group varieties are smooth and have a trivial tangent bundle.

(1.5) Proposition. Let X be a group variety over a field k. Then X is smooth over k. IfFreeTangent

we write TX,e for the tangent space at the identity element, there is a natural isomorphism

TX/k ∼= TX,e⊗kOX . This induces natural isomorphisms ΩnX/k
∼= (∧nT∨X,e)⊗kOX . In particular,

if g = dim(X) then ΩgX/k
∼= OX .

Proof. Since X is a variety, the smooth locus sm(X/k) ⊂ X is open and dense. It is also stable

under all translations. Since these make X into a homogenous space over itself, it follows that

sm(X/k) = X.

Set S = Spec
(
k[ε]/(ε2)

)
. Let XS := X ×k S, which we may think of as a “thickened”

version of X. Tangent vectors τ ∈ TX,e correspond to S-valued points τ̃ : S → X which reduce to

e: Spec(k)→ X modulo ε. (See Exercise 1.2.) A vector field on X is given by an automorphism

XS → XS over S which reduces to the identity on X. To a tangent vector τ we can thus

associate the vector field ξ(τ) given by the right translation tτ̃ . The map TX,e → Γ(X,TX/k)
given by τ 7→ ξ(τ) is k-linear and induces a homomorphism α: TX,e ⊗k OX → TX/k.
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We claim that α is an isomorphism. As it is a homomorphism between locally free OX -

modules of the same rank, it suffices to show that α is surjective. If x ∈ X is a closed point

then the map

(αx mod mx): TX,e ⊗k k(x) −→ (TX/k)x ⊗OX,x
k(x) = TX,x

is the map TX,e → TX,x induced on tangent spaces by tx, which is an isomorphism. Applying the

Nakayama Lemma, it follows that the map on stalks αx: TX,e ⊗k OX,x → (TX/k)x is surjective.

As this holds for all closed points x, it follows that α is surjective.

The last assertion of the proposition now follows from the identities Ω1
X/k = T ∨X/k and

ΩnX/k = ∧nΩ1
X/k. �

(1.6) Corollary. If X is an abelian variety, every global vector field ξ on X is left invariant,GlobalVectFields

i.e., for every left translation t′ we have t′∗ξ = ξ.

Proof. With notation as in the proof of the proposition, note that tτ̃ commutes with all left

translations. It follows that the vector field ξ(τ) is left invariant. The map τ 7→ ξ(τ) identifies

TX,e with the space of left invariant vector fields on X. If X is an abelian variety, these are the

only global vector fields on X, since Γ(X,OX) = k. �

(1.7) Corollary. Any morphism from P1 to a group variety is constant.RatCurves

Proof. Consider a morphism ϕ: P1 → X, with X a group variety. If ϕ is non-constant then

its image C ⊂ X is unirational, hence C is a rational curve. Replacing ϕ by the morphism

C̃ → X (where C̃ is the normalization of C), we are reduced to the case that the morphism

ϕ is birational onto its image. Then there exists a point y ∈ P1 such that the map on tan-

gent spaces Tyϕ: TyP
1 → Tϕ(y)X is non-zero. Since Ω1

X/k is free we then can find a global

1-form ω ∈ Γ(X,Ω1
X/k) such that ϕ∗ω does not vanish at y. Since Γ(P1,Ω1

P1/k) = 0 this is a

contradiction. �

Before we give the first examples of abelian varieties, let us introduce some notation. Con-

sider a smooth complete curve C over a field k. Note that by a curve we mean a variety of

dimension 1; in particular, C is assumed to be geometrically reduced and irreducible. By a

(Weil) divisor on C we mean a finite formal linear combination D = m1P1 + · · ·+mrPr, where

P1, . . . , Pr are mutually distinct closed points of C and where m1, . . . ,mr are integers. The

degree of such a divisor is defined to be deg(D) := m1 · [k(P1) : k] + · · · + mr · [k(Pr) : k]. If

f ∈ k(C)∗ is a non-zero rational function on C, we have an associated divisor div(f) of degree

zero; such divisors are called principal. Two divisors D1 and D2 are said to be linearly equiv-

alent, notation D1 ∼ D2, if they differ by a principal divisor. The divisor class group Cl(C) is

then defined to be the group of divisors modulo linear equivalence, with group law induced by

addition of divisors. Associating to a divisor its degree gives a homomorphism deg: Cl(C)→ Z.

We set Cl0(C) := Ker(deg), the class group of degree zero divisors on C.

A divisor D = m1P1 + · · ·+mrPr is said to be effective, notation D > 0, if all coefficients

mi are in Z>0. Given a divisor D on C, write L(D) = Γ
(
C,OC(D)

)
for the k-vector space of

rational functions f on C such that div(f) +D > 0. Also we write ℓ(D) = dimk

(
L(D)

)
. Recall

that the theorem of Riemann-Roch says that

ℓ(D)− ℓ(K −D) = deg(D) + 1− g ,

where K is the canonical divisor class and g is the genus of C.
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ellipticWith these notations, we turn to elliptic curves, the classical examples of abelian varieties,

and at the origin of the whole theory.

(1.8) Example. We define an elliptic curve to be a complete, non-singular curve of genus 1EllCurveExa

over a field k, together with a k-rational point. Let E be such a curve, and let P ∈ E(k) be the

distinguished rational point. The Riemann-Roch theorem tells us that ℓ(nP ) := dimk

(
L(nP )

)
=

n for n > 1.

We have L(P ) = k. Choose a basis 1, x of L(2P ) and extend it to a basis 1, x, y of

L(3P ). Since dimk

(
L(6P )

)
= 6, the seven elements 1, x, y, x2, xy, y2, x3 ∈ L(6P ) satisfy a

linear relation. Looking at pole orders, we see that the terms y2 and x3 must both occur with

a non-zero coefficient, and possibly after rescaling x and y by a unit we may assume that there

is a relation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with ai ∈ k . (1)DefBE:Weier

The functions x and y define a rational map

E 99K P2 by a 7→
(
1 : x(a) : y(a)

)
for a 6= P .

This rational map extends to an embedding of E into P2 which sends P to (0 : 1 : 0). It realizes

E as the non-singular cubic curve in P2 given by the affine equation (1), called a Weierstrass

equation for E. The non-singularity of this curve can be expressed by saying that a certain

expression in the coefficients ai, called the discriminant of the equation, is invertible. It is easily

seen from (1) that the image of P is a flex point, i.e., a point where the tangent has a threefold

intersection with the curve. (Alternatively, this is obvious from the fact that the embedding

E →֒ P2 is given by the linear system |3P |.)
In order to define the structure of an abelian variety on E, let us first show that the map

α: E(k)→ Cl0(E) given by Q 7→ [Q− P ]

is a bijection. If α(Q) = α(Q′) while Q 6= Q′, then Q and Q′ are linearly equivalent and

dimk

(
L(Q)

)
> 2, which contradicts Riemann-Roch. Thus α is injective. Conversely, if A is a

divisor of degree zero then dimk

(
(L(A+P )

)
= 1, so there exists an effective divisor of degree 1

which is linearly equivalent to A+ P . This divisor is necessarily a k-rational point, say Q, and

α(Q) = [A]. This shows that α is a bijection.

We obtain a group structure on E(k) by transporting the natural group structure on Cl0(E)

via α. Clearly, if k ⊂ K is a field extension then the group laws obtained on E(k) and EK(K) =

E(K) are compatible, in the sense that the natural inclusion E(k) ⊂ E(K) is a homomorphism.

The point P is the identity element for the group law.

The group law just defined has the following geometric interpretation. To avoid confusion

with the addition of divisors, we shall write (A,B) 7→ A⊕B for the group law and A 7→ ⊖A for

the inverse.

(1.9) Lemma. Let K be a field containing k. Let A, B and C be K-rational points of E. ThenA+B+CLem

A⊕ B ⊕ C = P in the group E(K) if and only if A, B and C are the three intersection points

of EK with a line.

Proof. By construction, A ⊕ B ⊕ C = P means that A ⊕ B ⊕ C is linearly equivalent to 3P .

The lemma is therefore a reformulation of the fact that the embedding E →֒ P2 is given by the

linear system |3P |. �
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The addition of K-rational points is now given as follows. To add A and B one takes the line

through A and B (by which we mean the tangent line to E at A if A = B). This line intersects E

in a third point R (possibly equal to A or B). Note that if A and B are K-rational then so is R.

Then one takes the line through R and P , which intersects E in a third point S. This is the

sum of A and B. To see this, note that by the lemma we have the relations: A ⊕ B ⊕ R = P

and R ⊕ P ⊕ S = P . Since P is the identity element we get A⊕ B = S, as claimed. Similarly,

the inverse of an element A is the third intersection point of E with the line through A and P .

A B
P (point at 1)
R

ES = A� B
Figure 2.

We claim that the group structure on E(K) comes from the structure of a group variety

on E. In other words: we want to show that there exist morphismsm: E×E → E and i: E → E

such that the group structure on E(K) is the one induced by m and i. To see this, let k ⊂ K

again be a field extension. If A, B ∈ E(K) then R = ⊖(A ⊕ B) is the third intersection

point of E with the line through A and B. Direct computation shows that if we work on an

affine open subset U ⊂ P2 containing A and B then the projective coordinates of R can be

expressed as polynomials, with coefficients in k, in the coordinates of A and B. This shows that

(A,B) 7→ ⊖(A⊕B) is given by a morphism ϕ: E×E → E. Taking B = P we find that A 7→ ⊖A
is given by a morphism i: E → E, and composing ϕ and i we get the addition morphism m.

Explicit formulas for i and m can be found in Silverman [1], Chapter III, §2.
We conclude that the quadruple (E,m, i, P ) defines an abelian variety of dimension 1

over k. As we have seen, abelian varieties have a trivial tangent bundle. Therefore, if X is

a 1-dimensional abelian variety, it has genus 1: abelian varieties of dimension 1 are elliptic

curves.

To get a feeling for the complexity of elliptic curves we take E to be the elliptic curve over Q

given by the Weierstrass equation y2 + y = x3 − x, with origin P∞ = (0 : 1 : 0). Let Q be the

rational point (−1,−1). If for n = 1, . . . , 20 we plot the coordinates of n · Q = Q ⊕ · · · ⊕ Q as

rational numbers, or even if we just plot the absolute value of the numerator of the x-coordinate

we find a parabola shape which indicates that the “arithmetic complexity” of the point n · Q
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grows quadratically in n; see Figure 3. [opmerking: Verwijzen naar een plaats waar we dit

verder bespreken. Zoals het er nu staat is het een losse flodder.]

1
6
20
1357
8385
12551561
1849037896
4881674119706
2786836257692691
79799551268268089761
280251129922563291422645
54202648602164057575419038802
3239336802390544740129153150480400
1425604881483182848970780090473397497201
596929565407758846078157850477988229836340351
1356533706384096591887827693333962338847777347485221
2389750519110914018630990937660635435269956452770356625916
47551938020942325784141569050513811957803129798534598981096547726
43276783438948886312588030404441444313405755534366254416432880924019065
66655479518893093532610447590226207125008330695731551720689810858664307580428417

Figure 3.

(1.10) Example. Now we try to generalize the above example, taking a curve of genus 2. So,g=2Exa

let C be a smooth projective curve of genus g = 2 over a field k. Then C is a hyperelliptic

curve and can be described as a double cover π: C → P1
k of the projective line. Let i be the

hyperelliptic involution of C. Consider the surface C×C, on which we have an involution ι given

by (a, b) 7→ (b, a). The quotient C(2) = (C × C)/ι is a non-singular surface that parametrizes

the effective divisors of degree 2 on C; we shall give further details on this in Chapter 14, §2.
The image of the anti-diagonal ∆− =

{(
a, i(a)

) ∣∣ a ∈ C
}

under the canonical map C2 →
C(2) is a curve Y ⊂ C(2) which is isomorphic to C/i = P1 and has self-intersection number
1
2 (∆−)2 = (2− 2g)/2 = −1; hence we find that Y is an exceptional curve. (Of course, Y is just

the g1
2 of canonical divisors on the curve, viewed as a subvariety of the variety C(2) of effective

divisors of degree 2.) By elementary theory of algebraic surfaces we can blow Y down, obtaining

a non-singular projective surface S.

Consider the map α̃: C(2)(k)→ Cl0(C) given by D 7→ [D]− [K], where [K] is the canonical

divisor class. Since
[
a+ i(a)

]
= [K] for every a ∈ C, this map factors through the contraction

of the curve Y and we get a map α: S(k) → Cl0(C). We claim that α is bijective. If D1 and

D2 are effective divisors of degree 2 with α̃(D1) = (̃D2) then clearly D1 ∼ D2. If D1 6= D2

then ℓ(Di) > 2 (i = 1, 2); hence by Riemann-Roch the degree zero divisors K −Di are effective,

which implies that D1 and D2 are canonical, i.e., D1, D2 ∈ Y . This shows that α is injective.

It is surjective by Riemann-Roch.

Transporting the natural group structure on Cl0(C) via α, we obtain a group structure

on S(k). The formation of this group structure is compatible with field extensions k ⊂ K. The

identity element of S(k) is the point [K] ∈ C(2)(k), which is the point obtained by contracting Y .

We claim that the addition and inverse on S(k) are given by morphisms. For the inverse this

is easy: using that a+ i(a) ∼ K for all a ∈ C(k) it follows that the inverse is the automorphism

of S induced by the automorphism (a, b) 7→
(
i(a), i(b)

)
of C2.

To see that addition is given by a morphism, consider the projection π: C5 → C4 onto the

first four factors. This map has four natural sections (p1, p2, p3, p4) 7→ (p1, . . . , p4, pi), and this

defines a relative effective divisor D of degree 4 on C5 over C4. Let K be a fixed canonical
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Rigiditydivisor on the last factor C. By the Riemann-Roch theorem for the curve C over the function

field k(C4) the divisor D − K is linearly equivalent to an effective divisor of degreee 2 on C

over k(C4). It follows that D is linearly equivalent to a divisor of the form E+π∗(G), with E a

relative effective divisor of degree 2 and G a divisor on C4. For P ∈ C4 the restriction of E to

the fibre {P}×C is an effective divisor of degree 2, hence determines a point ψ(P ) of C(2). This

gives a map ψ: C4 → C(2) which is clearly a morphism. If β: C(2) → S is the blowing-down of

Y ⊂ C(2) then the composition β ◦ψC4 → S factors through β × β. The resulting morphism

S × S → S is precisely the addition on S. [opmerking: dit voorbeeld moet verder opgepoetst

worden.]

The preceding two examples suggest that, given a smooth projective curve C over a field k,

there should exist an abelian variety whose points parametrize the degree zero divisor classes on

C. If C has a k-rational point then such an abelian variety indeed exists (as we shall see later),

though the construction will not be as explicit and direct as in the above two examples. The

resulting abelian variety is called the jacobian of the curve.

(1.11) Example. In this example we work over the field k = C. Consider a complex vectorComplToriExa

space V of finite dimension n. For an additive subgroup L ⊂ V the following conditions are

equivalent:

(i) L ⊂ V is discrete and co-compact, i.e., the euclidean topology on V induces the discrete

topology on L and the quotient X := V/L is compact for the quotient topology;

(ii) the natural map L⊗Z R→ V is bijective;

(iii) there is an R-basis e1, . . . , e2n of V such that L = Ze1 + · · ·+ Ze2n.

A subgroup satisfying these conditions is called a lattice in V .

Given a lattice L ⊂ V , the quotientX naturally inherits the structure of a compact (complex

analytic) Lie group. Lie groups of this form are called complex tori. (This usage of the word

torus is not to be confused with its meaning in the theory of linear algebraic groups.)

Let us first consider the case n = 1. By a well-known theorem of Riemann, every compact

Riemann surface is algebraic. Since X has genus 1, it can be embedded as a non-singular

cubic curve in P2
C, see (1.8). If ϕ: X →֒ P2

C is such an embedding, write E = ϕ(X) and

P = ϕ(0 mod L). We see that (E,P ) is an elliptic curve (taking P to be the identity element).

The structure of a group variety on E as defined in (1.8) is the same as the group structure on

X, in the sense that ϕ: X
∼−→ Ean is an isomorphism of Lie groups.

For n > 2 it is not true that any n-dimensional complex torus X = V/L is algebraic;

in fact, “most” of them are not. What is true, however, is that every abelian variety over C

can analytically be described as a complex torus. In this way, complex tori provide “explicit”

examples of abelian varieties. We will return to this in Chapter ??.

The group structure of an abelian variety imposes strong conditions on the geometry of the

underlying variety. The following lemma is important in making this explicit.

(1.12) Rigidity Lemma. Let X,Y and Z be algebraic varieties over a field k. SupposeRigidity

that X is complete. If f : X × Y → Z is a morphism with the property that, for some y ∈
Y (k), the fibre X × {y} is mapped to a point z ∈ Z(k) then f factors through the projection

prY : X × Y → Y .

Proof. We may assume that k = k. Choose a point x0 ∈ X(k), and define a morphism g: Y → Z

by g(y) = f(x0, y). Our goal is to show that f = g ◦prY . As X × Y is reduced it suffices to
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homomorphism!of

homomorphism!defi

homomorphism!of

prove this on k-rational points.

Let U ⊂ Z be an affine open neighbourhood of z. Since X is complete, the projection

prY : X×Y → Y is a closed map, so that V := prY
(
f−1(Z−U)

)
is closed in Y . By construction,

if P /∈ V then f(X × {P}) ⊂ U . Since X is complete and U is affine, this is possible only if f

is constant on X × {P}. This shows that f = g ◦prY on the non-empty open set X × (Y − V ).

Because X × Y is irreducible, it follows that f = g ◦prY everywhere. �

(1.13) Definition. Let (X,mX , iX , eX) and (Y,mY , iY , eY ) be group varieties. A mor-HomomDef

phism f : X → Y is called a homomorphism if

f ◦mX = mY ◦(f × f) .

If this holds then also f(eX) = eY and f ◦iX = iY ◦f .

The rigidity of abelian varieties is illustrated by the fact that up to a translation every

morphism is a homomorphism:

(1.14) Proposition. Let X and Y be abelian varieties and let f : X → Y be a morphism.MorAV

Then f is the composition f = tf(eX ) ◦h of a homomorphism h: X → Y and a translation tf(eX )

over f(eX) on Y .

Proof. Set y := iY
(
f(eX)

)
, and define h := ty ◦f . By construction we have h(eX) = eY . Consider

the composite morphism

g := (X ×X
(h◦mX)×

(
iY ◦mY ◦ (h×h)

)
−−−−−−−−−−−−−−−−−−→ Y × Y mY−−−→ Y ) .

(To understand what this morphism does: if we use the additive notation for the group structures

on X and Y then g is given on points by g(x, x′) = h(x+ x′)− h(x′)− h(x).) We have

g({eX} ×X) = g(X × {eX}) = {eY } .

By the Rigidity Lemma this implies that g factors both through the first and through the

second projection X × X → X, hence g equals the constant map with value eY . This means

that h◦mX = mY ◦(h× h), i.e., h is a homomorphism. �

(1.15) Corollary. (i) If X is a variety over a field k and e ∈ X(k) then there is at most oneUniqAVStr

structure of an abelian variety on X for which e is the identity element.

(ii) If (X,m, i, e) is an abelian variety then the group structure on X is commutative, i.e.,

m◦s = m: X ×X → X, where s: X ×X → X ×X is the morphism switching the two factors.

In particular, for every k-scheme T the group X(T ) is abelian.

Proof. (i) If (X,m, i, e) and (X,n, j, e) are abelian varieties then m and n are equal when

restricted to X × {e} and {e} × X. Applying (1.12) to m◦(m, i◦n): X × X → X, which is

constant when restricted to X×{e} and {e}×X, we get m = n. This readily implies that i = j

too.

(ii) By the previous proposition, the map i: X → X is a homomorphism. This implies that

the group structure is abelian. �

(1.16) Remark. It is worthwile to note that in deriving the commutativity of the group theNCGrVar

completeness of the variety is essential. Examples of non-commutative group varieties are linear
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homomorphism!ofalgebraic groups (i.e., matrix groups) like GLn for n > 1, the orthogonal groups On for n > 1

and symplectic groups Sp2n.

(1.17) Notation. From now on we shall mostly use the additive notation for abelian varieties,AddNotat

writing x + y for m(x, y), writing −x for i(x), and 0 for e. Since abelian varieties are abelian

as group varieties, we no longer have to distinguish between left and right translations. Also

we can add homomorphisms: given two homomorphisms of abelian varieties f , g: X → Y , we

define f + g to be the composition

f + g := mY ◦(f, g): X −→ Y × Y −→ Y ,

and we set −f := f ◦iX = iY ◦f . This makes the set HomAV(X,Y ) of homomorphisms of X to

Y into an abelian group.

As we have seen, also the set HomS
h/k(X,Y ) = Y (X) of X-valued points of Y has a

natural structure of an abelian group. By Proposition (1.14), HomAV(X,Y ) is just the sub-

group of HomS
h/k(X,Y ) consisting of those morphisms f : X → Y such that f(0X) = 0Y ,

and HomS
h/k(X,Y ) = HomAV(X,Y ) × Y (k) as groups. We shall adopt the convention that

Hom(X,Y ) stands for HomAV(X,Y ). If there is a risk of confusion we shall indicate what we

mean by a subscript “AV” or “Sch/k”.

We close this chapter with another result that can be thought of as a rigidity property of

abelian varieties.

(1.18) Theorem. Let X be an abelian variety over a field k. If V is a smooth k-variety thenExtendMap

any rational map f : V 99K X extends to a morphism V → X.

Proof. We may assume that k = k, for if a morphism Vk → Xk is defined over k on some dense

open subset of Vk, then it is defined over k. Let U ⊆ V be the maximal open subset on which

f is defined. Our goal is to show that U = V .

If P ∈ |V | is a point of codimension 1 then the local ring OV,P is a discrete valuation ring,

because V is regular. By the valuative criterion for properness the map f : Spec
(
k(V )

)
→ X

extends to a morphism Spec(OV,P ) → X. Because X is locally of finite type over k, this last

morphism extends to a morphism Y → X for some open Y ⊂ V containing P . (Argue on rings.)

Hence codimX(X \ U) > 2.

Consider the rational map F : V × V 99K X given on points by (v,w) 7→ f(v)− f(w). Let

W ⊂ V × V be the domain of definition of F . We claim that f is defined at a point v ∈ V (k)

if and only if F is defined at (v, v). In the “only if” direction this is immediate, as clearly

U × U ⊆ W . For the converse, suppose F is defined at (v, v). Then
(
V × {v}

)
∩W is an open

subset of V ∼= V ×{v} containing v. Hence we can choose a point u ∈ U(k) such that (u, v) ∈W .

Then
(
{u} × V

)
∩W is an open subset of V ∼= {u} × V containing v, on which f is defined

because we have the relation f(w) = f(u)− F (u,w).

Our job is now to show that the domain of definition W contains the diagonal ∆ ⊂ V × V .

Consider the homomorphism on function fields F ♯: k(X)→ k(V ×V ). Note that F maps ∆∩W
to 0 ∈ X. It follows that F is regular at a point (v, v) ∈ ∆(k) if and only if F ♯ maps OX,0 ⊂ k(X)

into OV×V,(v,v). Suppose that f is not regular at some point v ∈ V (k), and choose an element

ϕ ∈ OX,0 with F ♯(ϕ) /∈ OV×V,(v,v). Let D be the polar divisor of F ♯(ϕ), i.e.,

D =
∑

ordP
(
F ♯(ϕ)

)
· [P ]
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where the sum runs over all codimension 1 points P ∈ |V × V | with ordP
(
F ♯(ϕ)

)
< 0. If (w,w)

is a k-valued point in ∆∩ |D| then F ♯(ϕ) is not in OV×V,(w,w), hence F is not regular at (w,w).

But V × V is a regular scheme, so D ⊂ V × V is locally a principal divisor. Then also ∆ ∩ |D|
is locally defined, inside ∆, by a single equation, and it follows that ∆ ∩ |D| has codimension

6 1 in ∆. Hence f is not regular on a subset of V of codimension 6 1, contradicting our

earlier conclusion that codimX(X\U) > 2. [opmerking: Erg helder vind ik het argument nog

niet.] �

Exercises.

(1.1) Let X1 and X2 be varieties over a field k.Ex:Prod

(i) If X1 and X2 are given the structure of a group variety, show that their product X1 ×X2

naturally inherits the structure of a group variety.

(ii) Suppose Y := X1 ×X2 carries the structure of an abelian variety. Show that X1 and X2

each have a unique structure of an abelian variety such that Y = X1 × X2 as abelian

varieties.

(1.2) Let X be a variety over a field k. Write k[ε] for the ring of dual numbers over k (i.e.,Ex:k[e]tgt

ε2 = 0), and let S := Spec
(
k[ε]
)
. Write Aut(1)(XS/S) for the group of automorphisms of XS

over S which reduce to the identity on the special fibre X →֒ XS .

(i) Let x be a k-valued point of X (thought of either as a morphism of k-schemes x: Spec(k)→
X or as a point x ∈ |X| with k(x) = k). Show that the tangent space TX,x := (mx/m

2
x)
∗ is

in natural bijection with the space of k[ε]-valued points of X which reduce to x modulo ε.

(Cf. HAG, Chap. II, Exercise 2.8.)

(ii) Suppose X = Spec(A) is affine. It is immediate from the definitions that

H0(X,TX/k) ∼= Homk(Ω
1
A/k, A) ∼= Derk(A,A) .

Use this to show that H0(X,TX/k) is a naturally isomorphic with Aut(1)(XS/S).

(iii) Show, by taking an affine covering and using (ii), that for arbitrary variety X we have a

natural isomorphism

h: H0(X,TX/k)
∼−→ Aut(1)(XS/S) .

(iv) Suppose X is a group variety over k. If x ∈ X(k) and τ : S → X is a tangent vector at x,

check that the associated global vector field ξ := h−1(tτ ) is right-invariant, meaning that

ty,∗ξ = ξ for all y ∈ X. [opmerking: Dit is volgens mij een beetje los uit de pols. Waarom

rechts-invariant en niet links? Bovendien sluit het niet aan op de tekst, want daarin hebben

we het juist over de links-invariante vv. Controleren en aanpassen.]

(1.3) A ring variety over a field k is a commutative group variety (X,+, 0) over k, togetherEx:RingVar

with a ring multiplication morphism X ×k X → X written as (x, y) 7→ x · y, and a k-rational

point 1 ∈ X(k), such that the ring multiplication is associative: x ·(y ·z) = (x ·y) ·z, distributive:

x · (y+ z) = (x · y) + (x · z), and 1 is a 2-sided identity element: 1 · x = x = x · 1. Show that the

only complete ring variety is a point. (In fact, you do not need the identity element for this.)

(1.4) Let X1, X2, Y1 and Y2 be abelian varieties over a field k. Show thatEx:HomXxXYxY

HomAV(X1 ×X2, Y1 × Y2)

∼= HomAV(X1, Y1)×HomAV(X1, Y2)×HomAV(X2, Y1)×HomAV(X2, Y2) .
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Does a similar statement hold if we everywhere replace “HomAV” by “HomS
h” ?

Notes. If one wishes to go back to classical antiquity one may put the origin of the theory of abelian varieties with

Diophantos (± 200 – ± 284) who showed how to construct a third rational solution of certain cubic equations in

two unknowns from two given ones. The roots in a not so distant past may be layed with Giulio Carlo Fagnano

(1682–1766) and others who considered addition laws for elliptic integrals. From this the theory of elliptic

functions was developed. The theory of elliptic functions played a major role in 19th century mathematics. Niels

Henrik Abel (1802–1829), after which our subject is named, had a decisive influence on its development. Other

names that deserve to be mentioned are Adrien-Marie Legendre (1752–1833), Carl-Friedrich Gauss (1777–1855)
and Carl Gustav Jacobi (1804–1851).

Bernhard Riemann (1826–1866) designed a completely new theory of abelian functions in which the algebraic

curve was no longer the central character, but abelian integrals and their periods and the associated complex

torus. The theory of abelian functions was further developed by Leopold Kronecker (1823–1891), Karl Weierstrass

(1815–1897) and Henri Poincaré (1854–1912). After Emile Picard (1856– 1941) abelian functions were viewed as

the meromorphic functions on a complex abelian variety.

It was André Weil (1906–1998) who made the variety the central character of the subject when he developed

a theory of abelian varieties over arbitrary fields; he was motivated by the analogue of Emil Artin (1898–1962)

of the Riemann hypothesis for curves over finite fields and the proof by Helmut Hasse (1898–1979) for genus 1.

See Weil [2]. David Mumford (1937) recasted the theory of Weil in terms of Grothendieck’s theory of schemes.

His book MAV is a classic. We refer to Klein [1] and Dieudonné [2] for more on the history of our subject. The
Rigidity Lemma is due to Mumford.
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Chapter II. Line bundles and divisors on abelian varieties.

In this chapter we study line bundles and divisors on abelian varieties. One of the main goals

is to prove that abelian varieties are projective. The Theorem of the Square (2.9) plays a key

role. Since abelian varieties are nonsingular, a Weil divisor defines a Cartier divisor and a line

bundle, and we have a natural isomorphism Cl(X)
∼−→ Pic(X). We shall mainly work with line

bundles, but sometimes (Weil) divisors are more convenient.

The following abuse of notation will prove handy. If L is a line bundle on a product variety

X × Y and x is a point of X then we shall write Lx for the restriction of L to {x}× Y . Strictly

speaking we should write Spec
(
k(x)

)
instead of {x} but where possible we prefer the latter, more

geometric, notation. Similarly, if y is a point of Y we denote by Ly the restriction L|X×{y}.

Here, of course, x shall always be a point of X and y a point of Y .

In this chapter, varieties shall always be varieties over some ground field k, which in most

cases shall not be mentioned.

§1. The theorem of the square.

(2.1) Theorem. Let X and Y be varieties. Suppose X is complete. Let L and M be two lineLineBonProd

bundles on X × Y . If for all closed points y ∈ Y we have Ly ∼= My there exists a line bundle N

on Y such that L ∼= M ⊗ p∗N , where p = prY : X × Y → Y is the projection onto Y .

Proof. This is a standard fact of algebraic geometry. A proof using cohomology runs as follows.

Since Ly⊗M−1
y is the trivial bundle andXy is complete, the space of sections H0(Xy, Ly⊗M−1

y )

is isomorphic to k(y), the residue field of y. This implies that p∗(L ⊗M−1) is locally free of

rank one, hence a line bundle (see MAV, §5 or HAG, Chap. III, § 12). We shall prove that the

natural map

α: p∗p∗(L⊗M−1)→ L⊗M−1

is an isomorphism. If we restict to a fibre we find the map

OXy
⊗ Γ(Xy, OXy

)→ OXy

which is an isomorphism. By Nakayama’s Lemma, this implies that α is surjective and by

comparing ranks we conclude that it is an isomorphism. �

As an easy consequence we find a useful prinicple.

(2.2) See-saw Principle. If, in addition to the assumptions of (2.1), we have Lx = Mx forSee-saw

some point x ∈ X then L ∼= M .

Proof. We have L ∼= M ⊗ pr∗YN . Over {x} × Y this gives Lx ∼= Mx ⊗ (pr∗YN)x. Therefore,

(pr∗YN)x is trivial, and this implies that N is trivial. �

(2.3) Lemma. Let X and Y be varieties, with X complete. For a line bundle L on X ×Y , theMaxTriv1

set {y ∈ Y | Ly is trivial} is closed in Y .

LineBund, 8 februari, 2012 (635)
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Proof. If M is a line bundle on a complete variety then M is trivial if and only if both H0(M)

and H0(M−1) are non-zero. Hence

{y ∈ Y | Ly is trivial} = {y ∈ Y | h0(Ly) > 0} ∩ {y ∈ Y | h0(L−1
y ) > 0} . (1)LineBund:MaxTriv

But the functions y 7→ h0(Ly) and y 7→ h0(L−1) are upper semi-continuous on Y ; see MAV, § 5

or HAG, Chap. III, Thm. 12.8. So the two sets in the right hand side of (1) are closed in Y . �

Actually, there is a refinement of this which says the following.

(2.4) Proposition. Let X be a complete variety over a field k, let Y be a k-scheme, and let LMaxTrivProp

be a line bundle on X ×Y . Then there exists a closed subscheme Y0 →֒ Y which is the maximal

subscheme of Y over which L is trivial; i.e., (i) the restriction of L to X × Y0 is the pull back

(under prY0
) of a line bundle on Y0, and (ii) if ϕ: Z → Y is a morphism such that (idX ×ϕ)∗(L)

is the pullback of a line bundle on Z under p∗Z then ϕ factors through Y0.

For the proof we refer to MAV, §10. In Chapter 6 we shall discuss Picard schemes; once

we know the existence and some properties of PicX/k the assertion of the lemma is a formal

consequence. (See (6.4).)

The following theorem is again a general fact from algebraic geometry and could be accepted

as a black box. As it turns out, it is of crucial importance for the theory of abelian varieties. In

view of its importance we give a proof.

(2.5) Theorem. Let X and Y be complete varieties over k and let Z be a connected, locallyLineBonXYZ

noetherian k-scheme. Consider points x ∈ X and y ∈ Y , and let z be a point of Z. If L is a line

bundle on X × Y ×Z whose restriction to {x} × Y ×Z, to X ×{y} ×Z and to X × Y × {z} is

trivial then L is trivial.

Proof. We follow the proof given by Mumford in MAV §10. First we remark that that if k ⊂ K
is a field extension then a line bundle M on a k-variety V is trivial if and only if the line bundle

MK on VK is trivial. (See Exercise (2.1).) To prove the assertion we may therefore first replace

the field k by an extension. Hence we may assume that the points x, y and z are k-rational

points; this will be used in the definition of the morphisms i1 and i2 below.

We view L as a family of line bundles on X×Y parametrized by Z. Let Z ′ be the maximal

closed subscheme of Z over which L is trivial, as discussed above. We have z ∈ Z ′. We shall

show that Z ′ = Z by showing that Z ′ is an open subscheme and using the connectedness of Z.

Let ζ be a point of Z ′. Write m for the maximal ideal of the local ring OZ,ζ and I ⊂ OZ,ζ
for the ideal defining (the germ of) Z ′. We have to show that I = (0). Suppose not. By Krull’s

Theorem (here we use that Z is locally noetherian) we have ∩nmn = (0), hence there exists a

positive integer n such that I ⊂ mn, I 6⊂ mn+1. Put a1 = (I,mn+1), and choose an ideal a2 with

mn+1 ⊂ a2 ⊂ (I,mn+1) = a1 and dimk(ζ)(a1/a2) = 1 .

(Note that such ideals exist.) Let Zi ⊂ Spec(OZ,ζ) be the closed subscheme defined by the ideal

ai (i = 1, 2). We will show that the restriction of L to X × Y × Z2 is trivial. This implies that

Z2 is contained in Z ′, which is a contradiction, since I 6⊂ a2.

Write Li for the restriction of L to X × Y × Zi. By construction, L1 is trivial; choose a

trivializing global section s. The inclusion Z1 →֒ Z2 induces a restriction map Γ(L2) → Γ(L1).

We claim: L2 is trivial if and only if s can be lifted to a global section of L2. To see this,
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suppose first that we have a lift s′. The schemes X × Y × Z1 and X × Y × Z2 have the same

underlying point sets. If s′(P ) = 0 for some point P then also s(P ) = 0, but this contradicts

the assumption that s is a trivialization of L1. Hence s′ is nowhere zero, and since L2 is locally

free of rank 1 this implies that s′ trivializes L2. Conversely, if L2 is trivial then the restriction

map Γ(L2)→ Γ(L1) is just Γ(OZ2
)→ Γ(OZ1

) and this is surjective.

The obstruction for lifting s to a global section of L2 is an element ξ ∈ H1(X × Y,OX×Y ).

We know that the restrictions of L2 to {x} × Y × Z2 and to X × {y} × Z2 are trivial. Writing

i1 = (idX , y): X →֒ X × Y and i2 = (x, idY ): Y →֒ X × Y , this means that ξ has trivial image

under i∗1: H
1(X×Y,OX×Y )→ H1(X,OX ) and under i∗2: H

1(X×Y,OX×Y )→ H1(Y,OY ). But

the map (i∗1, i
∗
2) gives a (Künneth) isomorphism

H1(X × Y,OX×Y )
∼−→ H1(X,OX )⊕H1(Y,OY ) ,

hence ξ = 0 and s can be lifted. �

(2.6) Remark. The previous theorem gives a strong general result about line bundles on aLBXYZRem

product of three complete varieties. Note that the analogous statement for line bundles on a

product of two complete varieties is false in general. More precisely, suppose X and Y are

complete k-varieties and L is a line bundle on X × Y . If there exist points x ∈ X and y ∈ Y
such that Lx ∼= OY and Ly ∼= OX then it is not true in general that L ∼= OX×Y . For instance,

take X = Y to be an elliptic curve, and consider the divisor

D = ∆X −
(
{0} ×X

)
−
(
X × {0}

)

where ∆X ⊂ X ×X is the diagonal. Note that L = OX×X(D) restricts to the trivial bundle on

{0} ×X and on X × {0}. (Use that the divisor 1 · 0 (= 1 · eX) on X is linearly equivalent to a

divisor whose support does not contain 0.) But L is certainly not the trivial bundle: if it were,

L|{P}×X = OX(P − eX) ∼= OX for all points P ∈ X. But then there is a function f on X with

one zero and one pole and X would have to be a rational curve, which we know it is not.

Theorem (2.5), together with the previous remark, is a reflection of the quadratic character

of line bundles. To explain this, let us make the analogy with functions on the real line. The

quadratic functions f(x) = ax2 + bx+ c are characterized by their property that

f(x+ y + z)− f(x+ y)− f(x+ z)− f(y + z) + f(x) + f(y) + f(z)

is constant. The analogue of this for line bundles on abelian varieties is the celebrated Theorem

of the Cube. Before we state it, we introduce a notational convention. If X is an abelian variety

and I = {i1, . . . , ir} ⊂ {1, 2, . . . , n} then we write

pI : X
n → X , or pi1···ir : X

n → X ,

for the morphism sending (x1, x2, . . . , xn) to xi1 + · · · + xir . Thus, for example, pi is the

projection onto the ith factor, p12 = p1 + p2, etc. With this notation we have the following

important corollary to the theorem.

(2.7) Theorem of the Cube. Let L be a line bundle on X. Then the line bundleCube

Θ(L) :=
⊗

I⊂{1,2,3}

p∗IL
⊗(−1)1+#I

= p∗123L⊗ p∗12L−1 ⊗ p∗13L−1 ⊗ p∗23L−1 ⊗ p∗1L⊗ p∗2L⊗ p∗3L
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on X ×X ×X is trivial.

Proof. Restriction of Θ(L) to {0} ×X ×X gives the bundle

m∗L⊗ p∗2L−1 ⊗ p∗3L−1 ⊗m∗L−1 ⊗OX×X ⊗ p∗2L⊗ p∗3L

which is obviously trivial. Similarly for X × {0} × X and X × X × {0}. By (2.5) the result

follows. �

We could sharpen the corollary by saying that Θ(L) is canonically trivial, see Exercise (2.2).

(2.8) Corollary. Let Y be a scheme and let X be an abelian variety. For every triple f , g, hCubeCor1

of morphisms Y → X and for every line bundle L on X, the bundle

(f + g + h)∗L⊗ (f + g)∗L−1 ⊗ (f + h)∗L−1 ⊗ (g + h)∗L−1 ⊗ f∗L⊗ g∗L⊗ h∗L

on Y is trivial.

Proof. Consider (f, g, h): Y → X ×X ×X and use (2.7). �

Another important corollary is the following.

(2.9) Theorem of the Square. Let X be an abelian variety and let L be a line bundle on X.Square

Then for all x, y ∈ X(k),

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL .
More generally, let T be a k-scheme and write LT for the pull-back of L to XT . Then

t∗x+yLT ⊗ LT ∼= t∗xLT ⊗ t∗yLT ⊗ pr∗T
(
(x+ y)∗L⊗ x∗L−1 ⊗ y∗L−1

)

for all x, y ∈ X(T ).

Proof. In the first formulation, this is immediate from (2.8) by taking for f the identity on X and

for g and h the constant maps with images x and y. For the general form, take f = prX : XT =

X ×k T → X, take g = x◦prT and h = y ◦prT . Then

f + g = prX ◦tx , f + h = prX ◦ty , g + h = (x+ y)◦prT

and

f + g + h = prX ◦tx+y .

Now again apply (2.8). �

The theorem allows the following interpretation. (Compare this with what we have seen in

Examples (1.8) and (1.10).)

(2.10) Corollary. Let L be a line bundle on an abelian variety X. Let Pic(X) be the groupSquareCor1

of isomorphism classes of line bundles on X. Then the map ϕL: X(k) → Pic(X) given by

x 7→ [t∗xL⊗ L−1] is a homomorphism.

Proof. Immediate from (2.9). �

(2.11) Remark. The homomorphisms ϕL will play a very important role in the theory. InphiLsign

later chapters (see in particular Chapters 6 and 7) we shall introduce the dual Xt of an abelian
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symmetric

line

line

variety X, and we shall interprete ϕL as a homomorphism X → Xt. The homomorphisms

λ: X → Xt that are (geometrically) of the form ϕL for an ample line bundle L are called

polarizations; see Chapter 11.

At this point, let us already caution the reader that there is a sign convention in the theory

that can easily lead to misunderstanding. In the theory of elliptic curves one usually describes

line bundles of degree 0 (which is what the dual elliptic curve is about!) in the form OE(P −O).

More precisely: if E is an elliptic curve with origin O then the map P 7→ OE(P − O) gives an

isomorphism E
∼−→ Et = Pic0

E/k. This map is not the polarization associated to the ample line

bundle L = OE(O); rather it is minus that map. In general, if D is a divisor on an abelian

variety X then t∗xOX(D) is OX
(
(t−x(D)

)
= OX(D − x), not OX(D + x). So if L = OE(O) on

an elliptic curve E, the map ϕL is given on points by P 7→ OE(O − P ).

The same remark applies to the theory of Jacobians (see in particular Chapter 14). If C is

a smooth projective curve over a field k, and if P0 ∈ C(k) is a k-rational point then we have a

natural morphism ϕ from C to its Jacobian variety J = Jac(C) := Pic0
C/k. In most literature one

considers the map C → J given on points by P 7→ OC(P − P0). However, we have a canonical

principal polarization on J (see again Chapter 14 for further details), and in connection with

this it is more natural to consider the morphism ϕ: C → J given by P 7→ OC(P0 − P ).

Let X be an abelian variety. For every n ∈ Z we have a homomorphism [n] = [n]X : X → X

called “multiplication by n”. For n > 1, it sends x ∈ X(k) to x + · · · + x (n terms); for

n = −m 6 −1 we have [n]X = iX ◦ [m]X . If there is no risk of confusion, we shall often simply

write n for [n]; in particular this includes the abbreviations 1 for [1] = idX , 0 for [0] (the constant

map with value 0), and −1 or (−1) for [−1] = −idX . The effect of n on line bundles is described

by the following result.

(2.12) Corollary. For every line bundle L on an abelian variety X we haveCubeCor2

n∗L ∼= Ln(n+1)/2 ⊗ (−1)∗Ln(n−1)/2 .

Proof. Set f = n, g = 1, and h = −1. Applying (2.8), one finds that

n∗L⊗ (n+ 1)∗L−1 ⊗ (n− 1)∗L−1 ⊗ n∗L⊗ L⊗ (−1)∗L

is trivial, i.e.,

n∗L2 ⊗ (n + 1)∗L−1 ⊗ (n− 1)∗L−1 ∼= (L⊗ (−1)∗L)−1 .

The assertion now follows by induction, starting from the cases n = −1, 0, 1. �

In particular, if the line bundle L is symmetric, by which we mean that (−1)∗L ∼= L,

then we find that n∗L ∼= Ln
2

for all n. For instance, if M is an arbitrary line bundle then

L+ := M ⊗ (−1)∗M is symmetric. Similarly, L− := M ⊗ (−1)∗M−1 is an example of an anti-

symmetric line bundle, i.e., a line bundle L for which (−1)∗L ∼= L−1; for such line bundles we

have n∗L ∼= Ln for all n. Note the contrast between the quadratic effect of n∗ in the symmetric

case and the linear effect in the anti-symmetric case. Further note that with the notation just

introduced we have M2 ∼= L+ ⊗ L−; so we find that the square of a line bundle can be written

as the product of a symmetric and an anti-symmetric part. This is a theme we shall explore in

much greater detail in later chapters.
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§2. Projectivity of abelian varieties.

We now turn to the question whether abelian varieties are projective. As it turns out the answer

is “yes”. We give two proofs of this. A fairly short proof is given in (2.26); the Theorem of the

Square plays a key role in this argument. The other proof we give is longer—it takes up most of

this section—but along the way we shall obtain a number of results that are interesting in their

own right. We think that Proposition (2.20) is particularly remarkable.

We shall need a couple of facts about group schemes. Since these form the main objects of

study of the next two chapters, we shall simply use what we need, and refer forward to the next

chapter for a precise explanation. What is needed in this chapter can be summarized as follows.

(2.13) Fact. Let X be an abelian variety over a field k. Suppose Y →֒ X is a closed subgroupAVsubvarFact

scheme. If Y 0 is the connected component of Y containing the origin then Y 0 is an open and

closed subgroup scheme of Y and Y 0 is geometrically irreducible. If furthermore k is perfect

then the reduced underlying scheme Y 0
red →֒ X is an abelian subvariety of X.

For the proof of this statement, see Prop. (3.17) and Exercise (3.2).

(2.14) Remark. The fact just stated is weaker than what is actually true. Namely, the con-AVsubvarRem

clusion that Y 0
red →֒ X is an abelian subvariety of X holds true without the assumption that

the base field k is perfect. We shall see this in Prop. (5.31), once we have more theory at our

disposal. If we already knew the stronger version of the above fact at this stage, it would sim-

plify some of the arguments that we shall give. For instance, in the rest of this chapter we shall

sometimes work over k and then later draw conclusions that are valid over an arbitrary field.

The reason for this detour is that, at this stage, we can apply (2.13) only over a perfect field.

Suppose X = A × B is an abelian variety which is a product of positive dimensional

abelian varieties A and B, and suppose M is a line bundle on A. If prA: A × B → A is the

projection onto A then the bundle L := pr∗AM is invariant under translation over the points of

{0A} ×B ⊂ X. Obviously, L is not ample. This suggests that if L is a line bundle on X which

is invariant under many translations, then L might not be ample.

(2.15) Definition. Let L be a line bundle on an abelian variety X. On X ×X we define theMumfBundDef

Mumford line bundle Λ(L) by

Λ(L) := m∗L⊗ p∗1L−1 ⊗ p∗2L−1 .

As we shall see, Λ(L) is a very useful bundle. The restriction of Λ(L) to a vertical fibre

{x}×X and to a horizontal fibre X×{x} is t∗xL⊗L−1. In particular, Λ(L) is trivial on {0}×X
and on X × {0}.

(2.16) Definition. With the above notation, we define K(L) ⊆ X as the maximal closedK(L)Def

subscheme (in the sense of (2.4)) such that Λ(L)|X×K(L) is trivial over K(L), i.e., such that

Λ(L)|X×K(L)
∼= pr∗2M for some line bundle M on K(L).

It follows from the universal property in (2.4) that the formation of K(L) is compatible

with base-change. In particular, if k ⊂ k′ is a field extension, writing L′ for the pull-back of L

to X ×k k′, we have K(L′) = K(L)×k k′.
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Roughly speaking, a point belongs to K(L) if L is invariant under translation by this point.

A more precise statement is given by the following lemma.

(2.17) Lemma. Let T be a k-scheme and x: T → X a T -valued point of X.K(L)Lem

(i) The morphism x factors through K(L) if and only if t∗xLT ⊗ L−1
T is the pull-back of a

line bundle on T .

(ii) If t∗xLT ⊗ L−1
T
∼= pr∗TM then M ∼= x∗L.

(iii) We have Λ(L)|X×K(L)
∼= OX×K(L).

In (iii), note that a priori we only knew that Λ(L)|X×K(L) is the pull-back of a line bundle

on K(L).

Proof. As usual, LT denotes the pull-back of L via the projection prX : XT → X. Since

prX ◦tx: XT → XT → X is equal to the composition m◦(idX×x): XT = X×kT → X×kX → X,

we find

t∗xLT
∼= (idX × x)∗m∗L .

Note that we can write LT as LT = (idX × x)∗p∗1L. This gives

t∗xLT ⊗ L−1
T
∼= (idX × x)∗Λ(L)⊗ (idX × x)∗p∗2L = (idX × x)∗Λ(L)⊗ (pr∗Tx

∗L) . (2)LineBund:txLL-1

Using the defining properties of K(L) as given in Proposition (2.4), the assertion of (i) readily

follows from this formula.

For (ii) note that t∗xLT ⊗ L−1
T restricts to x∗L on {0} × T .

For (iii), take T = K(L), and let x: K(L) → X be the inclusion. By (2), t∗xLT ⊗ L−1
T =

Λ(L)|X×K(L) ⊗
(
p∗2L

)
|X×K(L)

, which is of the form p∗2M ⊗ p∗2(L|K(L)) for some line bundle M

on K(L). On the other hand, x∗L = L|K(L). Now apply (ii) to find that M = OK(L). �

(2.18) Proposition. The subscheme K(L) is a subgroup scheme of X.K(L)isSg

Proof. Strictly speaking we have not yet defined the notion of a subgroup scheme; see Def-

inition (3.7) below. With that definition the proposition boils down to the statement that

K(L)(T ) ⊂ X(T ) is a subgroup, for any k-scheme T . This follows from (i) of the Lemma

together with the Theorem of the Square. �

The following lemma shows that an ample line bundle is invariant under only finitely many

translations.

(2.19) Lemma. If L is ample then K(L) is a finite group scheme.LampK(L)fin

Proof. Without loss of generality we may assume that k is algebraically closed. Set Y :=

K(L)0red ⊂ X which, as we noted in (2.13), is an abelian subvariety of X. The restriction L′ of

L to Y is again ample. By (iii) of Lemma (2.17) the bundle Λ(L′) on Y × Y is trivial. Pulling

this bundle back to Y via (1,−1): Y → Y × Y gives that L′ ⊗ (−1)∗L′ is trivial on Y . But L′

is ample, hence (−1)∗L′ and L′ ⊗ (−1)∗L′ are ample too. It follows that dim(Y ) = 0. Hence

K(L) is finite. �

We would like to have a converse to this fact. To obtain this we first prove the following

remarkable result.

(2.20) Proposition. Let X be an abelian variety over an algebraically closed field k. LetFibreProp

f : X → Y be a morphism of k-varieties. For x ∈ X, let Cx denote the connected component of
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the fibre over f(x) such that x ∈ Cx, and write Fx for the reduced scheme underlying Cx. Then

F0 is an abelian subvariety of X and Fx = tx(F0) = x+ F0 for all x ∈ X(k).

Proof. Consider the morphism ϕ: X ×Fx → Y obtained by restricting f ◦m to X ×Fx. Clearly

ϕ({0} × Fx) = {f(x)}. Since Fx is complete and connected, the Rigidity Lemma (1.12) implies

that ϕ maps the fibres {z}×Fx to a point. In particular, we find that f(y−x+Fx) = f(y) for all

x, y ∈ X(k). Putting y = z, x = 0 gives z + F0 ⊆ Fz; putting y = 0, x = z gives −z + Fz ⊆ F0.

This shows that Fz = z + F0.

To see that F0 is a subgroup scheme of X we take a geometric point a ∈ F0(k). Then

obviously Fa = F0 so that a + F0 = Fa = F0. Since F0 is reduced, it follows that F0 is a

subgroup scheme of X. By (2.13) it is then an abelian subvariety. �

To illustrate the proposition, suppose X is a simple abelian variety (over k = k), meaning

that it does not have any non-trivial abelian subvarieties. Then the conclusion is that every

morphism from X to another k-variety is either constant or finite. So the proposition puts

strong restrictions on the geometry of abelian varieties.

We give another interpretation of F0. For this, let D be an effective divisor on X and

let L = OX(D) be the corresponding line bundle. We claim that linear system |2D| has no

base-points, i.e., the sections of L⊗2 define a morphism of X to projective space. To see this we

have to show that for every geometric point y of X there exists an element E ∈ |2D| that does

not contain y. Now the Theorem of the Square tells us that the divisors of the form

t∗xD + t∗−xD (3)LB:txDt-xD

belong to |2D|. It is easy to see that given y there exists a geometric point x such that y does

not belong to the support of the divisor (3). This means that the map ϕ: X → P(Γ(X,L⊗2)∗)

defined by the sections of L⊗2 is a morphism. Note that we also have a morphism

f : X → P = |2D|, x 7→ t∗xD + t∗−xD .

The relation between ϕ and f shall be discussed in ??.

We now again assume that k = k. For an effective divisor D on X we define the reduced

closed subscheme H(D) ⊂ X by

H(D)(k) =
{
x ∈ X(k)

∣∣ t∗xD = D
}
.

By t∗xD = D we here mean equality of divisors, not of divisor classes. Clearly H(D) is a subgroup

scheme of X.

(2.21) Lemma. Assume k = k and let L be an effective line bundle on the abelian variety X.F0K(L)Lem

Let f : X → Pn be the morphism defined by the sections of L⊗2. As in (2.20) let F0 be the

reduced connected fibre of f containing 0. Then H(D)0 = F0 = K(L)0red, where the superscript

“ 0 ” denotes the connected component containing 0.

Proof. Let x ∈ F0. It follows from (2.20) that f ◦tx = f . Hence if s ∈ Γ(X,L⊗2) then s and t∗xs

have the same zero divisor. We apply this to s = t2, where t is a section of L with divisor D.

This gives t∗xD = D, i.e., x ∈ H(D). This shows that F0 ⊆ H(D), and since F0 is connected

we find F0 ⊆ H(D)0. Next, it is obvious that H(D)0 is contained in K(L)0red. To prove that

K(L)0red ⊆ F0, write L′ for the restriction of L to K(L)0red. By (2.13), K(L)0red is an abelian
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subvariety of X. Clearly it suffices to show that L′ is trivial. Now L′, hence also (−1)∗L′, has

a non-trivial global section. On the other hand, (−1)∗L′ ∼= (L′)−1, as we have seen already in

the proof of (2.19). Hence L′ is trivial. �

As we shall see in the next chapters, there exists a quotient X ′ := X/F0 which is again an

abelian variety. The Stein factorisation of the morphism f is given by X →→ X ′ → Pn, and L is

the pull-back of a bundle on X ′.

(2.22) Proposition. Let L be a line bundle on an abelian variety X which has a non-zeroKLfinAmp

global section. If K(L) is a finite group scheme then L is ample.

Proof. We may work over an algebraic closure of k. (Note that if a line bundle L becomes ample

after extension of the ground field then it is already ample.) Let D be the divisor of the given

section. By (2.21) the fibre F0 is reduced to a point and by (2.20) it follows that f is quasi-finite.

Since f is also proper, it is finite. By general theory (see HAG, Chap. III, Exercise 5.7), if the

sections of L⊗2 define a finite morphism X → Pn then L is ample. �

(2.23) Corollary. Let D be an effective divisor on an abelian variety X over an algebraicallyLAmpCor

closed field. Set L = OX(D). Then the following are equivalent:

(a) H(D) is finite,

(b) K(L) is finite,

(c) L is ample.

For later use we introduce some terminology.

(2.24) Definition. A line bundle L on an abelian variety is said to be non-degenerate if K(L)nondegLBDef

is finite.

So, an effective line bundle is non-degenerate if and only if it is ample.

(2.25) Theorem. An abelian variety is a projective variety.AVProjective

Proof. We first prove this for k = k. Choose a quasi-affine open subset U ⊂ X such that

X \ U = ∪i∈IDi for certain prime divisors Di. Set D =
∑
i∈I Di. By the preceding results it

suffices to show that H(D) is finite. If x ∈ H(D) then tx transforms U into itself. Assuming—

as we may—that 0 ∈ U , we find that H(D) is contained in U . But H(D) is proper, since

F0 = H(D)0 (as in (2.21)). It follows that H(D) is finite.

If k is arbitrary, we first choose an ample divisor D ⊂ Xk. Then D is defined over a finite

extension k′ of k. If k′ is Galois over k (which we may assume if k′/k is separable) then

D̃ :=
∑

σ∈Gal(k′/k)

σD

is an ample divisor on Xk which descends to X. If k′/k is purely inseparable such that αp
m ∈ k

for all α ∈ k′ then pm ·D is an ample divisor which descends to X (clear from working at charts).

Combination of these two cases gives the theorem. �

(2.26) We give another proof of the theorem. Choose a collection of prime divisors D1, . . . ,Dn,ProjLang

all containing 0, such that the (scheme-theoretic) intersection ∩ni=1Di reduces to the single closed

point 0. Set D =
∑n
i=1Di. We claim that 3D is a very ample divisor. To prove this we may

pass to an algebraic closure of the ground field, so we will now assume that k = k.
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First let us show that the linear system |3D| separates points. Thus, given points P 6= Q

ofX we want to find a divisor ∆, linearly equivalent to 3D, with P ∈ Supp(∆) butQ /∈ Supp(∆).

The divisor we take shall be of the form

∆ =
n∑

i=1

t∗ai
Di + t∗bi

Di + t∗−ai−bi
Di (4)

LB:Delta

for certain points ai, bi ∈ X. Note that by the Theorem of the Square, any divisor of this form

is linearly equivalent to 3D. As P 6= Q and ∩Di = {0}, one of the Di does not contain P −Q.

Say it is D1. Take a1 = P , and choose the points b1, ai and bi (for 2 6 i 6 n) such that Q is

not in the support of

t∗b1D1 + t∗−P−b1D1 +

n∑

i=2

t∗ai
Di + t∗bi

Di + t∗−ai−bi
Di . (5)

LB:divisor

With these choices the divisor ∆ given by (4) has the required properties.

Essentially the same argument shows that |3D| also separates tangent vectors. Namely,

suppose P ∈ X and 0 6= τ ∈ TX,P . As the scheme-theoretic intersection ∩ni=1Di reduces to the

single closed point 0, there is an index i such that t∗−P τ ∈ TX,0 does not lie in the subspace

TDi,0 ⊂ TX,0. Say this holds for i = 1. Take a1 = P , and take the remaining points ai and

bi such that P is not in the support of the divisor given by (5). This gives a divisor ∆ with

P ∈ Supp(∆) but τ not tangent to ∆. �

Later we shall prove that if D is an ample divisor on an abelian variety, then 3D is very

ample. In general 2D will not be very ample. For an example, take an elliptic curve E and let

D = P , a point. Then L(2P ) = Γ
(
E,O(2P )

)
has dimension 2, and |2P | defines a morphism

E → P1 of degree 2 with ramification divisor of degree 4. (In fact, if char(k) 6= 2 this morphism

is ramified in 4 points.)

§3. Projective embeddings of abelian varieties.

Any smooth projective variety of dimension g can be embedded into P2g+1, see [??]. We shall

now show that an abelian variety of dimension g cannot be embedded into P2g−1 and that an

embedding into P2g exists only for elliptic curves and for certain abelian surfaces. So in some

sense abelian varieties do not fit easily into projective space; this also helps to explain why it is

so difficult to write down explicit examples of abelian varieties.

In the proof of the next result we shall use the Chow ring CH(X) of X; we could also work

with a suitable cohomology theory (e.g., Betti cohomology or étale cohomology). In fact, all we

need are a couple of basic formulas which can be found in Fulton’s book [1]. The Chow ring of

an abelian variety is further studied in Chap. 13.

(2.27) Theorem. No abelian variety of dimension g can be embedded into P2g−1. No abelianAVembThm

variety of dimension g > 3 can be embedded into P2g.

Proof. Let X be an abelian variety, dim(X) = g, and suppose we have an embedding i: X →֒
P = Pm. Consider the exact sequence of sheaves (“adjunction sequence”)

0→ TX → i∗TP → N → 0 , (6)LB:adjunct
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where N is the normal bundle of X in P and TX (resp. TP) is the tangent bundle of X (resp. P).

Write h ∈ CH(X) for the class of a hyperplane section and ci = ci(N) (for i = 1, . . . , g − 1)

for the ith Chern class of N . We know that the tangent bundle of X is trivial. Therefore, the

equality of total Chern classes resulting from (6) reads:

(1 + h)m+1 = 1 +

m−g∑

i=1

ci .

(See Fulton [1], 3.2.12.) This implies immediately that hm−g+1 = 0 in CHg(X). But deg(hg)

equals the degree, say d, of X in Pm which is non-zero. We thus find m − g + 1 > g + 1,

i.e., m > 2g.

We now consider the case of an embedding into P2g. The previous argument gives

cg =

(
2g + 1

g

)
· hg .

Aplying the degree map we find

deg(cg) =

(
2g + 1

g

)
deg(hg) =

(
2g + 1

g

)
d . (7)

LB:degcg

But since 2 dim(X) = dim(Pg), the degree of the highest Chern class cg of the normal bundle N

on X is the self-intersection number of X in P2g, (see Fulton [1], §6.3), which is d2. Together

with (7) this gives

d =

(
2g + 1

g

)
.

On the other hand, if we apply the Hirzebruch-Riemann-Roch theorem to the line bundle L =

O(1) and use that the Chern classes of X vanish we find that

χ(L) = c1(L)g/g! ,

where χ(L) =
∑g
i=0(−1)i dimkH

i(X,L) is the Euler-Poincaré characteristic of L. Since χ(L) ∈
Z it follows that g! divides deg(hg) = d. (For more details on Riemann-Roch see Chapter IX.)

But one easily checks that

g! divides

(
2g + 1

g

)
⇒ g < 3 .

This finishes the proof. �

The proof of the theorem shows that the possibilities for g = 1 and g = 2 are the cubic

curves in P2 and abelian surfaces of degree 10 in P4. We have met the cubic curves in (1.8).

That there exist abelian surfaces of degree 10 in P4 was shown first by Comessatti in 1909.

He considered complex abelian surfaces C2/Λ, where Λ ⊂ C2 is the lattice obtained from a

suitable embedding of OK ⊕ OK , with OK the ring of integers of K = Q(
√

5). Horrocks and

Mumford found abelian surfaces in P4 as zero sets of sections of the Horrocks-Mumford bundle,

an indecomposable rank two vector bundle on P2. For further discussion we refer to Chap. ??.

Exercises.
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(2.1) Let k ⊂ K be a field extension. Let X be a k-variety and F a sheaf of OX -modules.Ex:dimH0

Write XK for the K-variety obtained from X by extension of scalars, and let FK := (XK →
X)∗F . Show that dimkH

0(X,F ) = dimK H
0(XK , FK). Also show that F ∼= OX if and only if

FK ∼= OXK
.

(2.2) Show that the isomorphism in the Theorem of the Cube is canonical. By this we mean thatEx:ThmCube

to a given line bundle L on an abelian variety X we can associate an isomorphism τX,L: Θ(L)
∼−→

OX×X×X in a functorial way, i.e, such that for every homomorphism f : Y → X we have

f∗(τX,L) = τY,f∗L (via the canonical isomorphisms Θ(f∗L) ∼= (f ×f ×f)∗Θ(L) and OY×Y×Y ∼=
(f × f × f)∗OX×X×X).

(2.3) Let X be an abelian variety over an algebraically closed field. Show that every effectiveEx:DivMult

divisor on X is linearly equivalent to an effective divisor without multiple components.

(2.4) Prove that no abelian variety of dimension g can be embedded into (P1)2g−1. AnalyzeEx:EmbP1power

when an abelian variety of dimension g can be embedded into (P1)2g.

(2.5) Let A and B be two abelian groups, written additively, and let n > 0 be an integer. IfEx:thetanf

f : A→ B is a map (not necessarily a homomorphism), define a map θn(f): An → B by

θn(f)
(
a1, . . . , an

)
=
∑

I

(−1)n+#If(aI) ,

where I runs over the non-empty subsets of {1, 2, . . . , n} and aI :=
∑
i∈I ai. For instance,

θ0(f): {0} → B is the map with value 0 (by convention), θ1(f) = f , and

θ2(f)
(
a, a′

)
= f(a+ a′)− f(a)− f(a′)

θ3(f)
(
a, a′, a′′

)
= f(a+ a′ + a′′)− f(a+ a′)− f(a+ a′′)− f(a′ + a′′) + f(a) + f(a′) + f(a′′) .

(i) Show that θn(f): An → B is symmetric, i.e., invariant under the action of the group Sn
on An by permutation of the factors.

(ii) For n > 1, show that we have a relation

θn+1(f)
(
a1, . . . , an, an+1

)
=

θn(f)
(
a1, . . . , an + an+1

)
− θn(f)

(
a1, . . . , an

)
− θn(f)

(
a1, . . . , an+1

)
.

(iii) Use (i) and (ii) to show that θn+1(f) = 0 if and only if the map θn(f): An → B is n-linear.

(iv) Let L be a line bundle on an abelian variety X over a field k. If T is a k-scheme, show

that the map X(T )×X(T )→ Pic(T ) given by (x1, x2) 7→ (x1 + x2)
∗L⊗ x∗1L−1 ⊗ x∗2L−1 is

bilinear.

Notes. The Theorem of the Square and of the Cube are the pivotal theorems for divisors or line bundles on

abelian varieties. They are due to Weil [3]. Our discussion owes much to Mumford’s book MAV. Solomon

Lefschetz (1884–1972) gave a criterion for complex tori to be embeddable into projective space. This was re-

modelled by Weil to give the projectivity of abelian varieties; see Weil [5]. Our first proof of Theorem (2.25)

follows MAV; the argument given in (2.26) is the one found in Lang [1]. The definition of K(L) goes back to

Weil. Proposition (2.20) is due to M.V. Nori. Theorem (2.27) is due to Barth [1] and Van de Ven [1].
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Chapter III. Basic theory of group schemes.

As we have seen in the previous chapter, group schemes come naturally into play in the study of

abelian varieties. For example, if we look at kernels of homomorphisms between abelian varieties

then in general this leads to group schemes that are not group varieties. In the next chapters

we shall have to deal with group schemes more often, so it is worthwile to set up some general

theory.

The present chapter mainly deals with some basic notions, covering most of what is needed

to develop the general theory of abelian varieties. We begin by introducing group schemes in

a relative setting, i.e., working over an arbitrary basis. After this, in order to avoid too many

technicalities, we shall focus on group schemes over a field and affine group schemes.

§1. Definitions and examples.

The definition of a group scheme is a variation on that of group variety, where we consider

arbitrary schemes rather than only varieties. This leads to the following, somewhat cumbersome,

definition.

(3.1) Definition. (i) Let S be a scheme. A group scheme over S, or an S-group scheme, is anGrSchDef

S-scheme π: G→ S together with S-morphisms m: G×SG→ G (group law, or multiplication),

i: G → G (inverse), and e: S → G (identity section), such that the following identities of

morphisms hold:

m◦(m× idG) = m◦(idG ×m) : G×S G×S G→ G ,

m◦(e× idG) = j1 : S ×S G→ G ,

m◦(idG × e) = j2 : G×S S → G ,

and

e◦π = m◦(idG × i)◦∆G/S = m◦(i× idG)◦∆G/S : G→ G ,

where j1: S×SG ∼−→ G and j2: G×SS ∼−→ G are the canonical isomorphisms. (Cf. the definitions

and diagrams in (1.1).)

(ii) A group scheme G over S is said to be commutative if, writing s: G ×S G → G ×S G
for the isomorphism switching the two factors, we have the identity m = m◦s: G×S G→ G.

(iii) Let (π1: G1 → S,m1, i1, e1) and (π2: G2 → S,m2, i2, e2) be two group schemes over S.

A homomorphism of S-group schemes from G1 to G2 is a morphism of schemes f : G1 → G2

over S such that f ◦m1 = m2 ◦(f × f): G1 ×S G1 → G2. (This condition implies that f ◦e1 = e2
and f ◦ i1 = i2 ◦f .)

In practice it will usually either be understood what m, i and e are, or it will be unnecessary

to make them explicit; in such case we will simply speak about “a group scheme G over S”

without further specification. (In fact, we already did so in parts (ii) and (iii) of the definition.)

If G is a group scheme over S and if S′ → S is a morphism of schemes, then the pull-back

G′ := G ×S S′ inherits the structure of an S′-group scheme. In particular, if s ∈ S then the

fibre Gs := G×S Spec
(
k(s)

)
is a group scheme over the residue field k(s).

BasGrSch, 8 februari, 2012 (635)
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Given an S-group scheme G and an integer n, we define [n] = [n]G: G → G to be the

morphism which on sections—using multiplicative notation for the group law—is given by g 7→
gn. If n > 1 it factors as

[n] = (G
∆n

G/S−−−−→ GnS
m(n)

−−−→ G) ,

where m(n) is the “iterated multiplication map”, given on sections by (g1, . . . , gn) 7→ g1 · · · gn.

For commutative group schemes [n] is usually called “multiplication by n”.

(3.2) The definitions given in (3.1) are sometimes not so practicable. For instance, to define aGrFunctors

group scheme one would have to give a scheme G, then one needs to define the morphisms m,

i and e, and finally one would have to verify that a number of morphisms agree. Would it not

be much simpler to describe a group as a scheme whose points form a group? Fortunately this

can be done; it provides a way of looking at group schemes that is often more natural than the

definition given above.

Suppose we have a scheme X over some base scheme S. For many purposes the underlying

point set |X| is not a good object to work with. For instance, if X is a group variety then

|X| will in general not inherit a group structure. However, there is another meaning of the

term “point of X”, and this notion is a very convenient one. Namely, recall that if T → S is

another S-scheme then by a T -valued point of X we mean a morphism of schemes x: T → X

over S. The set of such points is denoted X(T ). As a particular case, suppose S = Spec(k) and

T = Spec(K), where k ⊂ K is a field extension. Then one would also refer to a T -valued point

of X as a “K-rational point”, or in some contexts also as a “point of X with coordinates in K”.

It is useful to place our discussion in a more general context. For this, consider a category C.

The example to keep in mind is the category C = Sch/S of schemes over a base scheme S. Write

Ĉ for the category of contravariant functors C → Sets with morphisms of functors as the

morphisms in Ĉ. For X ∈ C, the functor hX = HomC(−,X) is an object of Ĉ. Sending X

to hX gives a covariant functor h: C → Ĉ. The basic observation is that in this process we lose

no information, as made precise by the following fundamental lemma.

(3.3) Yoneda Lemma. The functor h: C → Ĉ is fully faithful. That is, for all objects X andYonLem

X ′ of C, the natural map HomC(X,X ′) → Hom
Ĉ

(hX , hX′) is a bijection. More generally: for

every F ∈ Ĉ and X ∈ C, there is a canonical bijection F (X)→ Hom
Ĉ

(hX , F ).

Proof. Suppose given F ∈ Ĉ and X ∈ C. The identity morphism idX is an element of hX(X). If

α ∈ Hom
Ĉ

(hX , F ) then define ψ(α) := α(idX) ∈ F (X). This gives a map ψ: Hom
Ĉ

(hX , F ) →
F (X). In the other direction, suppose we have β ∈ F (X). If x: T → X is an element of hX(T )

for some T ∈ C, define ϕ(β)(x) ∈ F (T ) to be the image of β under F (x): F (X)→ F (T ). Now it

is straightforward to verify that this gives a map ϕ: F (X)→ Hom
Ĉ

(hX , F ) which is an inverse

of ψ. �

(3.4) Definition. A functor F ∈ Ĉ is said to be representable if it is isomorphic to a functorReprFun

hX for some X ∈ C. If this holds then it follows from the Yoneda lemma that X is uniquely

determined by F up to C-isomorphism, and any such X is said to represent the functor F .

(3.5) Continuing the discussion of (3.2), we define the notion of a group object in the categoryGrFunII

C via the embedding into Ĉ. Thus, if X is an object of C then we define a C-group law on X to

be a lifting of the functor hX : C → Sets to a group-valued functor h̃X : C → Gr. Concretely, to
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give a group law on an object X means that for each object T in C we have to specify a group

law on the set hX(T ) = HomC(T,X), such that for every morphism f : T1 → T2 the induced

map hX(f): hX(T2) → hX(T1) is a homomorphism of groups. An object of C together with a

C-group law on it is called a C-group, or a group object in C. In exactly the same way we can

define other algebraic structures in a category, such as the notion of a ring object in C.

Let us now suppose that C is a category with finite products. This means that C has a

final object (the empty product), which we shall call S, and that for any two objects X and Y

there exists a product X × Y . If G is a group object in C then the group structure on hG gives

a morphism of functors

m: hG×SG = hG × hG −→ hG .

The Yoneda lemma tells us that this morphism is induced by a unique morphism mG: G×SG→
G. In a similar way we obtain morphisms iG: G → G and eG: S → G, and these morphisms

satisfy the relations of (3.1)(i). Conversely, data (mG, iG, eG) satisfying these relations define a

C-group structure on the object G.

Applying the preceding remarks to the category Sch/S of schemes over S, which is a category

with finite products and with S as final object, we see that a group scheme G over S is the

same as a representable group functor on Sch/S together with the choice of a representing object

(namely G). The conclusion of this discussion is so important that we state it as a proposition.

(3.6) Proposition. Let G be a scheme over a base scheme S. Then the following data areGrFunProp

equivalent:

(i) the structure of an S-group scheme on G, in the sense of Definition (3.1);

(ii) a group structure on the sets G(T ), functorial in T ∈ Sch/S .

For homomorphisms we have a similar assertion: if G1 and G2 are S-group schemes then the

following data are equivalent:

(i) a homomorphism of S-group schemes f : G1 → G2, in the sense of Definition (3.1);

(ii) group homomorphisms f(T ): G1(T )→ G2(T ), functorial in T ∈ Sch/S.

In practise we often identify a group scheme G with the functor of points hG, and we use

the same notation G for both of them.

Already in the simplest examples we will see that this is useful, since it is often easier

to understand a group scheme in terms of its functor of points than by giving the structure

morphisms m, i and e. Before we turn to examples, let us use the functorial language to define

the notion of a subgroup scheme.

(3.7) Definition. Let G be a group scheme over S. A subscheme (resp. an open subscheme,SubgrSchDef

resp. a closed subscheme) H ⊂ G is called an S-subgroup scheme (resp. an open S-subgroup

scheme, resp. a closed S-subgroup scheme) of G if hH is a subgroup functor of hG, i.e., if

H(T ) ⊂ G(T ) is a subgroup for every S-scheme T . A subgroup scheme H ⊂ G is said to be

normal in G if H(T ) is a normal subgroup of G(T ) for every S-scheme T .

In the sequel, if we speak about subgroup schemes it shall be understood that we give H the

structure of an S-group scheme induced by that on G. An alternative, but equivalent, definition

of the notion of a subgroup scheme is given in Exercise (3.1).

(3.8) Examples. 1. The additive group. Let S be a base scheme. The additive group over S,GrSchExa

denoted Ga,S, corresponds to the functor which associates to an S-scheme T the additive group

Γ(T,OT ). For simplicity, let us assume that S = Spec(R) is affine. Then Ga,S is represented by
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the affine S-scheme A1
S = Spec

(
R[x]

)
. The structure of a group scheme is given, on rings, by

the following homomorphisms:

m̃: R[x]→ R[x]⊗R R[x] given by x 7→ x⊗ 1 + 1⊗ x , defining the group law;

ĩ: R[x]→ R[x] given by x 7→ −x , defining the inverse;

ẽ: R[x]→ R given by x 7→ 0 , defining the identity.

(See (3.9) below for further discussion of how to describe an affine group scheme in terms of a

Hopf algebra.)

2. The multiplicative group. This group scheme, denoted Gm,S, represents the functor

which associates to an S-scheme T the multiplicative group Γ(T,OT )∗ of invertible elements of

Γ(T,OT ). As a scheme, Gm = Spec
(
OS [x, x−1]

)
. The structure of a group scheme is defined by

the homomorphisms given by

x 7→ x⊗ x defining the multiplication;

x 7→ x−1 defining the inverse;

x 7→ 1 defining the identity element.

3. n-th Roots of unity. Given a positive integer n, we have an S-group scheme µn,S which

associates to an S-scheme T the subgroup of Gm(T ) of elements whose order divides n. The

OS-algebra defining this group scheme is OS [x, x−1]/(xn − 1) with the group law given as in

Example 2. Put differently, µn,S is a closed subgroup scheme of Gm,S.

4. pn-th Roots of zero. Let p be a prime number and suppose that char(S) = p. Consider

the closed subscheme αpn,S ⊂ Ga,S defined by the ideal (xp
n

); so αpn,S := Spec
(
OS [x]/(xp

n

)
)
.

As is not hard to verify, this is in fact a closed subgroup scheme of Ga,S . If S = Spec(k) for a

field k of characteristic p then geometrically αpn,k is just a “fat point” (a point together with its

(pn − 1)st infinitesimal neighbourhood); but as a group scheme it has an interesting structure.

If T is an S-scheme then αpn(T ) = {f ∈ Γ(T,OT ) | fpn

= 0}, with group structure given by

addition.

5. Constant group schemes. Let M be an arbitrary (abstract) group. Let MS := S(M),

the direct sum of copies of S indexed by the set M . If T is an S-scheme then MS(T ) is the

set of locally constant functions of |T | to M . The group structure on M clearly induces the

structure of a group functor on MS (multiplication of functions), so that MS becomes a group

scheme. The terminology “constant group scheme” should not be taken to mean that the functor

T 7→ MS(T ) has constant value M ; in fact, if M is non-trivial then MS(T ) = M only if T is

connected.

In Examples 1–3 and 5, the group schemes as described here are all defined over Spec(Z).

That is, in each case we have GS = GZ ×Spec(Z) S where GZ is “the same” example but now

over the basis Spec(Z). The group schemes αpn of Example 4 are defined over Spec(Fp). The

subscript “S” is sometimes omitted if the basis is Spec(Z) resp. Spec(Fp), or if it is understood

over which basis we are working.

If G = Spec(A) is a finite k-group scheme then by the rank of G we mean the k-dimension of

its affine algebra A. Thus, for instance, the constant group scheme (Z/pZ)k, and (for char(k) =

p) the group schemes µp,k and αp,k all have rank p.

6. As is clear from the definitions, a group variety over a field k is the same as a geometrically

integral group scheme over k. In particular, abelian varieties are group schemes.
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7. Using the Yoneda lemma one easily sees that, for a group scheme G over a basis S, the

morphism i: G→ G is a homomorphism of group schemes if and only if G is commutative.

8. Let S be a basis with char(S) = p. If G is an S-group scheme then G(p/S) naturally

inherits the structure of an S-group scheme (being the pull-back of G via the absolute Frobenius

morphism FrobS : S → S). The relative Frobenius morphism FG/S : G→ G(p/S) is a homomor-

phism of S-group schemes.

9. Let V be a finite dimensional vector space over a field k. Then we can form the group

variety GL(V ) over k. If T = Spec(R) is an affine k-scheme then GL(V )(T ) is the group of

invertible R-linear transformations of V ⊗k R. If d = dimk(V ) then GL(V ) is non-canonically

(choice of a k-basis for V ) isomorphic to the group variety GLd,k of invertible d× d matrices; as

a scheme the latter is given by

GLd,k = Spec
(
k[Tij , U ; 1 6 i, j 6 d]/(det ·U − 1)

)
,

where det ∈ k[Tij ] is the determinant polynomial. (So “ U = det−1 ”.) We leave it to the reader

to write out the formulas for the group law.

More generally, if V is a vector bundle on a scheme S then we can form the group scheme

GL(V/S) whose T -valued points are the vector bundle automorphisms of VT over T . If V has

rank d then this group scheme is locally on S isomorphic to a group scheme GLd,S of invertible

d× d matrices.

10. As another illustration of the functorial point of view, let us define semi-direct prod-

ucts. Let N and Q be two group schemes over a basis S. Consider the contravariant functor

Aut(N): Sch/S → Gr which associates to an S-scheme T the group of automorphisms of NT as

a T -group scheme. Suppose we are given an action of Q on N by group scheme automorphisms;

by this we mean that we are given a homomorphism of group functors

ρ: Q→ Aut(N) .

Then we can form the semi-direct product group scheme N ⋊ρQ. The underlying scheme is just

the product scheme N ×S Q. The group structure is defined on T -valued points by

(n, q) · (n′, q′) =
(
n · ρ(q)(n′), q · q′

)
,

as expected. By (3.6) this defines an S-group scheme N ⋊ρ Q.

Here is an application. In ordinary group theory we know that every group of order p2 is

commutative. The analogue of this in the context of group schemes does not hold. Namely, if

k is a field of characteristic p > 0 then there exists a group scheme of rank p2 over k that is

not commutative. We construct it as a semi-direct product. First note that there is a natural

action of the group scheme Gm on the group scheme Ga; on points it is given by the usual action

of Gm(T ) = Γ(T,OT )∗ on Ga(T ) = Γ(T,OT ). This action restricts to a (non-trivial) action of

µp,k ⊂ Gm,k on αp,k ⊂ Ga,k. Then the semi-direct product αp ⋊ µp has rank p2 but is not

commutative.

(3.9) Affine group schemes. Let S = Spec(R) be an affine base scheme. Suppose G = Spec(A)AffGrSch

is an S-group scheme which is affine as a scheme. Then the morphisms m, i and e giving G its

structure of a group scheme correspond to R-linear homomorphisms

m̃: A→ A⊗R A called co-multiplication,

ĩ: A→ A called antipode or co-inverse,

ẽ: A→ R called augmentation or co-unit.
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These homomorphisms satisfy a number of identities, corresponding to the identities in the

definition of a group scheme; see (3.1)(i). For instance, the associativity of the group law

corresponds to the identity

(m̃⊗ 1)◦m̃ = (1⊗ m̃)◦m̃: A→ A⊗R A⊗R A .

We leave it to the reader to write out the other identities.

A unitary R-algebra equipped with maps m̃, ẽ and ĩ satisfying these identities is called a

Hopf algebra or a co-algebra over R. A Hopf algebra is said to be co-commutative if s◦m̃ =

m̃: A→ A⊗R A, where s: A⊗R A→ A⊗R A is given by x⊗ y 7→ y ⊗ x. Thus, the category of

affine group schemes over R is anti-equivalent to the category of commutative R-Hopf algebras,

with commutative group schemes corresponding to Hopf algebras that are both commutative

and co-commutative. For general theory of Hopf algebras we refer to ??. Note that in the

literature Hopf algebras can be non-commutative algebras. In this chapter, Hopf algebras are

assumed to be commutative.

The ideal I := Ker(ẽ: A → R) is called the augmentation ideal. Note that A = R · 1 ⊕ I
as R-module, since the R-algebra structure map R→ A is a section of the augmentation. Note

that the condition that e: S → G is a two-sided identity element is equivalent to the relation

m̃(α) = (α⊗ 1) + (1⊗ α) mod I ⊗ I (1)BasGS:com

in the ring A⊗R A. For the co-inverse we then easily find the relation

ĩ(α) = −α mod I2 , if α ∈ I . (2)BasGS:coi

(Exercise (3.3) asks you to prove this.)

The above has a natural generalization. Namely, suppose that G is a group scheme over

an arbitrary basis S such that the structural morphism π: G → S is affine. (In this situation

we say that G is an affine group scheme over S; cf. (3.10) below.) Let AG := π∗OG, which is a

sheaf of OS-algebras. Then G ∼= Spec(AG) as S-schemes, and the structure of a group scheme

is given by homomorphisms of (sheaves of) OS-algebras

m̃: AG → AG ⊗OS
AG , ĩ: AG → AG , and ẽ: AG → OS

making AG into a sheaf of commutative Hopf algebras over OS . Note that the unit section

e: S → G gives an isomorphism between S and the closed subscheme of G defined by the

augmentation ideal I := Ker(ẽ).

§2. Elementary properties of group schemes.

(3.10) Let us set up some terminology for group schemes. As a general rule, if P is a property ofGSterminol

morphisms of schemes (or of schemes) then we say that a group scheme G over S with structural

morphism π: G→ S has property P if π has this property as a morphism of schemes (or if G, as

a scheme, has this property). Thus, for example, we say that an S-group scheme G is noetherian,

or finite, if G is a noetherian scheme, resp. if π is a finite morphism. Other properties for which

the rule applies: the property of a morphism of schemes of being quasi-compact, quasi-separated,

(locally) of finite type, (locally) of finite presentation, finite and locally free, separated, proper,
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flat, and unramified, smooth, or étale. Similarly, if the basis S is the spectrum of a field k

then we say that G is (geometrically) reduced, irreducible, connected or integral if G has this

property as a k-scheme.

Note that we call G an affine group scheme over S if π is an affine morphism; we do not

require that G is affine as a scheme. Also note that if G is a finite S-group scheme then this

does not say that G(T ) is finite for every S-scheme T . For instance, we have described the

group scheme αp (over a field k of characteristic p) as a “fat point”, so it should have a positive

dimensional tangent space. Indeed, αp(k) = {1} but αp
(
k[ε]
)

= {1 + aε | a ∈ k}. We find

that the tangent space of αp at the origin has k-dimension 1 and that αp
(
k[ε]
)

is infinite if k is

infinite.

Let us also recall how the predicate “universal(ly)” is used. Here the general rule is the

following: we say that π: G → S universally has property P if for every morphism f : S′ → S,

writing π′: G′ → S′ for the morphism obtained from π by base-change via f , property P holds

for G′ over S′.

Let us now discuss some basic properties of group schemes. We begin with a general lemma.

(3.11) Lemma. (i) LetSectLem

X ′
i−→ X

g′
y

yg

Y ′
j−→ Y

be a cartesian diagram in the category of schemes. If g is an immersion (resp. a closed immersion,

resp. an open immersion) then so is g′.

(ii) Let f : Y → X be a morphism of schemes. If s: X → Y is a section of f then s is an

immersion. If f is separated then s is a closed immersion.

(iii) If s: X → Y is a section of a morphism f , as in (ii), then s maps closed points of X to

closed points of Y .

Proof. (i) Suppose g is an immersion. This means we have a subscheme Z ⊂ Y such that g

induces an isomorphism X
∼−→ Z. If Z is an open subscheme (i.e., g an open immersion) then

Y ′ ×Y Z is naturally isomorphic to the open subscheme j−1(Z) of Y ′, and the claim follows. If

Z is a closed subscheme defined by some ideal I ⊂ OY (i.e, g a closed immersion) then Y ′×Y Z
is naturally isomorphic to the closed subscheme of Y ′ defined by the ideal generated by j−1(I);

again the claim follows. The case of a general immersion follows by combining the two previous

cases.

(ii) By (i), it suffices to show that the commutative diagram

X
s−−−−−−−→ Y

s

y
y∆Y/X

Y
idY×(s◦f)−−−−−−−→ Y ×X Y

(3)

BasGS:diagr

is cartesian. This can be done by working on affine open sets. Alternatively, if T is any scheme

then the corresponding diagram of T -valued points is a cartesian diagram of sets, as one easily

checks. It then follows from the Yoneda lemma that (3) is cartesian.

(iii) Let P ∈ X be a closed point. Choose an affine open U ⊂ Y containing s(P ). It suffices

to check that s(P ) is a closed point of U . (This is special about working with points, as opposed
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to arbitrary subschemes.) But U → X is affine, hence separated, so (i) tells us that s(P ) is a

closed point of U . Alternatively, the assertion becomes obvious by working on rings. �

(3.12) Proposition. (i) An S-group scheme G is separated if and only if the unit section e isSepGrSch

a closed immersion.

(ii) If S is a discrete scheme (e.g., the spectrum of a field) then every S-group scheme is

separated.

Proof. (i) The “only if” follows from (ii) of the lemma. For the converse, consider the commu-

tative diagram
G

π−−−−−−−→ S

∆G/S

y
ye

G×S G
m◦ (idG×i)−−−−−−−→ G

For every S-scheme T it is clear that this diagram is cartesian on T -valued points. By the

Yoneda lemma it follows that the diagram is cartesian. Now apply (i) of the lemma.

(ii) Since separatedness is a local property on the basis, it suffices to consider the case that

S is a 1-point scheme. Then the unit section is closed, by (iii) of the lemma. Now apply (i). �

As the following example shows, the result of (ii) is in some sense the best possible. Namely,

suppose that S is a scheme which is not discrete. Then S has a non-isolated closed point s (i.e.,

a closed point s which is not open). Define G as the S-scheme obtained by gluing two copies of

S along S \ {s}. Then G is not separated over S, and one easily shows that G has a structure

of S-group scheme with Gs ∼= (Z/2Z)k(s). Notice that in this example G is even étale over S.

(Z/2Z) trivial fibres

↓ ↓ ↓
G

yπ
S

s

Figure 3.

(3.13) Definition. (i) Let G be an S-group scheme with unit section e: S → G. DefineKerDef

eG = e(S) ⊂ G (a subscheme of G) to be the image of the immersion e.

(ii) Let f : G→ G′ be a homomorphism of S-group schemes. Then we define the kernel of f

to be the subgroup scheme Ker(f) := f−1(eG′) of G.

Note that the diagram
Ker(f) −֒→ G
y

yf

S
e−−−→ G′

is cartesian. In particular, Ker(f) represents the contravariant functor Sch/S → Gr given by

T 7→ Ker
(
f(T ): G(T ) −→ G′(T )

)
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and is a normal subgroup scheme of G. If G′ is separated over S then Ker(f) ⊂ G is a closed

subgroup scheme.

As examples of kernels we have, taking S = Spec(Fp) as our base scheme,

µp = Ker(F : Gm → Gm) , αp = Ker(F : Ga → Ga) ,

where in both cases F denotes the Frobenius endomorphism.

(3.14) Left and right translations; sheaves of differentials. Let G be a group scheme over aTranslGS

basis S. Given an S-scheme T and a point g ∈ G(T ), the right translation tg: GT → GT and

the left translation t′g: GT → GT are defined just as in (1.4). Using the Yoneda lemma we can

also define tg and t′g by saying that for every T -scheme T ′, the maps tg(T
′): G(T ′) → G(T ′)

and t′g(T
′): G(T ′)→ G(T ′) are given by γ 7→ γg resp. γ 7→ gγ. Here we view g as an element of

G(T ′) via the canonical homomorphism G(T )→ G(T ′).

If in the above we take T = G and g = idG ∈ G(G) then the resulting translations τ and

τ ′: G ×S G → G ×S G are given by (g1, g2) → (g1g2, g2), resp. (g1, g2) → (g2g1, g2). Here we

view G×S G as a scheme over G via the second projection. We call τ and τ ′ the universal right

(resp. left) translation. The point is that any other right translation tg: G ×S T → G ×S T as

above is the pull-back of τ via idG × g (i.e., the pull-back via g on the basis), and similarly for

left translations.

As we have seen in (1.5), the translations on G are important in the study of sheaves of

differentials. We will formulate everything using right translations. A 1-form α ∈ Γ(G,Ω1
G/S)

is said to be (right) invariant if it is universally invariant under right translations; by this we

mean that for every T → S and g ∈ G(T ), writing αT ∈ Γ(T,Ω1
GT /T

) for the pull-back of α

via GT → G, we have t∗gαT = αT . In fact, it suffices to check this in the universal case: α is

invariant if and only if p∗1α ∈ Γ(G×SG, p∗1Ω1
G/S) is invariant under τ . The invariant differentials

form a subsheaf (π∗Ω
1
G/S)G of π∗Ω

1
G/S.

For the next result we need one more notation: if π: G → S is a group scheme with unit

section e: S → G, then we write

ωG/S := e∗Ω1
G/S ,

which is a sheaf of OS-modules. If S is the spectrum of a field then ωG/S is just cotangent space

of G at the origin.

(3.15) Proposition. Let π: G→ S be a group scheme. Then there is a canonical isomorphismFreeTangGS

π∗ωG/S
∼−→ Ω1

G/S. The corresponding homomorphism ωG/S → π∗Ω
1
G/S (by adjunction of the

functors π∗ and π∗) induces an isomorphism ωG/S
∼−→ (π∗Ω

1
G/S)G.

Proof. As in (1.5), the geometric idea is that an invariant 1-form on G can be reobtained from

its value along the zero section by using the translations, and that, by a similar proces, an

arbitrary 1-form can be written as a function on G times an invariant form. To turn this idea

into a formal proof we use the universal translation τ .

As above, we view G ×S G as a G-scheme via p2. Then τ is an automorphism of G ×S G
over G, so we have a natural isomorphism

τ∗Ω1
G×SG/G

∼−→ Ω1
G×SG/G

. (4)BasGS:tauOmeg

We observe that G×SG/G is the pull back under p1 of G/S; this gives that Ω1
G×SG/G

= p∗1Ω
1
G/S.

As τ = (m, p2): G×S G→ G×S G, we find that (4) can be rewritten as

m∗Ω1
G/S

∼−→ p∗1Ω
1
G/S .
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Pulling back via (e◦π, idG): G→ G×S G gives the isomorphism

Ω1
G/S

∼−→ π∗e∗Ω1
G/S = π∗ωG/S . (5)BasGS:Omega1

By adjunction, (5) gives rise to a homomorphism π∗: ωG/S → π∗Ω
1
G/S associating to a

section β ∈ Γ(S, ωG/S) the 1-form π∗β ∈ Γ(G,π∗ωG/S) = Γ(G,Ω1
G/S). The isomorphism (5)

is constructed in such a way that π∗β is an invariant form. Clearly e∗(π∗β) = β. Conversely,

if α ∈ Γ(G,Ω1
G/S) is an invariant form then m∗(α) = τ∗

(
p∗1(α)

)
= p∗1(α). Pulling back (as in

the above argument) via (e◦π, idG) then gives that α = π∗e∗(α). This shows that the map

(π∗Ω
1
G/S)G → ωG/S given on sections by α 7→ e∗α is an inverse of π∗. �

(3.16) The identity component of a group scheme over a field. Let G be a group scheme overIdCompGS

a field k. By (3.12), G is separated over k. The image of the identity section is a single closed

point e = eG of degree 1.

Assume in addition that G is locally of finite type over k. Then the scheme G is locally

noetherian, hence locally connected. If we write G0 for the connected component of G con-

taining e, it follows that G0 is an open subscheme of G. We call G0 the identity component

of G.

Geometrically, one expects that the existence of a group structure implies that G, as a

k-scheme, “looks everywhere the same”, so that certain properties need to be tested only at the

origin. The following proposition shows that for smoothness and reducedness this is indeed the

case. Note, however, that our intuition is a geometric one: in general we can only expect that

“G looks everywhere locally the same” if we work over k = k. In the following proposition it is

good to keep some simple examples in mind. For instance, let p be a prime number and consider

the group scheme µp over the field Q. The underlying topological space consists of two closed

points: the origin e = 1, and a point P corresponding to the non-trivial pth roots of unity. If

we extend scalars from Q to a field containing a pth root of unity then the identity component

(µp)
0 = {e} stays connected but the other component {P} splits up into a disjoint union of p−1

connected components.

(3.17) Proposition. Let G be a group scheme, locally of finite type over a field k.GSfieldProp

(i) The identity component G0 is an open and closed subgroup scheme of G which is

geometrically irreducible. In particular: for any field extension k ⊂ K, we have (G0)K = (GK)0.

(ii) The following properties are equivalent:

(a1) G⊗k K is reduced for some perfect field K containing k;

(a2) the ring OG,e ⊗k K is reduced for some perfect field K containing k;

(b1) G is smooth over k;

(b2) G0 is smooth over k;

(b3) G is smooth over k at the origin.

(iii) Every connected component of G is irreducible and of finite type over k.

Proof. (i) We first prove that G0 is geometrically connected; that it is even geometrically irre-

ducible will then follow from (iii). More generally, we show that if X is a connected k-scheme,

locally of finite type, that has a k-rational point x ∈ X(k) then X is geometrically connected.

(See EGA IV, 4.5.14 for a more general result.)

Let k be an algebraic closure of k. First we show that the projection p: Xk → X is open

and closed. Suppose {Vα}α∈I is an open covering of X. Then {Vα,k}α∈I is a covering of Xk. If

each Vα,k → Vα is open and closed then the same is true for p. Hence we may assume that X is
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affine and of finite type over k. Let Z ⊂ Xk be closed. Then there is a finite extension k ⊂ K

inside k such that Z is defined over K; concretely this means that there is closed subscheme

ZK ⊂ XK with Z = ZK ⊗K k. Hence it suffices to show that the morphism pK : XK → X is

open and closed. But this is immediate from the fact that pK is finite and flat. (Use HAG,

Chap. III, Ex. 9.1 or EGA IV, Thm. 2.4.6.)

Now suppose we have two non-empty open and closed subsets U1 and U2 of Xk. Because

X is connected, it follows that p(U1) = p(U2) = X. The unique point x ∈ X
k

lying over x is

therefore contained in U1 ∩ U2; hence U1 ∩ U2 is non-empty. This shows that Xk is connected.

(ii) The essential step is to prove that (a2) ⇒ (b1); all other implications are easy. (For

(b3) ⇒ (b1) use (3.15).) One easily reduces to the case that k = k and that G is reduced at

the origin. Using the translations on G it then follows that G is reduced. In this situation, the

same argument as in (1.5) applies, showing that G is smooth over k.

For (iii) one first shows that G0 is irreducible and quasi-compact. We have already shown

that (G0)K = (GK)0 for any field extension k ⊂ K, so we may assume that k = k, in which case

we can pass to the reduced underlying group scheme G0
red; see Exercise (3.2). Note that G0

red

has the same underlying topological space as G0. By (ii), G0
red is smooth over k. Every point of

G0
red therefore has an open neighbourhood of the form U = Spec(A) with A a regular ring. As a

regular ring is a domain, such an affine scheme U is irreducible. Now suppose G0
red is reducible.

Because it is connected, there exist two irreducible components C1 6= C2 with C1∩C2 6= ∅. (See

EGA 0I, Cor. 2.1.10.) If y ∈ C1 ∩C2, let U = Spec(A) be an affine open neighbourhood of y in

G0
red with A regular. Then one of C1 ∩ U and C2 ∩ U contains the other, say C2 ∩ U ⊆ C1 ∩U .

But C2 ∩ U is dense in C2, hence C2 ⊆ C1. As C1 and C2 are irreducible components we must

have C2 = C1, contradicting the assumption.

To prove quasi-compactness of G0, take a non-empty affine open part U ⊂ G0. Then U

is dense in G0, as G0 is irreducible. Hence for every g ∈ G0(k) the two sets g · U−1 and U

intersect. It follows that the map U ×U → G0 given by multiplication is surjective. But U ×U
is quasi-compact, hence so is G0.

Now we look at the other connected components, working again over an arbitrary field k.

If H ⊂ G is a connected component, choose a closed point h ∈ H. Because G is locally of

finite type over k, there is a finite normal field extension k ⊂ L such that L contains the residue

field k(h). As in the proof of (i), the projection p: H ⊗k L → H is open and closed. One

easily shows that all points in p−1(h) are rational over L. If h̃ ∈ p−1(h) is one of these points

then using the translation th̃ one sees that the connected component C(h̃) of HL containing h̃

is isomorphic to G0
L as an L-scheme. Then p(C(h̃)) ⊂ H is irreducible, closed and open. As

H is connected it follows that p(C(h̃)) = H and that H is irreducible. Finally, the preceding

arguments show that H ⊗k L is the union of the components C(h̃) for all h̃ in the finite set

p−1(h). As each of these components is isomorphic to G0
L, which is quasi-compact, it follows

that H is quasi-compact. �

(3.18) Remarks. (i) Let G be a k-group scheme as in the proposition. Suppose that G⊗k KG0PropRem

is reduced (or that OG,e ⊗k K is reduced) for some non-perfect field K containing k. Then

it is not necessarily true that G is smooth over k. Here is an example: Suppose K = k is a

non-perfect field of characteristic p. Choose an element α ∈ k not in kp. Let G be the k-scheme

G = Spec
(
k[X,Y ]/(Xp +αY p)

)
. View A2

k = Spec
(
k[X,Y ]

)
as a k-group scheme by identifying

it with Ga,k × Ga,k. Then G is a closed subgroup scheme of A2
k. One easily checks that G is

reduced, but clearly it is not geometrically reduced (extend to the field k( p
√
α)), and therefore

G is not a smooth group scheme over k.
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(ii) In (iii) of the proposition, let us note that the connected components of G are in general

not geometrically irreducible; see the example given before the proposition.

(3.19) Remark. Let G be a group scheme, locally of finite type over a field k. In case G isComultOGeRem

affine, we have seen in (3.9) that we can study it through its Hopf algebra. For arbitrary G

there is no immediate substitute for this, not even if we are only interested in the local structure

of G at the origin. Note that the group law does not, in general, induce a co-multiplication

on the local ring OG,e. We do have a homomorphism OG,e → OG×kG,(e,e) but OG×kG,(e,e) is

in general of course not the same as OG,e ⊗k OG,e; rather it is a localisation of it. In some

cases, however, something slightly weaker already suffices to obtain interesting conclusions. In

the proof of the next result we shall exploit the fact that, with m ⊂ OG,e the maximal ideal, we

do have a homomorphism m̃: OG,e → (OG,e/m
q)⊗k (OG,e/m

q) for which the analogue of (1) in

section (3.9) holds.

Another possibility is to consider the completed local ring ÔG,e. The group law on G

induces a co-multiplication m̃: ÔG,e → ÔG,e⊗̂kÔG,e (completed tensor product). In this way we

can associate to a group variety G a (smooth) formal group Ĝ = Spf
(
ÔG,e

)
. We shall further

go into this in ??.

(3.20) Theorem. (Cartier) Let G be a group scheme, locally of finite type over a field k ofchar0red

characteristic zero. Then G is reduced, hence smooth over k.

Proof. We follow the elementary proof due to Oort [2]. Let A := OG,e be the local ring of G

at the identity element. Write m ⊂ A for the maximal ideal and nil(A) ⊂ A for the nilradical.

Since we are over a perfect field, the reduced scheme Gred underlying G is a subgroup scheme

(Exercise (3.2)), and by (ii) of Prop. (3.17) this implies that Ared := A/nil(A) is a regular local

ring. Writing mred := m/nil(A) ⊂ Ared, this gives

dim(A) = dim(Ared) = dimk(mred/m
2
red) = dimk

(
m/m2 + nil(A)

)
.

In particular, we see that it suffices to show that nil(A) ⊂ m2. Indeed, if this holds then

dim(A) = dim(m/m2), hence A is regular, hence nil(A) = 0.

Choose 0 6= x ∈ nil(A), and let n be the positive integer such that xn−1 6= 0 and xn = 0.

Because A is noetherian, we have ∩q>0 mq = (0), so there exists an integer q > 2 with xn−1 /∈ mq.

Consider B := A/mq and m̄ := m/mq ⊂ B, and let x̄ ∈ B denote the class of x ∈ A modulo mq.

As remarked above, the group law on G induces a homomorphism m̃: A → B ⊗k B. Just as

in (3.9), the fact that e ∈ G(k) is a two-sided identity element implies that we have

m̃(x) = (x̄⊗ 1) + (1⊗ x̄) + y with y ∈ m̄⊗k m̄ . (6)BasGS:combis

(See also Exercise (3.3).) This gives

0 = m̃(xn) = m̃(x)n = ((x̄⊗ 1) + (1⊗ x̄) + y)n

=
n∑

i=0

(
n

i

)
· (x̄⊗ 1)n−i · ((1 ⊗ x̄) + y)i .

From this we get the relation

n · (x̄n−1 ⊗ x̄) ∈
(
(x̄n−1 · m̄)⊗k B +B ⊗k m̄2

)
⊂ B ⊗k B .
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But char(k) = 0, so that n is a unit, so that even (x̄n−1 ⊗ x̄) ∈ (x̄n−1 · m̄) ⊗k B + B ⊗k m̄2.

Now remark that a relation of the form y1⊗ y2 ∈ J1 ⊗k B+B⊗k J2 implies that either y1 ∈ J1

or y2 ∈ J2. (To see this, simply view B, J1 and J2 as k-vector spaces.) But by the Nakayama

Lemma, x̄n−1 ∈ x̄n−1 · m̄ implies x̄n−1 = 0, which contradicts our choice of q. We conclude that

x̄ ∈ m̄2; hence x ∈ m2, and we are done. �

The conclusion of this theorem does not hold over fields of positive characteristic. For

example, if char(k) = p > 0 then the group schemes µp,k and αp,k are not reduced, hence not

smooth over k. (The argument of the above proof breaks down if n is divisible by p.)

§3. Cartier duality.

(3.21) Cartier duality of finite commutative group schemes. We now discuss some aspects ofCDualSetup

finite commutative group schemes that play an important role in the study of abelian varieties.

In particular, the Cartier duality that we shall discuss here comes naturally into play when we

discuss the dual of an abelian variety; see Chapter 7.

The Cartier dual of a group scheme can be defined in two ways: working functorially or

working with the underlying Hopf algebras. We first give two constructions of a dual group;

after that we prove that they actually describe the same object.

The functorial approach is based on the study of characters, by which we mean homo-

morphisms of the group scheme to the multiplicative group Gm. More precisely, suppose G is

any commutative group scheme over a basis S. Then we can define a new contravariant group

functor Hom(G,Gm,S) on the category of S-schemes by

Hom(G,Gm,S): T 7→ HomGS
h/T
(GT ,Gm,T ) .

Next we define a dual object in terms of the Hopf algebra. For this we need to assume

that G is commutative and finite locally free over S. As in (3.9) above, write A := π∗OG. This

A is a finite locally free sheaf of OS-modules which comes equipped with the structure of a

sheaf of co-commutative OS-Hopf algebras. (Recall that all our Hopf algebras are assumed to

be commutative.) Thus we have the following maps:

algebra structure map a: OS → A , augmentation ẽ: A→ OS ,

ring multiplication µ: A⊗OS
A→ A , co-multiplication m̃: A→ A⊗OS

A ,

co-inverse ĩ: A→ A .

We define a new sheaf of co-commutative OS-Hopf algebras AD as follows: first we set

AD := HomOS
(A,OS) as an OS-module. The above maps induce OS-linear maps

aD: AD → OS , ẽD: OS → AD ,

µD: AD → AD ⊗OS
AD , m̃D: AD ⊗OS

AD → AD ,

ĩD: AD → AD .

We give AD the structure of a sheaf of OS-algebras by defining m̃D to be the multiplication and

ẽD to be the algebra structure morphism. Next we define a Hopf algebra structure by using

µD as the co-multiplication, ĩD as the co-inverse, and aD as the co-unit. We leave it to the
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reader (Exercise (3.8)) to verify that this gives AD a well-defined structure of a co-commutative

OS-Hopf algebra. Schematically, if we write the structure maps of a Hopf algebra in a diagram

...

multiplication
... co-multiplication

antipode

algebra structure map
... augmentation map
...

then the diagram corresponding to AD is obtained from that of A by first dualizing all maps

and then reflecting in the dotted line.

We write α: A→ (AD)D for the OS-linear map which sends a local section s ∈ A(U) to the

section evs = “evaluation at s” ∈ HomOS

(
HomOS

(A,OS), OS
)
(U).

(3.22) Theorem. (Cartier Duality) Let π: G→ S be a commutative S-group scheme which isCDualThm

finite and locally free over S. Write A := π∗OG, and define the sheaf of co-commutative Hopf

algebras AD over OS as above. Then GD := Spec(AD) is a commutative, finite locally free

S-group scheme which represents the contravariant functor Hom(G,Gm,S): Sch/S → Gr given

by

T 7→ HomGS
h/T
(GT ,Gm,T ) .

The homomorphism (GD)D → G induced by the map α: A→ (AD)D is an isomorphism.

Proof. That GD is indeed a commutative group scheme is equivalent to saying that AD is a

sheaf of co-commutative Hopf algebras, which we have left as an exercise to the reader. That

GD is again finite and locally free over S (of the same rank as G) is clear, and so is the claim

that (GD)D → G is an isomorphism.

Note that the functor G 7→ GD is compatible with base-change: if T is an S-scheme and

G is a commutative, finite locally free S-group scheme then (GT )D ∼= (GD)T canonically. In

particular, to prove that GD represents the functor Hom(G,Gm,S) we may assume that the

basis is affine, say S = Spec(R), and it suffices to show that GD(S) is naturally isomorphic to

the group HomGS
h/S
(G,Gm,S). As S is affine we may view A simply as an R-Hopf algebra (i.e.,

replace the sheaf A by its R-algebra of global sections).

Among the identities that are satisfied by the structure homomorphisms we have that

(ẽ ⊗ id)◦m̃: A → R ⊗R A ∼= A is the identity and that (̃i, id)◦m̃: A → A is equal to the

composition a◦ ẽ: A → R → A. In particular, if b ∈ A is an element with m̃(b) = b ⊗ b then it

follows that ẽ(b) · b = b and that ĩ(b) · b = ẽ(b). It follows that

{b ∈ A∗ | m̃(b) = b⊗ b} = {b ∈ A | m̃(b) = b⊗ b and ẽ(b) = 1} .

Write Agl for this set. (Its elements are sometimes referred to as the “group-like” elements of A.)

One easily checks that Agl is a subgroup of A∗.

With these remarks in mind, let us compute HomGS
h/S
(G,Gm,S) and GD(S). The R-

algebra homomorphisms f : R[x, x−1] → A are given by the elements b ∈ A∗, via the corre-

spondence b := f(x). The condition on b ∈ A∗ that the corresponding map f is a homo-

morphism of Hopf algebras is precisely that m̃(b) = b ⊗ b. Hence we find a natural bijection

HomGS
hS
(G,Gm,S)

∼−→ Agl, and one readily verifies this to be an isomorphism of groups.
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Every R-module homomorphism AD → R is of the form evb: λ 7→ λ(b) for some b ∈ A.

Conversely, if b ∈ A then one verifies that

evb(1) = 1 ⇐⇒ ẽ(b) = 1

and

evb is a ring homomorphism ⇐⇒ m̃(b) = b⊗ b .

This gives a bijection GD(S)
∼−→ Agl, and again one easily verifies this to be an isomorphism of

groups. �

(3.23) Definition. Let π: G → S be a commutative S-group scheme which is finite andCDualDef

locally free over S. Then we call GD the Cartier dual of G. Similarly, if f : G1 → G2 is a

homomorphism between commutative, finite locally free S-group schemes then we obtain an

induced homomorphism fD: GD2 → GD1 , called the Cartier dual of f .

(3.24) Examples. 1. Take G = (Z/nZ)S . Then it is clear from the functorial description ofCDExa

the Cartier dual that GD = µn,S. Hence (Z/nZ) and µn are Cartier dual to each other. Note

that (Z/nZ)S and µn,S may well be isomorphic. For instance, if S = Spec(k) is the spectrum of

a field and if ζ ∈ k is a primitive nth root of 1 then we obtain an isomorphism (Z/nZ)k
∼−→ µn,k

sending 1̄ to ζ. In particular, if k = k and char(k) ∤ n then (Z/nZ)k ∼= µn,k. By contrast, if

char(k) = p > 0 and p divides n then (Z/nZ)k and µn,k are not isomorphic.

2. Let S be a scheme of characteristic p > 0. We claim that αp,S is its own Cartier dual.

Of course this can be shown at the level of Hopf algebras, but the functorial interpretation is

perhaps more instructive. As Cartier duality is compatible with base-change it suffices to do

the case S = Spec(Fp).

Recall that if R is a ring of characteristic p then αp(R) = {r ∈ R | rp = 0} with its natural

structure of an additive group. If we want to make a homomorphism αp → Gm then the most

obvious guess is to look for an “exponential”. Indeed, if r ∈ αp(R) then

exp(r) = 1 + r +
r2

2!
+ · · ·+ rp−1

(p− 1)!

is a well-defined element of R∗, and r 7→ exp(r) defines a homomorphism αp(R)→ Gm(R). Now

remark that αp (like Ga) is not just a group scheme but has a natural structure of a functor

in rings. The self-duality αp
∼−→ αDp = HomShGr/Fp

(αp,Gm) is obtained by sending a point

ξ ∈ αp(T ) (where T is an Fp-scheme) to the homomorphism of group schemes αp,T → Gm,T

given (on points with values in T -schemes) by x 7→ exp(ξ · x).
3. After the previous example, one might guess that αpn is self-dual for all n. This is not

the case. Instead, (αpn)D can be described as the kernel of Frobenius on the group scheme Wn

of Witt vectors of length n. See Oort [3], § 10. For a special case of this, see also Exercise ??.

§4. The component group of a group scheme.

If X is a topological space then π0(X) denotes the set of connected components of X. The

purpose of this section is to discuss a scheme-theoretic analogue of this for schemes that are
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locally of finite type over a field k. To avoid confusion we shall use the notation π0 in the

topological context and ̟0 for the scheme-theoretic analogue.

If X/k is locally of finite type then ̟0(X) will be an étale k-scheme, and X 7→ ̟0(X) is

a covariant functor. Furthermore, if G is a k-group scheme, locally of finite type over k, then

̟0(G) inherits a natural structure of a group scheme; it is called the component group (scheme)

of G.

We start with some generalities on étale group schemes. Let us recall here that, according

to our conventions, an étale morphism of schemes f : X → Y is only required to be locally of

finite type; see ??.

(3.25) Étale group schemes over a field. Let k be a field. Choose a separable algebraic closure ksFEtGrSch

and write Γk := Gal(ks/k). Then Γk is a pro-finite group, (see Appendix ??) and Galois theory

tells us that L 7→ Gal(ks/L) gives a bijection between the field extensions of k inside ks and the

closed subgroups of Γk. Finite extensions of k correspond to open subgroups of Γk. A reference

is Neukirch [1], Sect. 4.1.

By a Γk-set we mean a set Y equipped with a continuous left action of Γk; the continuity

assumption here means that all Γk-orbits in Y are finite.

Let S := Spec(k). If X is a connected étale scheme over S, then X is of the form X =

Spec(L), with L a finite separable field extension of k. An arbitrary étale S-scheme can be written

as a disjoint union of its connected components, and is therefore of the formX = ∐α∈I Spec(Lα),

where I is some index set and where k ⊂ Lα is a finite separable extension of fields. Hence the

description of étale S-schemes is a matter of Galois theory. More precisely, if Et/k denotes the

category of étale k-schemes there is an equivalence of categories

Et/k
eq−−→
(
Γk-sets

)
.

associating to X ∈ Et/k the set X(ks) with its natural Γk-action. To obtain a quasi-inverse,

write a Γk-set Y as a union of orbits, say Y = ∐α∈I(Γk · yα), let k ⊂ Lα be the finite field

extension (inside ks) corresponding to the open subgroup Stab(yα) ⊂ Γk, and associate to Y the

S-scheme ∐α∈I Spec(Lα). Up to isomorphism of S-schemes this does not depend on the chosen

base points of the Γk-orbits, and it gives a quasi-inverse to the functor X 7→ X(ks).

This equivalence of categories induces an equivalence between the corresponding categories

of group objects. This gives the following result.

(3.26) Proposition. Let k ⊂ ks and Γk = Gal(ks/k) be as above. Associating to an étaleFEtGSProp

k-group scheme G the group G(ks) with its natural Γk-action gives an equivalence of categories

(
étale

k-group schemes

)
eq−−→
(
Γk-groups

)
,

where by a Γk-group we mean an (abstract) group equipped with a continuous left action of Γk
by group automorphisms.

The proposition tells us that every étale k-group scheme G is a k-form of a constant group

scheme. More precisely, consider the (abstract) group M = G(ks). Then we can form the

constant group scheme Mk over k, and the proposition tells us that G ⊗ ks ∼= Mk ⊗ ks. If G

is finite étale over k then we can even find a finite separable field extension k ⊂ K such that

GK ∼= MK . So we can think of étale group schemes as “twisted constant group schemes”.
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For instance, if char(k) is prime to n then µn is a finite étale group scheme, and µn(ks) is

(non-canonically) isomorphic to Z/nZ. The action of Γk on µn(ks) is given by a homomorphism

χ: Γk → (Z/nZ)∗; here the rule is that if ζ ∈ ks
∗ is an n-th root of unity and σ ∈ Γk then

σζ = ζχ(σ).

Now we turn to the scheme ̟0(X) of connected components of X.

(3.27) Proposition. Let X be a scheme, locally of finite type over a field k. Then there ispi0XProp

an étale k-scheme ̟0(X) and a morphism q: X → ̟0(X) over k such that q is universal for k-

morphisms from X to an étale k-scheme. (By this we mean: for any k-morphism h: X → Y with

Y/k étale, there is a unique k-morphism g: ̟0(X) → Y such that h = g ◦q.) The morphism q

is faithfully flat, and its fibres are precisely the connected components of X.

Before we give the proof, let us make the last assertion more precise. If P is a point of

̟0(X) then {P} is a connected component of ̟0(X), as the topological space of an étale scheme

is discrete. The claim is then that q−1(P ), as an open subscheme of X, is a connected component

of X, for all points P ∈
∣∣̟0(X)

∣∣.

Proof. Consider the set πgeom
0 (X) := π0

(
|X ⊗k ks|

)
with its natural action of Γk. First we show

that the action of Γk is continuous. Let C ⊂ Xks
be a connected component. Let D ⊂ X be the

connected component containing the image of C under the natural morphism Xks
→ X. Then

C is one of the connected components of D ⊗k ks. But D , being connected and locally of finite

type over k, has only finitely many geometric components; see EGA IV, Prop. (4.5.15). Hence

indeed the Γk-orbit of C inside πgeom
0 (X) is finite.

Define

̟geom
0 (X) :=

∐

α∈πgeom
0 (X)

Spec(ks)
(α) ,

the disjoint union of copies of Spec(ks), one copy for each element of πgeom
0 (X). Consider the

morphism qgeom: Xks
→ ̟geom

0 (X) that on each connected component X(α) ⊂ Xks
is given

by the structural morphism X(α) → Spec(ks)
(α). (So a point P ∈ Xks

is sent to the copy of

Spec(ks) labelled by the component of Xks
that contains P .) Because the Γk-action on the

set πgeom
0 (X) is continuous, there is an étale k-scheme ̟0(X) such that we have an isomorphism

β: ̟0(X)
(
ks
) ∼−→ πgeom

0 (X) of sets with Galois action. Up to isomorphism of k-schemes, this

scheme is unique, and we have a unique isomorphism ̟0(X)⊗k ks ∼−→ ̟geom
0 (X) that gives the

identity on ks-valued points. (Here we fix the identification β.) Then qgeom can be viewed as a

morphism

qgeom: X ⊗k ks → ̟0(X) ⊗k ks ,

which is Γk-equivariant. By Galois descent this defines a morphism q: X → ̟0(X) over k. (See

also Exercise (3.9).)

Next we show that the fibres of q are the connected components of X. Over ks this is clear

from the construction. Over k it suffices to show that distinct connected components of X are

mapped to distinct points of ̟0(X). But the connected components of X correspond to the

Γk-orbits in πgeom
0 (X), so the claim follows from the result over ks.

We claim that the morphism q: X → ̟0(X) has the desired universal property. To see

this, suppose h: X → Y is a k-morphism with Y/k étale. Then Y ⊗k ks is a disjoint union

of copies of Spec(ks). It readily follows from our construction of ̟0(X) and q that there is

a unique morphism ggeom: ̟0(X) ⊗k ks → Y ⊗k ks such that hgeom: Xks
→ Yks

factors as
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hgeom = ggeom
◦qgeom. Moreover, ggeom is easily seen to be Galois-equivariant; hence we get the

desired morphism g: ̟0(X)→ Y with h = g ◦q.

Finally we have to show that q is faithfully flat. But this can be checked after making a

base change to ks, and over ks it is clear from the construction. �

(3.28) In the situation of the proposition, we refer to ̟0(X) as the scheme of connected com-pi0XComm

ponents of X. If f : X → Y is a morphism of schemes that are locally of finite type over k then

we write ̟0(f): ̟0(X) → ̟0(Y ) for the unique morphism such that qY ◦f = ̟0(f)◦qX : X →
̟0(Y ).

(3.29) Let G be a k-group scheme, locally of finite type. The connected components of Gks
arepi0GrSch

geometrically connected; see EGA IV, Prop. (4.5.21). Therefore πgeom
0 (G) := π0

(
|Gks
|
)

is equal

to π0

(
|Gk|

)
. The natural map qgeom: G(k)→ πgeom

0 (G) is surjective and has G0(k) as its kernel.

As G0(k) is normal in G(k), the set πgeom
0 (G) inherits a group structure such that qgeom is a

homomorphism. It is clear from the construction that Aut(k/k) acts on πgeom
0 (G) through group

automorphisms. On the other hand, this action factors through Aut(k/k) →→ Gal(ks/k) =: Γk;

hence we find that Γk acts on πgeom
0 (G) through group automorphisms.

We can view ̟geom
0 (G) as the constant group scheme associated to the abstract group

πgeom
0 (G), and because Γk acts on πgeom

0 (G) through group automorphisms, the étale scheme

̟0(G) over k inherits the structure of a k-group scheme. It is clear from the constructions that

qgeom: Gks
→ ̟geom

0 (G) is a Γk-equivariant homomorphism of group schemes. It follows that

q: G→ ̟0(G) is a homomorphism of k-group schemes.

The conclusion of this discussion is that ̟0(G) has a natural structure of an étale group

scheme over k, and that q: G→ ̟0(G) is a homomorphism. We refer to ̟0(G) as the component

group scheme of G.

Another way to show that ̟0(G), for G a k-group scheme, inherits the structure of a group

scheme is to use the fact that ̟0(G ×k G) ∼= ̟0(G) ×k ̟0(G); see Exercise 3.10. The group

law on ̟0(G) is the map

̟0(m): ̟0(G×k G) ∼= ̟0(G)×k ̟0(G) −→ ̟0(G)

induced by the group law m: G×k G→ G.

Exercises.

(3.1) Show that the following definition is equivalent to the one given in (3.7): If G is a groupEx:SGrSch

scheme over a basis S then a subgroup scheme of G is a subscheme H ⊂ G such that (a) the

identity section e: S → G factors through H; (b) if j: H →֒ G is the inclusion morphism then

the composition i◦j: H →֒ G→ G factors through H; (c) the composition m◦(j×j): H×SH →
G×S G→ G factors through H.

(3.2)Ex:Gred

(i) Let G be a group scheme over a perfect field k. Prove that the reduced underlying scheme

Gred →֒ G is a closed subgroup scheme. [Hint: you will need the fact that Gred ×k Gred is

again a reduced scheme; see EGA IV, § 4.6. This is where we need the assumption that k

is perfect.]

(ii) Show, by means of an example, that Gred is in general not normal in G.
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(iii) Let k be a field of characteristic p. Let a ∈ k, and set G := Spec
(
k[x]/(xp

2

+ axp)
)
. Show

that G is a subgroup scheme of Ga,k = Spec
(
k[x]

)
.

(iv) Assume that k is not perfect and that a ∈ k \ kp. Show that |G|, the topological space

underlying G, consists of p closed points, say |G| = {Q1, Q2, . . . , Qp}, where Q1 = e is

the origin. Show that G is reduced at the points Qi for i = 2, . . . , p but not geometrically

reduced. Finally show that the reduced underlying subscheme Gred →֒ G is not a subgroup

scheme.

(3.3) Prove the relations (1) and (2) in (3.9). Also prove relation (6) in the proof of Theo-Ex:comcoi

rem (3.20).

(3.4) Let G be a group scheme over a field k. Write TG,e = Ker
(
G(k[ε]) → G(k)

)
for theEx:Te(m)

tangent space of G at the identity element. Show that the map Te(m): TG,e × TG,e → TG,e
induced by the group law m: G ×k G → G on tangent spaces (the “derivative of m at e”) is

given by Te(m)(a, b) = a+ b. Generalize this to group schemes over an arbitrary base.

(3.5) Let k be a field.Ex:Frobetale

(i) If f : G1 → G2 is a homomorphism of k-group schemes, show that

TKer(f),e
∼= Ker

(
Te(f): TG1,e → TG2,e

)
.

(ii) If char(k) = p > 0, write G[F ] ⊂ G for the kernel of the relative Frobenius homomorphism

FG/k: G→ G(p). Show that TG[F ],e
∼= TG,e.

(iii) If G is a finite k-group scheme and char(k) = p, show that G is étale over k if and only if

FG/k is an isomorphism. [Hint: in the “only if” direction, reduce to the case that k = k.]

(3.6) Let S = Spec(R) be an affine base scheme. Let G = Spec(A) be an affine S-group schemeEx:LinGS

such that A is free of finite rank as an R-module. Choose an R-basis e1, . . . , ed for A, and

define elements aij ∈ A by m̃(ej) =
∑d
i=1 ei ⊗ aij . Let R[Tij , U ]/(det ·U − 1) be the affine

algebra of GLd,R, where det ∈ k[Tij ] is the determinant of the matrix
(
Tij
)
. Show that there is

a well-defined homomorphism of R-algebras

ϕ: R[Tij , U ]/(det ·U − 1) −→ A

with Tij 7→ aij . Show that the corresponding morphism G → GLd,R is a homomorphism and

gives an isomorphism of G with a closed subgroup scheme of GLd,R. [Hint: write Md,R for the

ring scheme over R of d × d matrices. First show that we get a morphism f : G → Md,R such

that f(g1g2) = f(g1)f(g2) for all g1, g2 ∈ G. Next show that f(eG) is the identity matrix, and

conclude that f factors through the open subscheme GLd,R ⊂ Md,R. Finally show that ϕ is

surjective. Use the relations between m̃, ẽ and ĩ.]

(3.7) Let k be a field of characteristic p. Consider the group variety G := GLd,k. Let A =Ex:[p]Augm

Spec
(
k[Tij , U ]/(det ·U − 1)

)
be its affine algebra. Recall that we write [n]G: G → G for the

morphism given on points by g 7→ gn.

(i) Let I ⊂ A be the augmentation ideal. Let [p]: A→ A be the homomorphism of k-algebras

corresponding to [p]G. Show that [p](I) ⊆ Ip.
(ii) Let H = Spec(B) be a finite k-group scheme. Let J ⊂ B be the augmentation ideal. Show

that [p](J) ⊆ Jp. [Hint: use the previous exercise.] For an application of this result, see

Exercise (4.4).
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(3.8) Let π: G → S be an affine S-group scheme. Set A := π∗OG, so that G ∼= Spec(A) as anEx:CDHopf

S-scheme. Let AD := HomOS
(A,OS). Show that with the definitions given in (3.21), AD is a

sheaf of co-commutative OS-Hopf algebras.

(3.9) Let k be a field, k ⊂ ks a separable algebraic closure, and write Γ := Gal(ks/k). Let XEx:GalDesc

be a scheme, locally of finite type over k, and let Y be an étale k-scheme. Note that Γ naturally

acts on the schemes Xks
and Yks

. If ϕ: Xks
→ Yks

is a Γ-equivariant morphism of schemes

over ks, show that ϕ is defined over k, i.e., there is a (unique) morphism f : X → Y over k such

that fks
= ϕ. [Hint: First reduce to the case that X is affine and that X and Y are connected.

Then work on rings.]

(3.10) Let X and Y be two schemes that are locally of finite type over a field k. Let qX : X →Ex:pi0XxY

̟0(X) and qY : Y → ̟0(Y ) be the morphisms as in Prop. (3.27). By the universal property of

̟0(X ×k Y ), there is a unique morphism

ρ: ̟0(X ×k Y )→ ̟0(X) ×k ̟0(Y )

such that ρ◦q(X×Y ) = (qX ◦prX , qY ◦prY ). Show that ρ is an isomorphism. In particular,

conclude that if k ⊂ K is a field extension then ̟0(XK) is naturally isomorphic to ̟0(X)K .

[Hint: Reduce to the case k = ks. Use that if C and D are connected schemes over ks then C×ks

D is again connected. See EGA IV, Cor. (4.5.8), taking into account loc. cit., Prop. (4.5.21).]

Notes. Proposition (3.17) is taken from SGA 3, Exp. VIA. The example following Proposition (3.12) is taken

from ibid., Exp. VIB, §5. A different proof of Prop. (3.27) can be found in the book of Demazure and Gabriel [1].
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Chapter IV. Quotients by group schemes.

When we work with group schemes the question naturally arises if constructions from group

theory can also be carried out in the context of group schemes. For instance, we have seen

that if f : G → G′ is a homomorphism then we can form the kernel group scheme, Ker(f). In

this example the geometry and the group theory go hand in hand: there is an obvious scheme-

theoretic candidate for the kernel, namely the inverse image of the identity section of G′, and

this candidate also represents the kernel as a functor.

The present chapter is devoted to the formation of quotients, which is more delicate. (Nog

aanvullen)

The reader who wants to go on as quickly as possible with the general theory of abelian

varieties, may skip most of this chapter. The only results that are directly relevant for the

next chapters are the formation of quotients modulo finite group schemes, Thm. (4.16), Exam-

ple (4.40), and the material in § 4.

§1. Categorical quotients.

(4.1) Definition. (i) Let G be a group scheme over a basis S. A (left) action of G on anGrActionDef

S-scheme X is given by a morphism ρ: G×S X → X such that the composition

X
∼−→ S ×S X eG×idX−−−−−→ G×S X ρ−→ X

is the identity on X, and such that the diagram

G×S G×S X idG×ρ−−−−→ G×S X

m×idX

y
yρ

G×S X ρ−−−−→ X

(1)

Quot:rhoDiag

is commutative. In other words: for every S-scheme T , the morphism ρ induces a left action of

the group G(T ) on the set X(T ). We usually denote this action on points by (g, x) 7→ g · x.
(ii) Given an action ρ as in (i), we define the “graph morphism”

Ψ = Ψρ := (ρ,pr2): G×S X −→ X ×S X ;

on points this is given by (g, x) 7→ (g · x, x). The action ρ is said to be free, or set-theoretically

free if Ψ is a monomorphism of schemes, and is said to be strictly free, or scheme-theoretically

free, if Ψ is an immersion.

(iii) If T is an S-scheme and x ∈ X(T ) then the stabilizer of x, notation Gx, is the subgroup

scheme of GT that represents the functor T ′ 7→ {g ∈ G(T ′) | g · x = x} on T -schemes T ′. (See

also (4.2), (iii) below.)

(4.2) Remarks. (i) In some literature the same terminology is used in a slightly differentGrActRem

meaning (cf. GIT, for example).

QuoGrSch, 8 februari, 2012 (635)
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(ii) The condition that an action ρ is free means precisely that for all T and all x ∈ X(T )

the stabilizer Gx is trivial.

(iii) With notations as in the definition, we have a diagram with cartesian squares

Gx −֒→ GT = G×S T idG×x−−−−→ G×S Xy
yax

yΨ

T
(x,idT )−−−−−→ XT = X ×S T idX×x−−−−→ X ×S X ,

where the morphism ax is given by ax = (ρ◦(idG × x),pr2); on points: ax(g) = g · x. That the

functor T ′ 7→ {g ∈ G(T ′) | g · x = x} is indeed representable by a subgroup scheme Gx ⊂ GT is

seen from this diagram, arguing as in (3.13).

(4.3) Examples. If G is a group scheme over S and H ⊂ G is a subgroup scheme then theGrActExa

group law gives an action of H on G. The graph morphism Ψ: H ×S G → G ×S G is the

restriction to H ×S G of the universal right translation τ : G ×S G → G ×S G. Since τ is an

isomorphism, the action is strictly free.

More generally, if f : G → G′ is a homomorphism of group schemes then we get a natural

action of G on G′, given on points by (g, g′) 7→ f(g) · g′. The action is free if and only if Ker(f)

is trivial, but if this holds the action need not be strictly free. For instance, with S = Spec(Q)

as a base scheme, take G = ZS to be the constant group scheme defined by the (abstract)

group Z, and take G′ = Ga,S . We have a natural homomorphism f : ZS → Ga,S which, for

Q-schemes T , is given on points by the natural inclusion Z →֒ Γ(T,OT ). This homomorphism f

is injective, hence it gives a free action of ZS on Ga,S. The graph morphism can be described

as the morphism

Ψ:
∐

n∈Z

A1 −→ A2

that maps the nth copy of A1 to the line L ⊂ A2 given by x − y = n. But this Ψ is not an

immersion (the image is not a subscheme of A2), so the action is not strictly free.

(4.4) The central issue of this chapter is the following question. Given a group scheme G actingQuot1stExa

on a scheme X, does there exist a good notion of a quotient space G\X? As particular instances

of this question we have: given a homomorphism of group schemes f : G → G′, can we form

a cokernel of f? , and if N ⊂ G is a normal subgroup scheme, can we define a quotient group

scheme G/N?

Let us first look at an elementary example. Take an integer N > 2, and consider the

endomorphism f : Gm → Gm over S = Spec(Z) given on points by q 7→ qN . The kernel of f

is µN , by definition of the latter. As a morphism of schemes, f is faithfully flat, and if k

is any algebraically closed field then f is surjective on k-valued points. Therefore we would

expect that the cokernel of f is trivial, i.e., Coker(f) = S. But clearly, the “cokernel functor”

C: T 7→ Gm(T )/f(Gm(T )) is non-trivial. E.g., C(Q) is an infinite group. Moreover, from the

fact that C(Q) 6= {1} but C(Q) = {1} it follows that C is not representable by a scheme. So,

in contrast with (3.13) where we defined kernels, the geometric and the functorial point of view

do not give to the same notion of a cokernel.

The first notion of a quotient that we shall define is that of a categorical quotient. Though

we are mainly interested in working with schemes, it is useful to extend the discussion to a more

general setting.
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(4.5) Definition. Let C be a category with finite products. Let G be a group object in C. LetCatQuotDef

X be an object of C. Throughout, we simply write X(T ) for hX(T ) = HomC(T,X).

(i) A (left) action of G on X is a morphism ρ: G×X → X that induces, for every object T ,

a (left) action of the group G(T ) on the set X(T ).

(ii) Let an action of G on X be given. A morphism q: X → Y in C is said to be G-invariant

if q ◦ρ = q ◦prX : G ×X → Y . By the Yoneda lemma this is equivalent to the requirement that

for every T ∈ C, if x1, x2 ∈ X(T ) are two points in the same G(T )-orbit then q(x1) = q(x2)

in Y (T ).

(iii) Let f, g: W ⇉ X be two morphisms in C. We say that a morphism h: X → Y is a

difference cokernel of the pair (f, g) if h◦f = h◦g and if h is universal for this property; by

this we mean that for any other morphism h′: X → Y ′ with h′ ◦f = h′ ◦g there is a unique

α: Y → Y ′ such that h′ = α◦h.

(iv) Let ρ: G × X → X be a left action. A morphism q: X → Y is called a categorical

quotient ofX byG if q is a difference cokernel for the pair (ρ,prX): G×X ⇉ X. In other words, q

is a categorical quotient if q is G-invariant and if every G-invariant morphism q′: X → Y ′ factors

as q′ = α◦q for a unique α: Y → Y ′. The morphism q: X → Y is called a universal categorical

quotient of X by G if for every object S of C the morphism qS: XS → YS is a categorical

quotient of XS by GS in the category C/S .

In practice the morphism q is often not mentioned, and we simply say that an object Y is

the categorical quotient of X by G. Note that if a categorical quotient q: X → Y exists then it

is unique up to unique isomorphism.

(4.6) Examples. As in (4.4), let S = Spec(Z) and let G = Gm,S act on X = Gm,S byQuo1ExaBis

ρ(g, x) = gN · x. If k = k then X(k) consists of a single orbit under G(k); this readily implies

that X → S is a categorical quotient of X by G. In fact, if we work a little harder we find that

X → S is even a universal categorical quotient; see Exercise (4.1).

As a second example, let k = k and consider the action of G = Gm,k on X = A1
k given

on points by ρ(g, x) = g · x. There are two orbits in X(k), one given by the origin 0 ∈ X(k),

the other consisting of all points x 6= 0. Suppose we have a G-invariant morphism q: X → Y

for some k-scheme Y . It maps X(k) \ {0} to a point y ∈ Y (k). Because X(k) \ {0} is Zariski

dense in X we find that q is the constant map with value y. This proves that the structural

morphism X → Spec(k) is a categorical quotient of X by G. We conclude that it is not possible

to construct a quotient scheme Y such that the two orbits {0} and A1 \ {0} are mapped to

different points of Y .

(4.7) Remark. Let G be an S-group scheme acting on an S-scheme X. Suppose there existsQuot/YRem

a categorical quotient q: X → Y in Sch/S . To study q we can take Y to be our base scheme.

More precisely, GY := G×S Y acts on X over Y and q is also a categorical quotient of X by GY
in the category Sch/Y . Taking Y to be the base scheme does not affect the (strict) freeness of

the action. To see this, note that the graph morphism Ψ: G ×S X → X ×S X factors through

the subscheme X ×Y X →֒ X ×S X and that the resulting morphism

GY ×Y X = G×S X → X ×Y X

is none other than the graph morphism of GY acting on X over Y . Hence the action of G on X

over S is (strictly) free if and only if the action of GY on X over Y is (strictly) free.
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§2. Geometric quotients, and quotients by finite group schemes.

We first give, in its simplest form, a result about the existence of quotients under finite groups.

This result will be generalized in (4.16) below. Here we consider an action of an abstract group Γ

on a scheme X; this means that for every element γ ∈ Γ we have a morphism ρ(γ): X → X,

satisfying the usual axioms for a group action. Such an action is the same as an action of the

constant group scheme Γ on X; hence we are in a special case of the situation considered in (4.1).

(4.8) Proposition. Let Γ be a finite (abstract) group acting on an affine scheme X = Spec(A).QuotFinGr

Let B := AΓ ⊆ A be the subring of Γ-invariant elements, and set Y := Spec(B).

(i) The natural morphism q: X → Y induces a homeomorphism Γ\|X| ∼−→ |Y |, i.e., it

identifies the topological space |Y | with the quotient of |X| under the acion of Γ.

(ii) The map q♯: OY → q∗OX induces an isomorphism OY
∼−→ (q∗OX)Γ, where the latter

denotes the sheaf of Γ-invariant sections of q∗OX .

(iii) The ring A is integral over B; the morphism q: X → Y is quasi-finite, closed and

surjective.

Proof. Write Γ = {γ1, . . . , γr}. Define the map N : A→ AΓ = B by

N(a) = γ1(a) · · · γr(a) .

If p and p′ are prime ideals of A which lie in the same Γ-orbit then p∩AΓ = p′∩AΓ. Conversely,

if p∩AΓ = p′ ∩AΓ then N(x) ∈ p′ for every x ∈ p, so p ⊂ γ1(p
′)∪ · · · ∪ γr(p′). This implies (see

Atiyah-Macdonald [1], Prop. 1.11) that p ⊆ γi(p
′) for some i, and by symmetry we conclude

that p and p′ lie in the same Γ-orbit. Hence Γ\|X| ∼−→ |Y | as sets, and q is quasi-finite.

For a ∈ A, let χa(T ) :=
(
T −γ1(a)

)(
T −γ2(a)

)
· · ·
(
T −γr(a)

)
∈ A[T ]. Then it is clear that

χa(T ) is a monic polynomial in B[T ] and that χa(a) = 0. This shows that A is integral over B.

That the map q is closed and surjective then follows from Atiyah-Macdonald [1], Thm. 5.10; see

also (4.21) below.

Finally we remark that for every f ∈ AΓ we have a natural isomorphism (AΓ)f
∼−→ (Af )

Γ.

As the special open subsets D(f) := Y \ Z(f) form a basis for the topology on Y , property (ii)

follows. �

(4.9) Remarks. (i) The morphism q: X → Y need not be finite. It may happen that AQuotFinRem

is noetherian but that B := AΓ is not, and that A is not finitely generated as a B-module.

Examples of this kind can be found in Nagata [1], ??. However, if either the action on Γ on X is

free, or X is of finite type over a locally noetherian base scheme S and Γ acts by automorphisms

of X over S, then q is a finite morphism. See (4.16) below.

(ii) It is not hard to show that q: X → Y is a categorical quotient of X by G. (See

also Proposition (4.13) below.) More generally, if X → S is a morphism such that Γ acts

by automorphisms of X over S then also Y has a natural structure of an S-scheme, and q is

a categorical quotient in Sch/S . In general, q is not a universal categorical quotient. As an

example, let k be a field of characteristic p, take S = Spec
(
k[ε]
)

and X = A1
S = Spec(A), with

A = k[x, ε]. We let the group Γ := Z/pZ act on X (over S); on rings we give the action of

n mod p by x 7→ x+ nε and ε 7→ ε. The ring AΓ of invariants is generated as a k-algebra by ε,

xε, . . . , xp−1ε and xp. But on the special fibre A1
k the action is trivial. As

AΓ ⊗k[ε] k = k[ε, xε, . . . , xp−1ε, xp]⊗k[ε] k = k[xp]
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is a proper subring of (
A⊗k[ε] k

)Γ
= k[x] ,

we see that Y := Spec(AΓ) is not a universal categorical quotient of X in Sch/S .

(4.10) Suppose given an action of a group scheme G on a scheme X, over some basis S, say.GeomQuot

We should like to decide if there exists a categorical quotient of X by G in Sch/S , and if yes

then we should like to construct this quotient. Properties (a) and (b) in the above proposition

point to a general construction. Namely, if |X| is the topological space underlying X then we

could try to form a quotient of |X| modulo the action of G and equip this space with the sheaf

of G-invariant functions on X.

Another way to phrase this is the following. The category of schemes is a full subcategory of

the category LRS of locally ringed spaces, which in turn is a subcategory (not full) of the category

RS of all ringed spaces. If G is an S-group scheme acting on an S-scheme X then we shall show

that there exists a categorical quotient (G\X)rs in the category RS/S . It is constructed exactly

as just described: form the quotient “G\|X|” and equip this with the sheaf “(q∗OX)G”, where

q: |X| → G\|X| is the natural map. Then the question is whether (G\X)rs is a scheme and, if

so, if this scheme is a “good” scheme-theoretic quotient of X modulo G.

Before we give more details, let us note that in general (G\X)rs cannot be viewed as

a categorical quotient in the sense of Definition (4.5). Namely, because Sch/S is not a full

subcategory of RS/S, products in the two categories may be different. Hence if G is an S-group

scheme then it is not clear if the ringed space
(
|G|, OG

)
inherits the structure of a group object

in RS/S . The assertion that (G\X)rs is a quotient of X by G will therefore be interpret as saying

that the morphism q is a difference cokernel of the pair of morphisms (ρ,prX): G ×S X ⇉ X

in RS/S .

(4.11) Lemma. Let ρ: G×S X → X be an action of an S-group scheme G on an S-scheme X.GQuotLem

Consider the continuous maps

|prX |: |G×S X| −→ |X| and |ρ|: |G×S X| −→ |X| .
Given P , Q ∈ |X|, write P ∼ Q if there exists a point R ∈ |G ×S X| with |prX |(R) = P and

|ρ|(R) = Q. Then ∼ is an equivalence relation on |X|.
Proof. See Exercise (4.2).

We refer to the equivalence classes under ∼ as the G-equivalence classes in |X|.

(4.12) Definition. Let ρ: G×SX → X be an action of an S-group scheme G on an S-schemeX.GXrsDef

Let |X|/∼ be the set of G-equivalence classes in |X|, equipped with the quotient topology. Write

q: |X| → |X|/∼ for the canonical map. Let U = q−1(V ) for some open subset V ⊂ |X|/∼. If

f ∈ q∗OX(V ) = OX(U) then we can form the elements pr♯X(f) and ρ♯(f) in OG×SX(G ×S U).

We say that f is G-invariant if pr♯X(f) = ρ♯(f). The G-invariant functions f form a subsheaf of

rings (q∗OX)G ⊂ q∗OX .

We define

(G\X)rs :=
(
|X|/∼, (q∗OX)G

)
,

and write q: X → (G\X)rs for the natural morphism of ringed spaces.

If (G\X)rs is a scheme and q is a morphism of schemes then we say that it is a geometric

quotient of X by G. If moreover for every S-scheme T we have that (G\X)rs×S T ∼= (GT \XT )rs
then we say that (G\X)rs is a universal geometric quotient.
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The phrase “if a geometric quotient of X by G exists” is used as a synonym for “if (G\X)rs
is a scheme and q: X → (G\X)rs is a morphism of schemes”.

The stalks of the sheaf (q∗OX)G may not be local rings; for an example see ??. This is

the reason why we work in the category of ringed spaces rather than the category of locally

ringed spaces. Further we note that the formation of (G\X)rs does not, in general, commute

with base change; see (ii) of (4.9). However, if U ⊂ S is a Zariski open subset then (GU\XU )rs
is canonically isomorphic to the restriction of (G\X)rs to U .

(4.13) Proposition. In the situation of (4.12), q: X → (G\X)rs is a difference cokernel of theGXrsProp

pair of morphisms (ρ,prX): G×S X ⇉ X in the category RS/S . By consequence, if a geometric

quotient of X by G exists then it is also a categorical quotient in Sch/S .

Proof. The first assertion is an immediate consequence of how we constructed (G\X)rs. If

(G\X)rs is a geometric quotient then it is also a difference cokernel of (ρ,prX) in the category

Sch/S because the latter is a subcategory of RS/S . This gives the second assertion. �

(4.14) Example. Let k be a field, and consider the k-scheme M2,k (=A4
k) of 2 × 2-matricesTrDetExa

over k. The linear algebraic group GL2,k acts on M2,k by conjugation: if g ∈ GL2(T ) for some

k-scheme T then g acts on M2(T ) by A 7→ g · A · g−1. Write ρ: GL2,k ×M2,k → M2,k for the

morphism giving this GL2,k-action.

The trace and determinant give morphisms of schemes trace: M2,k → A1
k and det: M2,k →

A1
k. Now consider the morphism

p = (trace,det): M2,k → A2
k .

Clearly p is a GL2-invariant morphism, i.e., p◦pr2: GL2,k ×M2,k → M2,k → A2
k is the same as

p◦ρ. It can be shown that the pair (A2
k, p) is a (universal) categorical quotient of M2,k by GL2,k,

see GIT, Chap. 1, § 2 and Appendix 1C.

On the other hand, it is quite easy to see that A2
k is not a geometric quotient. Indeed, if

this were the case then on underlying topological spaces the map p should identify A2
k as the set

of GL2,k-orbits in M2,k. But the trace and the determinant are not able to distinguish a matrix

Jλ :=

(
λ 1

0 λ

)

from its semi-simple part (
λ 0

0 λ

)
.

To give another explanation of what is going on, let us look at k-valued points, where k is

an algebraic closure of k. The theory of Jordan canonical forms tells us that the GL2(k)-orbits in

M2(k) are represented by the diagonal matrices diag(λ1, λ2) together with the matrices Jλ. For

τ , δ ∈ k, write N(τ, δ) ⊂ M2,k for the 2-dimensional subvariety given by the conditions trace = τ

and det = δ. By direct computation one readily verifies that (i) the orbit of a diagonal matrix

A = diag(λ, λ) is the single closed point A; (ii) the orbit of a diagonal matrix diag(λ1, λ2) with

λ1 6= λ2 equals N(λ1 + λ2, λ1λ2); (iii) the orbit of a matrix Jλ equals N(2λ, λ2) \ {diag(λ, λ)};
in particular, this orbit is not closed in M2,k.

From the observation that there are non-closed orbits in M2,k, it immediately follows that

there does not exist a geometric quotient. (Indeed, the orbits in M2(k) would be the pre-

images of the k-valued points of the geometric quotient. Cf. the second example in (4.6).) This
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suggests that the points in a subvariety of the form N(2λ, λ2) ⊂ M2,k are the “bad” points for

the given action of GL2. Indeed, it can be shown that on the open complement U ⊂ M2,k given

by the condition 4 det−trace2 6= 0, the map p = (trace,det): U → D(4y − x2) ⊂ A2 (taking

coordinates x, y on A2 and writing D(f) for the locus where a function f does not vanish) makes

D(4y − x2) ⊂ A2
k a geometric quotient of U .

The notion of a geometric quotient plays a central role in geometric invariant theory. There,

as in the above simple example, one studies which points, or which orbits under a given group

action are so “unstable” that they obstruct the formation of a good quotient. (Which are the

“bad” points may depend on further data, such as the choice of an ample line bundle on the

scheme in question.) We refer the reader to the book GIT.

We now turn to the promised generalization of Proposition (4.8). First we need a lemma.

(4.15) Lemma. Let ϕ: A → C be a homomorphism of commutative rings that makes C aNormLem

projective A-module of rank r > 0. Let NormC/A: C → A be the norm map. Let ψ: Spec(C)→
Spec(A) be the morphism of affine schemes given by ϕ. If Z ⊂ Spec(C) is the zero locus of

f ∈ C then ψ(Z) ⊂ Spec(A) is the zero locus of NormC/A(f).

Proof. The assumptions imply that ϕ is injective. As C is integral over A the map ψ is surjective;

see also (4.21) below. Let p ∈ Spec(A); write ψ−1{p} = {q1, . . . , qn}. By definition, N :=

NormC/A(f) is the determinant of the endomorphism λf : c 7→ fc of C as a module over A.

Write W ⊂ Spec(A) for the zero locus of N . Write ap for the image of an element a ∈ A
in Ap; similar notation for elements of C. Then we have

p /∈W ⇐⇒ Np ∈ A∗p
⇐⇒ λf,p: Cp → Cp is an isomorphism

⇐⇒ fp ∈ C∗p
⇐⇒ f /∈ qi for all i = 1, . . . , n

⇐⇒ qi /∈ Z for all i = 1, . . . , n ,

which proves the lemma. �

(4.16) Theorem. (Quotients by finite group schemes.) Let G be a finite locally free S-groupQuotFinGS

scheme acting on an S-scheme X. Assume that for every closed point P ∈ |X| the G-equivalence

class of P is contained in an affine open subset.

(i) The quotient Y := (G\X)rs is an S-scheme, which therefore is a geometric quotient of X

by G. The canonical morphism q: X → Y is quasi-finite, integral, closed and surjective. If S is

locally noetherian and X is of finite type over S then q is a finite morphism and Y is of finite

type over S, too.

(ii) The formation of the quotient Y is compatible with flat base change (terminology: Y

is a uniform quotient). In other words, let h: S′ → S be a flat morphism. Let a prime ′ denote

a base change via h, e.g., X ′ := X ×S S′. Then Y ′ ∼= (G′\X ′)rs.
(iii) If G acts freely then q: X → Y is finite locally free and the morphism

G×S X −→ X ×Y X

induced by Ψ = (ρ,prX) is an isomorphism. Moreover, Y is in this case a universal geometric

quotient: for any morphism h: S′ → S, indicating base change via h by a prime ′, we have

Y ′ ∼= (G′\X ′)rs.
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(4.17) Remarks. (i) The condition that every G-equivalence class is contained in an affine openQFGSRem

subset is satisfied if X is quasi-projective over S. Indeed, given a ring R, a positive integer N ,

and a finite set V of closed points of PNR , we can find an affine open subscheme U ⊂ PNR such

that V ⊂ U .

(ii) In the situation of the theorem we find that a free action is automatically strictly free.

Indeed, by (iii) the graph morphism Ψ gives an isomorphism of G ×S X with the subscheme

X ×Y X ⊂ X ×S X; hence Ψ is an immersion.

We break up the proof of the theorem into a couple of steps, (4.18)–(4.26).

(4.18) Reduction to the case that S is affine. Suppose S = ∪αUα is a covering of S by ZariskiQFGSStep1

open subsets. As remarked earlier, the restriction of (G\X)rs to U = Uα is naturally isomorphic

to (GU\XU )rs. If we can prove the theorem over each of the open sets Uα then the result as stated

easily follows by gluing. In the rest of the proof we may therefore assume that S = Spec(Q) is

affine and that the affine algebra R of G is free of some rank r as a Q-module.

(4.19) Reduction to the case that X is affine. If P ∈ |X|, let us write G(P ) for its G-equivalenceQFGSStep2

class; note that this is a finite set. Note further that

G(P ) = ρ
(
pr−1
X {P}

)
= prX

(
ρ−1{P}

)
,

by definition of G-equivalence. (Strictly speaking we should write |ρ| and |prX |.)
Say that a subset V ⊂ |X| is G-stable if it contains G(P ) whenever it contains P . If V is

open then there is a maximal open subset V ′ ⊆ V which is G-stable. Namely, if Z := |X| \ V
then Z ′ := prX

(
ρ−1{Z}

)
is closed (since prX : G×S X → X is proper), and V ′ := |X| \ Z ′ has

the required property.

We claim that X can be covered by G-stable affine open subsets. It suffices to show that

every closed point P ∈ X has a G-stable affine open neighbourhood. By assumption there exists

an affine open V ⊂ X with G(P ) ⊂ V . Then also G(P ) ⊂ V ′. As G(P ) is finite there exists

an f ∈ Γ(V,OV ) such that, writing D(f) ⊂ V for the open subset where f does not vanish,

G(P ) ⊂ D(f) ⊆ V ′. In total this gives

G(P ) ⊂ D(f)′ ⊆ D(f) ⊆ V ′ ⊆ V .

Our claim is proven if we can show that D(f)′ is affine. Write f ′ for the image of f

in Γ(V ′, OV ′), so that Z := V ′ \ D(f) is the zero locus of f ′. As V ′ is G-stable we have

ρ−1(V ′) = G ×S V ′, which gives an element ρ♯(f ′) ∈ Γ(G ×S V ′, OG×SV ′). The zero locus of

ρ♯(f ′) is of course just ρ−1(Z) ⊂ G×S V ′. As G is finite locally free, the morphism prX makes

Γ
(
G ×S V ′, OG×SV ′

)
into a projective module of finite rank over Γ

(
V ′, OV ′

)
. This gives us a

norm map

Norm: Γ
(
G×S V ′, OG×SV ′

)
−→ Γ

(
V ′, OV ′

)
.

Let F := Norm
(
ρ♯(f ′)

)
. By Lemma (4.15), the zero locus of F is the image of ρ−1(Z) under the

projection to V ′. But the complement of this locus in V ′ is precisely D(f)′. Hence if F ′ is the

image of F in Γ
(
D(f), OD(f)

)
then D(f)′ is the open subset of D(f) where F ′ does not vanish.

As this subset is affine open, our claim is proven.

Except for the last assertion of (i), the proof of the theorem now reduces to the case that

X is affine. Namely, by the previous we can cover X by G-stable affine open subsets, and if the
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theorem is true for each of these then by gluing we obtain the result for X. The last assertion

of (i) will be dealt with in (4.23).

(4.20) From now on we assume that X = Spec(A) → S = Spec(Q). Further we assume thatQFGSStep3

G = Spec(R) for some Q-Hopf algebra R which is free of rank r as a module over Q. Much

of what we are going to do is a direct generalization of the arguments in (4.8); that proof may

therefore serve as a guide for the arguments to follow.

The action of G on X is given by a Q-algebra homomorphism σ: A → R ⊗Q A. Write

j: A → R ⊗Q A for the map given by a 7→ 1 ⊗ a. (In other words, we write σ for ρ♯ and j

for pr♯X .) Define a subring B := AG ⊂ A of G-invariants by

B := {a ∈ A | σ(a) = j(a)} .

We are going to prove that Y := Spec(B) is the geometric quotient of X under the given action

of G.

As a first step, let us show that A is integral over B. For a ∈ A, multiplication by σ(a) is

an endomorphism of R⊗Q A, and we can form its characteristic polynomial

χ(t) = tr + cr−1t
r−1 + · · · + c1t+ c0 ∈ A[t] .

We have cartesian squares

R⊗Q A m̃⊗idA−−−−−→ R⊗Q R⊗Q A
j

x
xj2,3

A
j−−−−−→ R⊗Q A

and

R⊗Q A idR⊗σ−−−−→ R⊗Q R⊗Q A
j

x
xj2,3

A
σ−−−−→ R⊗Q A ,

(2)

Quot:CartDiags

where the map j2,3 is given by r ⊗ a 7→ 1 ⊗ r ⊗ a. We view R ⊗Q R ⊗Q A as a module over

R ⊗Q A via j2,3. It follows from the left-hand diagram that j
(
χ(t)

)
, the polynomial obtained

from χ(t) by applying j to its coefficients, is the characteristic polynomial of m̃⊗ idA
(
σ(a)

)
. The

right-hand diagram tells us that σ
(
χ(t)

)
is the characteristic polynomial of idR ⊗ σ

(
σ(a)

)
. But

the commutativity of diagram (1) in Definition (4.1) gives the identity m̃⊗ idA
(
σ(a)

)
= idR ⊗

σ
(
σ(a)

)
. Hence j

(
χ(t)

)
= σ

(
χ(t)

)
, which means that χ(t) is a polynomial with coefficients ci

in the ring B of G-invariants.

The Cayley-Hamilton theorem tells us that

σ(a)r + j(cr−1)σ(a)r−1 + · · · + j(c1)σ(a) + j(c0) = 0 .

As j(ci) = σ(ci) for all i we can rewrite this as

σ
(
χ(a)

)
= σ(a)r + σ(cr−1)σ(a)r−1 + · · ·+ σ(c1)σ(a) + σ(c0) = 0 . (3)Quot:CayHam

But σ is an injective map, because we have the relation (ẽ⊗ idA)◦σ = idA, which translates the

fact that the identity element of G acts as the identity on X. Hence (3) implies that χ(a) = 0.

This proves that A is integral over B.

(4.21) The fact that A is integral over B has the following consequences.QFGSStep4

(i) If p1 ⊆ p2 are prime ideals of A with p1 ∩B = p2 ∩B then p1 = p2. Geometrically this

means that all fibres of Spec(A)→ Spec(B) have dimension 0.
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(ii) The natural map q: X = Spec(A)→ Y = Spec(B) is surjective.

(iii) The map q is closed, i.e., if C ⊂ X is closed then q(C) ⊂ Y is closed too.

Properties (i) and (ii) can be found in many textbooks on commutative algebra, see for instance

Atiyah-Macdonald [1], Cor. 5.9 and Thm. 5.10. For (iii), suppose C ⊂ X is the closed subset

defined by an ideal a ⊂ A. We may identify C with Spec(A/a). The composite map C =

Spec(A/a) →֒ Spec(A) → Spec(B) factors through the closed subset Spec(B/b) ⊂ Spec(B),

where b = a ∩ B. Note that A/a is again integral over its subring B/b. Applying (ii) with A

and B replaced by A/a and B/b, we find that C = Spec(A/a)→ Spec(B/b) is surjective. Hence

q(C) is the closed subset of B defined by b.

Define a map N : A→ B by

N(a) = NormR⊗QA/A

(
σ(a)

)
.

Note that N(a) = (−1)nc0, where c0 is the constant coefficient of the characteristic polyno-

mial χ(t) considered in (4.20); hence N(a) is indeed an element of B. The relation χ(a) = 0

gives

N(a) = (−1)n+1 · a ·
(
an−1 + cn−1a

n−2 + · · ·+ c1
)
.

In particular, if a ∈ a for some ideal a ⊂ A then N(a) ∈ a ∩B.

(4.22) Recall that Y := Spec(B). We are going to prove that Y = (G\X)rs. Note that theQFGSStep5

natural map |X| → |Y | is surjective, by (ii) in (4.21).

By definition, two prime ideals p and p′ of A are in the same G-equivalence class if there

exists a prime ideal Q of R ⊗Q A with σ−1(Q) = p and j−1(Q) = p′. If such a prime ideal Q

exists then it is immediate that p ∩B = p′ ∩B, so G-equivalent points of X are mapped to the

same point of Y .

Conversely, suppose p ∩ B = p′ ∩ B. There are finitely many prime ideals Q1, . . . ,Qn of

R⊗QA with the property that j−1(Qi) = p′. (The morphism prX : G×SX → X is finite because

G is finite.) Set qi = σ−1(Qi). Note that qi ∩ B = p ∩ B. Our goal is to prove that p = qi for

some i. By property (i) above it suffices to show that p ⊆ qi for some i. Suppose this is not the

case. Then there exists an element a ∈ p that is not contained in q1 ∪ · · · ∪ qn. (Use Atiyah-

Macdonald [1], Prop. 1.11, and cf. the proof of Prop. (4.8) above.) Lemma (4.15), applied with

f = σ(a) ∈ R⊗QA, tells us that the prime ideals of A containing N(a) are all of the form j−1(r)

with r a prime ideal of R ⊗Q A that contains σ(a). But a ∈ p, hence N(a) ∈ p ∩ B = p′ ∩ B.

Hence one of the prime ideals Qi contains σ(a), contradicting our choice of a.

We have now proven that the map X → Y identifies |Y | with the set |X|/∼ of G-equivalence

classes in X. Further, by (iii) in (4.21) the quotient map |X| → |Y | is closed, so the topology

on |Y | is the quotient topology. If V = DY (f) ⊂ Y is the fundamental open subset given by

f ∈ B then q−1(V ) = DX(f), and we find

OY (V ) = Bf = (AG)f
∼−→ (Af )

G =
(
OX(q−1(V ))

)G
=
(
(q∗OX)(V )

)G
.

As the fundamental open subsets form a basis for the topology on Y , it follows that q♯: OY →
q∗OX induces an isomorphism OY

∼−→ (q∗OX)G.

(4.23) Let us now prove the last assertion of part (i) of the theorem. As before we may assumeQFGSStep7

that S = Spec(Q) is affine. Let q: X → Y := (G\X)rs be the quotient morphism, which we

have already shown to exist. Let U = Spec(A) be a G-stable affine open subset of X, and let
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B = AG. By construction, q(U) = Spec(B) is an open subset of Y , and q−1
(
q(U)

)
= U . If X

is locally of finite type over S then A is a finitely generated Q-algebra, a fortiori also of finite

type as a B-algebra. But A is also integral over B. It follows that A is finitely generated as a

B-module (see e.g. Atiyah-Macdonald [1], Cor. 5.2). Hence q is a finite morphism.

If S is locally noetherian then we may assume, arguing as in (4.18), that Q is a noetherian

ring. Choose generators a1, . . . , an for A as a Q-algebra. We have seen that for each i we can

find a monic polynomial fi ∈ B[T ] with fi(ai) = 0. Let B′ ⊂ B be the Q-subalgebra generated

by the coefficients of the polynomials fi. Then A is integral over B′, and by the same argument

as above it follows that A is finitely generated as a B′-module. Because B′ is finitely generated

over Q it is a noetherian ring. But then B ⊂ A is also finitely generated as a B′-module, hence

finitely generated as a Q-algebra. This shows that Y is locally of finite type over S.

So far we have used only that X is locally of finite type over S. Assume, in addition, that

the morphism f : X → S is quasi-compact. Let g: Y → S be the structural morphism of Y . It

remains to be shown that g is quasi-compact. But this is clear, for if V ⊂ S is a quasi-compact

open subset then g−1(V ) = q
(
f−1(V )

)
, which is quasi-compact because f−1(V ) is.

(4.24) Proof of (ii) of the theorem. Let S′ → S be a flat morphism. We want to show thatQFGSStep7A

Y ′ := Y ×S S′ is a geometric quotient of X ′ by G′. Arguing as in (4.18) one reduces to the case

that S′ → S is given by a flat homomorphism of rings Q→ Q′. Note that every G′-equivalence

class in X ′ is again contained in an affine open subset. As in (4.19) one further reduces to

the case that X, X ′, Y and Y ′ are all affine. With notations as above we have Y = Spec(B),

where B = Ker(j − σ). We want to show, writing a prime ′ for extension of scalars to Q′, that

B ⊗Q Q′ = Ker(j′ − σ′: A′ ⊗Q′ R′ → A′ ⊗Q′ A′). But this is obvious from the assumption that

Q→ Q′ is flat.

(4.25) We now turn to part (iii) of the theorem. As before, everything reduces to the situationQFGSStep8

where S, G, X and Y are all affine, with algebras Q, R, A and B = AG, respectively, and that

R is free of rank r as a module over Q. We view R⊗Q A as an A-module via j. Let

ϕ: A⊗B A→ R⊗Q A

be the homomorphism given by ϕ(a1 ⊗ a2) = σ(a1) · j(a2) = σ(a1) · (1 ⊗ a2).

Assume that G acts freely on X. This means that the morphism Ψ: G ×S X → X ×S X
is a monomorphism in the category of schemes. The corresponding map on rings is given by

Ψ♯ = ϕ◦q, where q: A⊗Q A→→ A⊗B A is the natural map. Since a morphism of affine schemes

is a monomorphism if and only if the corresponding map on rings is surjective, it follows that ϕ

is surjective.

Let q be a prime ideal of B and write Aq = (B − q)−1A ∼= A ⊗B Bq. Note that Aq is a

semi-local ring, because X → Y is quasi-finite. Let r ⊂ Aq be its radical. We claim that Aq

is free of rank r = rank(G) as a module over Bq. If this holds for all q then A is a projective

B-module of rank r; use Bourbaki [2], Chap. II, § 5, Thm. 2. Furthermore, ϕ is then a surjective

map between projective A-modules of the same rank and is therefore an isomorphism.

We first prove that Aq is Bq-free of rank r in the case where the residue field k of Bq is

infinite. Consider the Bq-submodule

N := {σ(a) | a ∈ Aq} ⊂M := R⊗Q Aq .

Because ϕq: Aq ⊗Bq
Aq → R ⊗Q Aq is surjective, N spans M as an Aq-module. Therefore

N/rN spans M/rM ∼= (Aq/r)
r as a module over Aq/r, which is a product of fields. Using that
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k is an infinite subfield of Aq/r it follows that N/rN contains a basis of M/rM over Aq/r; see

Exercise (4.3). Applying the Nakayama lemma, it follows that N contains a basis of M over Aq,

i.e., we have elements a1, . . . ar ∈ Aq such that the elements ϕq(ai⊗1) = σ(ai) form an Aq-basis

of R⊗Q Aq. Hence for every a ∈ Aq there are unique coordinates x1, . . . , xr ∈ Aq such that

σ(a) = x1 · σ(a1) + · · · + xr · σ(ar)

= (1⊗ x1) · σ(a1) + · · ·+ (1⊗ xr) · σ(ar) .
(4)

Quot:QFGSfinal

We view R′′ := R⊗Q R⊗Q Aq as a module over R⊗Q Aq via the homomorphism j2,3 given by

r ⊗ a 7→ 1⊗ r ⊗ a. The diagrams (2) tell us that the elements

γi := (m̃⊗ idA)
(
σ(ai)

)
= (idR ⊗ σ)

(
σ(ai)

)

form an R⊗Q Aq-basis of R′′. Applying m̃⊗ idA and idR ⊗ σ to (4) gives

(m̃⊗ idA)
(
σ(a)

)
= (1⊗ 1⊗ x1) · γ1 + · · · + (1⊗ 1⊗ xr) · γr∥∥∥

(idR ⊗ σ)
(
σ(a)

)
=

(
1⊗ σ(x1)

)
· γ1 + · · · +

(
1⊗ σ(xr)

)
· γr .

Hence the coordinates xi lie in B, and (4) becomes σ(a) = σ(x1a1 + · · · + xrar). But we have

seen in (4.20) that σ is injective, hence a = x1a1 + · · · + xrar. This proves that the elements

a1, . . . , ar span Aq as a Bq-module. On the other hand, since the map a 7→ σ(a) is Bq-linear,

the elements a1, . . . , ar are linearly independent over Bq. Hence Aq is free of rank r over Bq.

Finally we consider the case that Bq has a finite residue field. By what was explained in

Remark (4.7) we may assume that S = Y . Because B → Bq is flat we may, by (ii) of the theorem,

further reduce to the case where B = Bq. Let h: B → B′ be a faithfully flat homomorphism,

where B′ is a local ring with infinite residue field; for instance we could take B′ to be a strict

henselization of B = Bq. In order to show that A = Aq is free of rank r over B, it suffices

to show that A′ := A ⊗B B′ is free of rank r over B′, see EGA IV, 2.5.2. But, again by (ii),

Spec(B′) is the quotient of Spec(A′) under the G-action obtained by base-change. Hence we are

reduced to the case treated above.

(4.26) As the final step in the proof we show that if G acts freely, Y is a universal geometricQFGSStep9

quotient. Consider a morphism h: S′ → S. Let us indicate base change via h by a ′, so

X ′ := X ×S S′, etc. Then G′ acts again freely on X ′, and it is easy to see that every G′-

equivalence class of closed points in |X ′| is contained in an affine open subset. (Since this

statement only involves the fibres of X ′ we may assume that S′ is affine, in which case the

morphism X ′ → X is affine.) Hence there exists a geometric quotient, say qZ : X ′ → Z. As

Z is a categorical quotient of X ′ by G′, the morphism q′: X ′ → Y ′ factors as q′ = f ◦qZ with

f : Z → Y ′. We want to show that f is an isomorphism.

As before we may assume that G is free of rank r over S. Then X ′ is free of rank r over Z

but at the same time it is free of the same rank r over Y ′. But then Z has to be locally free of

rank 1 over Y ′, so f : Z
∼−→ Y ′. This completes the proof of Theorem (4.16). �

§3. FPPF quotients.
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Consider an action of an S-group scheme G on an S-scheme X. In general there is not a simple

procedure to construct a “good” quotient of X by G in the category Sch/S . Of course we have

the notion of a categorical quotient, but this is only a “best possible approximation in the given

category”, and its definition gives no clues about whether there exists a categorical quotient

and, if so, how to describe it.

Most approaches to the formation of quotients follow the same pattern:

(a) replace the category Sch/S of S-schemes by some “bigger” category, in which the formation

of quotients is easier;

(b) form the quotient Y := G\X in this bigger category;

(c) study under which assumptions the quotient Y is (representable by) a scheme.

Thus, for instance, in our discussion of geometric quotients the “bigger” category that we used

was the category of ringed spaces over S.

The approach usually taken in the theory of group schemes is explained with great clarity

in Raynaud [2]. The idea is that one chooses a Grothendieck topology on the category of S-

schemes and that all objects in question are viewed as sheaves on the resulting site. The quotient

spaces that we are interested in exist as sheaves—this usually involves a sheafification—and their

construction has good functorial properties. Then it remains to be investigated under what

conditions the quotient sheaf is representable by a scheme. For the choice of the topology, a

couple of remarks have to be taken into account. First, we want our original objects, schemes,

to be sheaves rather than presheaves; this means that the topology should be no finer than the

canonical topology (see Appendix ??). On the other hand, the finer the topology, the weaker

the condition that a sheaf is representable. Finally the topology has to be accessible by the

methods of algebraic geometry. In practice one usually works with the étale topology, the fppf

topology or the fpqc topology. We shall mostly work with the fppf topology. See (4.36) below

for further discussion.

From a modern perspective, perhaps the most natural choice for the “bigger category” in

which to work, is the category of algebraic stacks. An excellent reference for the foundations of

this theory is the book by Laumon and Moret-Bailly [1]. For general results about the formation

of quotients as algebraic spaces we recommend the papers by Keel and Mori [1] and Kollár [1].

However, at this stage in our book we shall not assume any knowledge of algebraic spaces or

stacks (though algebraic spaces will be briefly mentioned in our discussion of Picard functors in

Chap. 6).

Finally let us remark that we shall almost exclusively deal with quotients modulo a group

action, and not with more general equivalence relations or groupoids. It should be noted that

even if one is interested only in group quotients, the proofs often involve more general groupoids.

(4.27) We shall use some notions that are explained in more detail in Appendix ??.FPPFTop

Let S be a scheme. We write (S)FPPF for the big fppf site of S, i.e., the category Sch/S of

S-schemes equipped with the fppf topology. We write FPPF(S) for the category of sheaves on

(S)FPPF.

The fppf topology is coarser than the canonical topology; this means that for every S-

scheme X the presheaf hX = HomS(−,X) is a sheaf on (S)FPPF. As explained in A?? this is

essentially a reformulation of results in descent theory. Via X 7→ hX we can identify Sch/S with

a full subcategory of FPPF(S). We shall usually simply write X for hX .

Denote by ShGr/S and ShAb/S the categories of sheaves of groups, respectively sheaves of

abelian groups, on (S)FPPF. The category ShAb/S is abelian; ShGr/S is not abelian (excluding

S = ∅) but we can still speak about exact sequences. Unless specified otherwise, we shall from
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now on view the category of S-group schemes as a full subcategory of ShGr/S. For example, we

shall say that a sequence of S-group schemes

G′
ϕ−→ G

ψ−→ G′′

is exact if it is exact as a sequence in ShGr/S , i.e., if Ker(ψ) represents the fppf sheaf associated

to the presheaf T 7→ Im
(
ϕ(T ): G′(T )→ G(T )

)
.

(4.28) Definition. Let G be an S-group scheme acting, by ρ: G×SX → X, on an S-scheme X.FPPFQDef

We write (G\X)fppf , or simply G\X, for the fppf sheaf associated to the presheaf

T 7→ G(T )\X(T ) .

If G\X is representable by a scheme Y then we refer to Y (or to the quotient morphism q: X →
Y ) as the fppf quotient of X by G.

We often say that “an fppf quotient exists” if (G\X)fppf is representable by a scheme. Note

that the sheaf G\X is a categorical quotient of X by G in FPPF(S), so we are indeed forming the

quotient in a “bigger” category. Note further that if (G\X)fppf is representable by a scheme Y

then by the Yoneda lemma we have a morphism of schemes q: X → Y .

As we are mainly interested in the formation of quotients of a group scheme by a subgroup

scheme, we shall mostly restrict our discussion of fppf quotients to the case that the action is

free.

(4.29) Example. Consider the situation as in (iii) of Theorem (4.16). So, G is finite locally freeFPPFExa

over S, acting freely on X, and every orbit is contained in an affine open set. Let qY : X → Y

be the universal geometric quotient, as we have proven to exist. We claim that Y is also an fppf

quotient. To see this, write Z := (G\X)fppf and write qZ : X → Z for the quotient map. As Z

is a categorical quotient in FPPF(S), the morphism qY , viewed as a morphism of fppf sheaves,

factors as qY = r ◦qZ for some r: Z → Y . To prove that r is an isomorphism it suffices to show

that it is both a monomorphism and an epimorphism.

By (iii) of (4.16), the morphism qY is fppf. By A?? this implies it is an epimorphism of

sheaves. But then r is an epimorphism too. On the other hand, suppose T is an S-scheme and

suppose a, b ∈ Z(T ) map to the same point in Y (T ). There exists an fppf covering T ′ → T such

that a and b come from points a′, b′ ∈ X(T ′). But we know that Ψ = (ρ,prX): G×SX → X×YX
is an isomorphism, so there is a point c ∈ G ×S X(T ′) with ρ(c) = a′ and prX(c) = b′. By

construction of Z := (G\X)fppf this implies that a = b. Hence r is a monomorphism.

(4.30) The formation of fppf quotients is compatible with base change. To explain this in moreFPPFFunct

detail, suppose j: S′ → S is a morphism of schemes. Then j gives rise to an inverse image

functor j∗: FPPF(S) → FPPF(S′) which is exact. Concretely, if f : T → S′ is an S′-scheme

then j ◦f : T → S is an S-scheme, and if F is an fppf sheaf on S then we have j∗F (f : T →
S′) = F (j ◦f : T → S). In particular, on representable sheaves j∗ is simply given by base-change:

j∗X = X×SS′. Writing X ′ = X×S S′ and G′ = G×S S′, we conclude that j∗(G\X) = (G′\X ′)
as sheaves on (S′)FPPF. Hence if q: X → Y is an fppf quotient over S then Y ′ := Y ×S S′ is

an fppf quotient of X ′ by G′. Put differently: An fppf quotient, if it exists, is automatically a

universal fppf quotient.
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(4.31) Proposition. Let G be an S-group scheme acting freely on an S-scheme X. SupposeQuotProp

the fppf sheaf (G\X)fppf is representable by a scheme Y . Write q: X → Y for the canonical mor-

phism. Then q is an fppf covering and the morphism Ψ: G×S X → X ×Y X is an isomorphism.

This gives a commutative diagram with cartesian squares

G×S X ∼−−−→ X ×Y X
pr1−−→ X

pr2

y pr2

y
yq

X === X
q−→ Y .

In particular, X is a G-torsor over Y in the fppf topology which becomes trivial over the covering

q: X → Y .

Proof. By construction, the projection X → Y is an epimorphism of fppf sheaves. This implies

that it is an fppf covering; see A??. Further, Ψ: G ×S X → X ×Y X is an isomorphism of fppf

sheaves, again by construction of Y = G\X. By the Yoneda lemma (3.3), Ψ is then also an

isomorphism of schemes. �

(4.32) In the situation of the proposition, a necessary condition for (G\X)fppf to be repre-FPPFLoc

sentable by a scheme is that the action of G on X is strictly free. Indeed, this is immediate

from the fact that X ×Y X is a subscheme of X ×S X. But the good news contained in (4.31)

is that if an fppf quotient exists, it has very good functorial properties. Let us explain this in

some more detail.

We say that a property P of morphisms of schemes is fppf local on the target if the following

two conditions hold:

(a) given a cartesian diagram
X ′

h−→ X

f ′

y
yf

S′ −→
g

S

we have P (f)⇒ P (f ′) (we say: “P is stable under base change”);

(b) if furthermore g: S′ → S is an fppf covering then P (f)⇔ P (f ′).

Many properties that play a role in algebraic geometry are fppf local on the target. More

precisely, it follows from the results in EGA IV, § 2 that this holds for the property P of a

morphism of schemes of being flat, smooth, unramified, étale, (locally) of finite type or finite

presentation, (quasi-) separated, (quasi-) finite, (quasi-) affine, or integral.

(4.33) Corollary. Let P be a property of morphisms of schemes which is local on the targetFPPFLocCor

for the fppf topology. If q: X → Y is an fppf quotient of X under the free action of an S-group

scheme G, then

q: X → Y

has property P
⇐⇒ pr2: G×S X → X

has property P
⇐=

π: G→ S

has property P

where moreover the last implication is an equivalence if X → S is an fppf covering.

Proof. Clear, as q: X → Y is an fppf covering and G×S X ∼−→ X ×Y X. �

In the applications we shall see that this is a most useful result. After all, it tells us that

an fppf quotient morphism q: X → Y inherits many properties from the structural morphism
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π: G → S. To study π we can use the techniques discussed in Chapter 3. To give but one

example, suppose S = Spec(k) is the spectrum of a field and that G and X are of finite type

over k. As before we assume that G acts freely on X. Then the conclusion is that an fppf

quotient morphism q: X → Y is smooth if and only if G is a smooth k-group scheme. By (3.17)

it suffices to test this at the origin of G, and if moreover char(k) = 0 then by (3.20) G is

automatically smooth over k.

(4.34) At this point, let us take a little step back and compare the various notions of a quotientQuotCompar

that we have encountered.

Consider a base scheme S, an S-group scheme G acting on an S-scheme X, and suppose

q: X → Y is a morphism of S-schemes. Then q realizes Y as

—a categorical quotient of X by G if q is universal for G-equivariant morphisms from X to

an S-scheme with trivial G-action;

—a geometric quotient of X by G if |Y | = |X|/ ∼ and OY = (q∗OX)G, i.e., Y represents

the quotient of X by G formed in the category of ringed spaces;

—an fppf quotient of X by G if Y represents the fppf sheaf associated to the presheaf

T 7→ G(T )\X(T ), i.e., Y represents the quotient of X by G formed in the category of fppf

sheaves.

Further we have defined what it means for Y to be a universal categorical or geometric

quotient. As remarked earlier, an fppf quotient is automatically universal.

The following result is due to Raynaud [1] and gives a comparison between fppf and geo-

metric quotients.

(4.35) Theorem. Let G be an S-group scheme acting on an S-scheme X.GEOM/FPPF

(i) Suppose there exists an fppf quotient Y of X by G. Then Y is also a geometric quotient.

(ii) Assume that X is locally of finite type over S, and that G is flat and locally of finite

presentation over S. Assume further that the action of G on X is strictly free. If there exists

a geometric quotient Y of X by G then Y is also an fppf quotient. In particular, the quotient

morphism q: X → Y is an fppf morphism and Y is a universal geometric quotient.

Proof. For the proof of (ii) we refer to Anantharaman [1], Appendix I. Let us prove (i). Suppose

that q: X → Y is an fppf quotient. Write r: X → Z := (G\X)rs for the quotient of X by G

in the category of ringed spaces over S. Since r is a categorical quotient in RS/S we have a

unique morphism of ringed spaces s: Z → Y such that q = s◦r. Our goal is to prove that s is

an isomorphism. First note that q, being an fppf covering, is open and surjective. Since also r

is surjective, this implies that the map s is open and surjective.

Next we show that s is injective. Suppose A and B are points of |X| that map to the same

point C in |Y |. We have to show that ρ−1{A} ∩ pr−1
X {B} is non-empty, for then A and B map

to the same point of Z, and the injectivity of s follows. Choose a field extension κ(C) ⊂ K

and K-valued points a ∈ X(K) and b ∈ X(K) with support in A and B, respectively, such

that q(a) = q(b). By construction of the fppf quotient, there exists a K-algebra L of finite type

and an L-valued point d ∈ G ×S X(L) with ρ(d) = a and prX(d) = b. But then the image of

d: Spec(L)→ G×S X is contained in ρ−1{A} ∩ pr−1
X {B}.

Finally, let U an open part of Y . There is a natural bijection between Γ(U,OY ) and the

morphisms U → A1
S over S. Write V := q−1(U) and W := ρ−1(V ) = pr−1

X (V ). By the Yoneda

lemma the morphisms U → A1
S as schemes are the same as the morphisms as fppf sheaves. By

construction of the fppf quotient we therefore find that Γ(U,OY ) is in bijection with the set of
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morphisms f : V → A1
S over S such that f ◦ρ = f ◦prX : W → A1

S. Writing f := q ◦ρ = q ◦prX ,

this shows that OY is the kernel of q∗OX ⇉ f∗OG×SX , which, by definition, is the subsheaf of

G-invariant sections in q∗OX . This proves that s is an isomorphism of ringed spaces, so that Y

is also a geometric quotient of X by G. �

To summarize, we have the following relations between the various notions:*

fppf quotient =⇒ universal

geometric quotient
=⇒ universal

categorical quotient

տ
ww�

ww�
geometric quotient =⇒ categorical quotient

where the implication “geometric⇒ fppf” is valid under the assumptions as in (ii) of the theorem.

(4.36) The sheaf-theoretic approach that we are discussing here of course also makes sense forTopChoice

other Grothendieck topologies on Sch/S , such as the étale topology. Thus, for instance, suppose

q: X → Y is an fppf quotient of X by the action of an S-group scheme G. One may ask if q is

also an étale quotient. But for this to be the case, q has to be an epimorphism of étale sheaves,

which means that étale-locally on Y it admits a section. If this is not the case then q will not

be a quotient morphism for the étale topology.

To give a simple geometric example, suppose q: X → Y is a finite morpism of complete

non-singular curves over a field such that the extension k(Y ) ⊂ k(X) on function fields is Galois

with group G. Then q is an fppf quotient of X by G, but it is an étale quotient only if there is

no ramification, i.e., if q is étale.

Conversely, if étale-locally on Y the morphism q has a section then q is an epimorphism

of étale sheaves and one shows without difficulty that q is an étale quotient of X by G. (Note

that q is assumed to be an fppf quotient morphism, so we already know it is faithfully flat, and

in particular also surjective.) But as the simple example just given demonstrates, for a general

theory of quotients we obtain better results if we use a finer topology, such as the fppf topology.

(4.37) Working with sheaves of groups has the advantage that many familiar results fromQuotGr

ordinary group theory readily generalize. For instance, if H is a normal subgroup scheme

of G then the fppf quotient sheaf G/H is naturally a sheaf of groups, and the canonical map

q: G → G/H is a homomorphism. Hence if G/H is representable then it is a group scheme

and the sequence 0 −→ H −→ G −→ G/H −→ 0 is exact. In this case, if f : G → G′ is a

homomorphism of S-group schemes such that f|H is trivial then f factors uniquely as f = f ′ ◦q,

where f ′: G/H → G′ is again a homomorphism of group schemes.

To conclude our general discussion of fppf quotients, let us now state two existence results.

For some finer results see Raynaud [1] and [2], SGA 3, Exp. V and VI, and Anantharaman [1].

(4.38) Theorem. Let G be a proper and flat group scheme of finite type over a locallyQuotExist1

noetherian basis S. Let ρ: G×S X → X define a strictly free action of G on a quasi-projective

S-scheme X. Then the fppf quotient G\X is representable by a scheme.

A proof of this result can be found in SGA 3, Exp. V, § 7.

* schuine pijl moet gestreepte pijl worden
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(4.39) Theorem. Let G be a flat group scheme of finite type over a locally noetherian baseQuotExist2

scheme S. Let H ⊂ G be a closed subgroup scheme which is flat over S. Suppose that we are

in one of the following cases:

(a) dim(S) 6 1;

(b) G is quasi-projective over S and H is proper over S;

(c) H is finite locally free over S such that every fibre Hs ⊂ Gs is contained in an affine

open subset of G.

Then the fppf quotient sheaf G/H is representable by an S-scheme. If H is normal in G then

G/H has the structure of an S-group scheme such that the natural map q: G → G/H is a

homomorphism.

For the proof of this result in case (a) see Anantharaman [1], § 4. In case (b) the assertion

follows from (4.38), and case (c) is an application of Thm. (4.16); cf. Example (4.29).

(4.40) Example. Let X be an abelian variety over a field k. If H ⊂ X is a closed subgroupAVQuotExa

scheme then by Thm. (4.38) there exists an fppf quotient q: X → Y := X/H. By Thm. (4.35) q

is also a geometric quotient, and from this it readily follows that Y is again an abelian variety.

§4. Finite group schemes over a field.

Now that we have some further techniques at our disposal, let us return to the study of group

schemes. As an application of the above, we sketch the proof of a useful general result.

(4.41) Theorem. If k is a field then the category of commutative group schemes of finite typeCGSAbCat

over k is abelian.

Proof (sketch). Write C for the category of commutative group schemes of finite type over k.

We view C as a full subcategory of the category ShAb/k of fppf sheaves of abelian groups on

Spec(k), which is an abelian category. Clearly C is an additive subcategory, and by (3.13) it is

stable under the formation of kernels.

Let f : G1 → G2 be a morphism in C. In the category ShAb/k we can form the quotients

q1: G1 → G1/Ker(f) and q2: G2 → G2/G1, and we have an isomorphism α: G1/Ker(f)
∼−→

Ker(q2). First one shows that the quotient morphism q1 exists as a homomorphism of group

schemes; see also (4.39) below. Let Ḡ1 := G1/Ker(f), and let f̄ : Ḡ1 → G2 be the homomorphism

induced by f . Note that f̄ is a monomorphism. Now one proves that the quotient sheaf G2/Ḡ1

is also representable by a k-scheme of finite type; for the details of this see SGA 3, Exp VIA,

Thm. 3.2. But the natural map of sheaves G2/G1 → G2/Ḡ1 is an isomorphism, so it follows that

G2/G1 is a group scheme. In particular, C is stable under the formation of cokernels, and since

C is a full subcategory of ShAb/k we have an isomorphism α: G1/Ker(f)
∼−→ Ker(q2) in C. �

We now focus on finite group schemes.

(4.42) Definition. Let G be a finite group scheme over a field k. We say that G isLocEtTerm

— étale if the structural morphism G→ Spec(k) is étale;

— local if G is connected.

Next suppose that G is commutative. Recall that we write GD for the Cartier dual of G. We

say that G is
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— étale-étale if G and GD are both étale;

— étale-local if G is étale and GD is local;

— local-étale if G is local and GD is étale;

— local-local if G and GD are both local.

Let us note that if k ⊂ K is a field extension and if G is étale (resp. local) then GK is

étale (resp. local), too. For étaleness this is clear; for the property of being local this is just

Prop. (3.17), part (i).

(4.43) Examples. If char(k) = 0 then it follows from Thm. (3.20) that every finite commutativeLocEtExa

k-group scheme is étale-étale. If char(k) = p > 0 then all four types occur:

type: étale-étale étale-local local-étale local-local

example: (Z/mZ) with p ∤ m (Z/pnZ) µpn αpn

(4.44) Lemma. Let G1 and G2 be finite group schemes over a field k, with G1 étale and G2LocEtLem

local. Then the only homomorphisms G1 → G2 and G2 → G1 are the trivial ones.

Proof. Without loss of generality we may assume that k = k. Then G2,red ⊂ G2 is a connected

étale subgroup scheme; hence G2,red
∼= Spec(k). Now note that any homomorphism G1 →

G2 factors through G2,red. Similarly, any homomorphism G2 → G1 factors through G0
1
∼=

Spec(k). �

Note that the assertion about homomorphisms from an étale to a local group scheme does

not generalize to arbitrary base schemes. For instance, if we take S = Spec
(
k[ε]
)

as a base

scheme then the group HomS

(
(Z/pZ), µp

)
is isomorphic to the additive group k, letting a ∈ k

correspond to the homomorphism (Z/pZ)S → µp,S given on points by (n mod p) 7→ (1 + aε)n.

(4.45) Proposition. Let G be a finite group scheme over a field k. Then G is an extensionLocEtDec

of an étale k-group scheme Gét = ̟0(G) by the local group scheme G0; so we have an exact

sequence

1 −→ G0 −→ G −→ Gét −→ 1 . (5)Quot:G0Get

If k is perfect then this sequence splits (i.e., we have a homomorphic section G← Gét) and G is

isomorphic to a semi-direct product G0 ⋊Gét. In particular, if k is perfect and G is commutative

then G ∼= G0 ×Gét.

Note that the étale quotient Gét is nothing but the group scheme ̟0(G) of connected

components introduced in (3.28). In the present context it is customary to think of Gét as a

“building block” for G, and it is more customary to use a notation like Gét.

Proof. Define Gét := ̟0(G), and consider the homomorphism q: G → Gét as in Prop. (3.27).

As shown there, q is faithfully flat, and the kernel of q is precisely the identity component G0.

Hence we have the exact sequence (5).

Let us now assume that k is perfect. Then Gred ⊂ G is a closed subgroup scheme

(Exercise 3.2) which by (ii) of Prop. (3.17) is étale over k. We claim that the composition

Gred →֒ G→→ Gét is an isomorphism. To see this we may assume that k = k. But then G, as a

scheme, is a finite disjoint union of copies of G0. If there are n components then Gred and Gét

are both isomorphic to the disjoint union of n copies of Spec(k), and it is clear that Gred → Gét

is an isomorphism of group schemes. The inverse of this isomorphism gives a splitting of (5). �
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Combining this with Lemma (4.44) we find that the category C of finite commutative group

schemes over a perfect field k decomposes as a product of categories:

C = Cét,ét ×Cét,loc ×Cloc,ét ×Cloc,loc .

As remarked above, C = Cét,ét if char(k) = 0.

(4.46) Lemma. Let S be a connected base scheme. If 0 −→ G1 −→ G2 −→ G3 −→ 0 is anRanksExSeq

exact sequence of finite locally free S-group schemes then rank(G2) = rank(G1) · rank(G3).

Proof. Immediate from the fact that G2 is a G1-torsor over G3 for the fppf topology, as this

implies that OG2
is locally free as an OG3

-module, of rank equal to rank(G1/S). �

(4.47) Proposition. Let k be a field of characteristic p > 0. Let G be a finite connectedpPowRank

k-group scheme. Then the rank of G is a power of p.

Proof. Let FG/k: G→ G(p) be the relative Frobenius homomorphism. Write G[F ] := Ker(FG/k).

The strategy of the proof is to use the short exact sequence 1 −→ G[F ] −→ G −→ G/G[F ] −→ 1

and induction on the rank of G. The main point is then to show that the affine algebra of G[F ]

is of the form k[X1, . . . ,Xd]/(X
p
1 , . . . ,X

p
d ) with d = dimk(TG,e). To prove this we use certain

differential operators.

Write G = Spec(A), and let I ⊂ A be the augmentation ideal. We have an isomorphism

I/I2 ∼−→ ΩA/k ⊗A k, sending the class of ξ ∈ I to dξ ⊗ 1. Further, (3.15) tells us that ΩA/k ∼=
(ΩA/k ⊗A k)⊗k A. In total we find

Derk(A) = HomA(ΩA/k, A) ∼= Homk(I/I
2, A) ,

where the derivation Dϕ: A → A corresponding to ϕ: I/I2 → A satisfies Dϕ(ξ) = ϕ(ξ) mod I

for all ξ ∈ I.
Choose elements x1, . . . , xd ∈ I whose classes form a k-basis for I/I2. By the previous

remarks, there exist k-derivations Di: A → A such that Di(xj) = δi,j mod I for all i and j.

We claim that for all non-negative numbers m1, . . . ,md and n1, . . . , nd with m1 + · · · +md =

n1 + · · · + nd we have

Dmd

d D
md−1

d−1 · · ·Dm1
1

(
xn1

1 · · · xnd

d

)
≡
{
n1!n2! · · · nd! mod I, if mi = ni for all i;

0 mod I, otherwise.
(6)

Quot:DerForm

To see this, note that for every D ∈ Derk(A) the product rule implies that D(Ir) ⊆ Ir−1. With

this remark, (6) follows by induction on the number m1 + · · · +md.

By Nakayama’s lemma the xi generate I, so we have

A ∼= k[X1, . . . ,Xd]/(f1, . . . , fq)

via xi ←7 Xi. Let J = (f1, . . . , fq) ⊂ A. We claim that J ⊆ (Xp
1 , . . . ,X

p
d ). To see this, suppose

we have a polynomial relation between the xi such that there are no terms xai with a > p. Write

this relation as

0 = h0 + h1(x1, . . . , xd) + · · · + hr(x1, . . . , xd) ,

where hj is a homogeneous polynomial of degree j. Let j be the smallest integer such that

hj 6= 0. Suppose xn1
1 · · · xnd

d (with n1 + · · · + nd = j) is a monomial occurring with non-zero
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coefficient. Applying the differential operator Dnd

d D
nd−1

d−1 · · ·Dn1
1 and using (6) we obtain the

relation n1!n2! · · ·nd! ∈ I. This contradicts the fact that k is a field of characteristic p and that

all ni are < p. Hence J ⊆ (Xp
1 , . . . ,X

p
d ), as claimed.

Let FG/k: G→ G(p) be the relative Frobenius homomorphism. On rings it is given by

k[X1, . . . ,Xd]/(f
(p)
1 , . . . , f (p)

q ) −→ k[X1, . . . ,Xd]/(f1, . . . , fq) , Xi 7→ Xp
i .

As the zero section of G(p) is given by sending all Xi to 0 we find that the affine algebra of

G[F ] := Ker(FG/k) is

AG[F ] = k[X1, . . . ,Xd]/(X
p
1 , . . . ,X

p
d , f1, . . . , fq) = k[X1, . . . ,Xd]/(X

p
1 , . . . ,X

p
d ) .

In particular, G[F ] has rank pd. Further, rank(G) = rank
(
G[F ]

)
· rank

(
G/G[F ]

)
= pd ·

rank
(
G/G[F ]

)
by Lemma (4.46). As G = G0 we have d > 0 if G 6= {1}; now the proposi-

tion follows by induction on rank(G). �

(4.48) Corollary. If char(k) = p then a finite commutative k-group scheme is étale-étale if andEtEtCor

only if p ∤ rank(G).

Proof. In the “if” direction this is a direct consequence of the proposition combined with (4.45)

and Lemma (4.46). Conversely, suppose G is étale-étale. We may assume that k = k, in which

case G is a constant group scheme. If p | rank(G) then G has a direct factor (Z/pnZ). But then

GD has a factor µpn and is therefore not étale. �

Exercises.

(4.1) Let S be a base scheme. Fix an integer N > 2. Take G = X = Gm,S, and let g ∈ G actEx:GmGm

on X as multiplication by gN .

(i) Let T be an S-scheme. Let x1 and x2 be T -valued points of X; they correspond to elements

γ1, γ2 ∈ Γ(T,OT )∗. Let c := γ1/γ2, and define a scheme T ′, affine over T , by T ′ :=

Spec
(
OT [t]/(tN − c)

)
. Show that the images of x1 and x2 in X(T ′) lie in the same orbit

under G(T ′).

(ii) Show that T ′ → T is an epimorphism of schemes over S. (By definition this means that for

every S-scheme Z the induced map Z(T )→ Z(T ′) is injective.)

(iii) Suppose that q: X → Y is a G-invariant morphism of S-schemes. Show that for every

S-scheme T the image of q(T ): X(T ) → Y (T ) consists of a single point. Conclude that

X → S is a universal categorical quotient of X by G.

(iv) Show that the endomorphism Gm → Gm given by g 7→ gN is faithfully flat and of finite

presentation. Use this to show that the fppf sheaf G\X is represented by the scheme S.

(4.2) Let ρ: G×S X → X be an action of an S-group scheme G on an S-scheme X. Define theEx:GeqClass

relation P ∼ Q on |X| as in (4.11). The goal of this exercise is to show that ∼ is an equivalence

relation.

(i) Let Ψ = Ψρ be the graph morphism, as defined in (4.1). Write

Ψ̃: |G×S X| → |X| ×|S| |X|

for the composition of the map |Ψ|: |G ×S X| → |X ×S X| and the canonical (surjective)

map |X ×S X| → |X| ×|S| |X|. Show that P ∼ Q precisely if (P,Q) ∈ ImΨ̃.
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(ii) Write e(S) ⊂ G for the image of the identity section. Show that the projection e(S)×SX →
X is an isomorphism. Conclude that ∼ is reflexive.

(iii) Let s: X ×S X −→ X ×S X be the morphism reversing the factors. Find a morphism

f : G×S X → G×S X such that s◦Ψ = Ψ◦f . Conclude that ∼ is symmetric.

(iv) Show that ∼ is transitive. [Hint: use that the natural map

∣∣∣∣(G×S X) ×
ρ,X,prX

(G×S X)

∣∣∣∣ −→ |G×S X| ×
|ρ|,|X|,|prX |

|G×S X|

is surjective.]

(4.3) Let k be an infinite field. Let Λ be a k-algebra which is a product of fields. SupposeEx:AlgExQFGS

M is a free Λ-module of finite rank. Let N ⊂ M be a k-submodule such that N spans M as

a Λ-module. Show that N contains a Λ-basis for M . Show by means of an example that the

condition that k is infinite is essential.

(4.4) Let π: G → S be a locally free group scheme of rank r over a reduced, irreducible baseEx:KilledbyRk

scheme S. The goal of this exercise is to show that G is annihilated by its rank, i.e., the morphism

[r]G: G→ G given on points by g 7→ gr equals the zero morphism [0]G = e◦π: G→ S → G.

(i) Suppose S is the spectrum of a field k. Reduce the problem to the case that G = G0. [Hint:

Use (4.45) and Lemma (4.46). For étale group schemes reduce the problem to Lagrange’s

theorem in group theory.]

(ii) Suppose S = Spec(k) with char(k) = p. Suppose further that G = G0 = Spec(A). By

(4.47) we have rank(G) = pn for some n. If I ⊂ A is the augmentation ideal, show that

Ip
n

= (0). Now use the result of Exercise (3.7) to derive that [pn](I) = (0). Conclude that

[pn]G = [0]G.

(iii) Prove the stated result over an arbitrary reduced and irreducible basis. [Hint: use that the

generic fibre of G is Zariski dense in G.]

[Remark: for commutative finite locally free group schemes the result holds without any restric-

tion on the basis. This was proven by Deligne; see Tate-Oort [1]. It is an open problem if the

result is also valid over arbitrary base schemes for non-commutative G.]

(4.5) Let S be a locally noetherian scheme. Let G be a finite locally free S-group scheme actingEx:X/Glocalaty

on an S-scheme X of finite type. Assume that for every closed point P ∈ |X| the G-equivalence

class of P is contained in an affine open subset. Write q: X → Y for the quotient morphism. If

x ∈ |X| then we write ÔX,x for the completed local ring of X at the point x; likewise for other

schemes.

(i) Let y ∈ |Y |. Show that the scheme F̂y :=
∏
x∈q−1(y) Spec(ÔX,x) inherits a G-action, and

that Spec(ÔY,y) is the quotient of F̂y modulo G. [Hint: First reduce to the case that S = Y ;

then apply a flat base change.]

(ii) Suppose S = Spec(k) is the spectrum of a field. Let x ∈ X(k) be a k-rational point with

image y ∈ Y (k) under q. Show that q induces an isomorphism ÔY,y
∼−→ (ÔX,x)

Gx .

(4.6) Let X → S be a morphism of schemes. Let G be a finite group that acts on X over S.Ex:FixedPts

(i) For g ∈ G, define a scheme Xg and a morphism ig: X
g → X by the fibre product square

Xg ig−→ X
y

y∆X

X −−→
ψg

X ×S X
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fixedwhere the morphism ψg: X → X ×S X is given by x 7→ (g · x, x). Show that ig is an

immersion and that it is a closed immersion if X/S is separated.

(ii) Define XG →֒ X as the scheme-theoretic intersection of the subschemes Xg, for g ∈ G. (In

other words, if G = {g1, . . . , gn} then XG := Xg1 ×X Xg2 ×X · · · ×X Xgn .) Show that XG

is a subscheme of X, and that it is a closed subscheme if X/S is separated. Further show

that for any S-scheme T we have XG(T ) = X(T )G. The subscheme XG →֒ X is called the

fixed point subscheme of the given action of G.
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Chapter V. Isogenies.

In this chapter we define the notion of an isogeny, and we discuss some basic examples,

including the multiplication by an integer n 6= 0 and the relative Frobenius homomorphism in

characteristic p. As applications we obtain results about the group of n-torsion points on an

abelian variety. If the ground field has positive characteristic p this leads to the introduction of

an invariant, the p-rank of the abelian variety.

§1. Definition of an isogeny, and basic properties.

(5.1) Lemma. (i) Let X and Y be irreducible noetherian schemes which are both regular andFlatLem

with dim(X) = dim(Y ). Let f : X → Y be a quasi-finite morphism. Then f is flat.

(ii) Let f : X → Y be a morphism of finite type between noetherian schemes, with Y reduced

and irreducible. Then there is a non-empty open subset U ⊆ Y such that either f−1(U) = ∅ or

the restricted morphism f : f−1(U)→ U is flat.

A proof of (i) can be found in Altman-Kleiman [1], Chap. V, Cor. 3.6 or Matsumura [1],

Thm. 23.1. For (ii) we refer to Mumford [2], Lecture 8.

(5.2) Proposition. Let f : X → Y be a homomorphism of abelian varieties. Then the followingIsogProp

conditions are equivalent:

(a) f is surjective and dim(X) = dim(Y );

(b) Ker(f) is a finite group scheme and dim(X) = dim(Y );

(c) f is a finite, flat and surjective morphism.

Proof. We shall use that if h: Z1 → Z2 is a flat morphism of k-varieties and F ⊂ Z1 is the fibre

of h over a closed point of Z2 then F is equidimensional and

dim(Z1) = dim(Z2) + dim(F ) . (1)Isogs:dim

(This is a special case of HAG, Chap. III, Prop. 9.5.)

Let us first assume that (b) holds. As f is proper and all fibres are translates of Ker(f) it

follows that f is finite. Hence f(X) is closed in Y , of dimension equal to dim(X) = dim(Y ).

Hence f is surjective. Further, by (i) of the lemma, f is flat. This shows that (a) and (c) hold.

Next suppose that (a) holds. By (ii) of the lemma, f is flat over a non-empty open subset

U ⊆ Y . As all fibres of f are translates of Ker(f), (b) follows from (1). That (c) implies (b)

again readily follows from (1). �

By making use of the results about quotients that were discussed in the previous chapter,

we could do without Lemma (5.1). We leave such an alternative proof of the proposition to the

reader.

(5.3) Definition. A homomorphism f : X → Y of abelian varieties is called an isogeny if fIsogDef

satisfies the three equivalent conditions (a), (b) and (c) in (5.2). The degree of an isogeny f is

the degree of the function field extension [k(X): k(Y )]. (Note that we have a homomorphism

k(Y )→ k(X), since an isogeny is surjective.)

Isogs, 8 februari, 2012 (635)
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If f : X → Y is an isogeny then f induces an isomorphism X/Ker(f)
∼−→ Y . Because all

fibres of f are translates of Ker(f) the sheaf f∗OX is a locally free OY -module of finite rank.

Computing this rank at the generic point of Y , respectively the closed point 0 ∈ Y , gives

deg(f) = rankOY
(f∗OX) = rank

(
Ker(f)

)
.

(Here rank
(
Ker(f)

)
denotes the rank of the finite group scheme Ker(f).) If f : X → Y and

g: Y → Z are isogenies then so is g ◦f , and deg(g ◦f) = deg(g) · deg(f).

(5.4) Lemma. Let f : W → X and h: Y → Z be isogenies of abelian varieties over k. If g1,fghLem

g2: X → Y are homomorphisms such that h◦g1 ◦f = h◦g2 ◦f then g1 = g2.

Proof. We may assume that k = k. Suppose h◦g1 ◦f = h◦g2 ◦f . Because f is faithfully flat, it

is an epimorphism of schemes, so it follows that h◦g1 = h◦g2. Hence g1 − g2 maps X into the

finite group scheme Ker(h). As X is connected and reduced, g1 − g2 factors through Ker(h)0red,

which is trivial. �

(5.5) We recall the notion of a purely inseparable morphism (French: morphisme radiciel).PureInsep

In EGA Inew, Prop. 3.7.1 it is shown that the following conditions on a morphism of schemes

f : X → Y are equivalent:

(a) f is universally injective; this means that for every Y ′ → Y the morphism f ′: X ′ → Y ′

obtained from f by base change is injective;

(b) f is injective and for every x ∈ X the residue field k(x) is a purely inseparable extension

of k
(
f(x)

)
;

(c) for every field K, the map X(K)→ Y (K) induced by f is injective.

A morphism that satisfies these conditions is called a purely inseparable morphism.

(5.6) Proposition. Let f : X → Y be an isogeny.SepIsogProp

(i) The following conditions are equivalent.

(a) The function field k(X) is a separable field extension of k(Y );

(b) f is an étale morphism;

(c) Ker(f) is an étale group scheme.

(ii) The following conditions are equivalent.

(a) The function field k(X) is a purely inseparable field extension of k(Y );

(b) f is a purely inseparable morphism;

(c) Ker(f) is a connected group scheme.

Proof. (i) That (b) and (c) are equivalent is clear from (4.33). If f is étale then for every x ∈ X,

writing y = f(x) ∈ Y , the residue field k(x) is a finite separable extension of k(y). If we apply

this with x the generic point of X, we see that (b) implies (a).

Now assume that k(X) is a finite separable extension of k(Y ). As f is a finite flat morphism,

it is étale at a point x ∈ X if and only if (Ω1
X/Y )x = 0. But Ω1

X/Y is a coherent OX -module,

hence its support is closed, and it follows that the locus where f is étale is an open subset

U ⊂ X. The assumption that k(X) is finite separable over k(Y ) means that the generic point

of X is in U , so U is non-empty. As f is proper it follows that there is an open subset V ⊂ Y

such that f−1(V ) is étale over V . But V is the quotient of f−1(V ) under Ker(f), so it follows

from (4.33) that Ker(f) is étale.
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(ii) We can factor f as a composition of two isogenies: X → X/Ker(f)0 → Y . The kernel

of the second isogeny is Ker(f)/Ker(f)0, which is étale. (See also Prop. (4.45).) Using (i) it

follows that (a) implies (c).

That (b) implies (a) is immediate from property (b) in (5.5), applied to the generic point

of X.

Finally suppose that N := Ker(f) is a connected group scheme. Let k ⊂ K be a field

extension. Let A be the affine algebra of N and write AK = A ⊗k K. If y: Spec(K) → Y is

a K-valued point then the scheme-theoretic fibre f−1(y) := X ×Y,y Spec(K) is isomorphic to

NK = Spec(AK). As AK has finite K-dimension it is an artinian ring. Any artinian ring is

a product of artinian local rings; this corresponds to the decomposition of f−1(y) as a union

of connected components. But we know from (i) of (3.17) that NK is a connected scheme.

Hence AK is artinian local and |f−1(y)| consists of a single point. This shows that f satisfies

condition (c) of (5.5) and is therefore purely inseparable. �

(5.7) Definition. An isogeny f : X → Y is called separable if it satisfies the three equivalentSepIsogDef

conditions in (5.6)(i). It is called a (purely) inseparable isogeny if it satisfies the equivalent

conditions of (5.6)(ii).

(5.8) Corollary. Every isogeny f : X → Y can be factorized as f = h◦g, where g: X → Z isSepInsep

an inseparable isogeny and h: Z → Y is a separable isogeny. This factorization is unique up to

isomorphism, in the sense that if f = h′ ◦g′: X → Z ′ → Y is a second such factorization then

there is an isomorphism α: Z
∼−→ Z ′ with g′ = α◦g and h = h′ ◦α.

Proof. Immediate from the above and Prop. (4.45). �

An important example of an isogeny is the multiplication [n]X : X → X by an integer n 6= 0.

We write X[n] := Ker([n]X) ⊂ X.

(5.9) Proposition. For n 6= 0, the morphism [n]X is an isogeny. If g = dim(X), we haveMultByn

deg([n]X) = n2g. If (char(k), n) = 1 then [n]X is separable.

Proof. Choose an ample and symmetric line bundle L on X. (Recall that L is said to be

symmetric if (−1)∗L ∼= L, and note that if L is ample then L⊗(−1)∗L is ample and symmetric.)

By (2.12) we know that n∗XL
∼= L⊗n

2

. The restiction of n∗XL to Ker(f) is a trivial bundle which

is ample. (Here we use that n 6= 0.) This implies that Ker(f) is finite, hence [n]X is an isogeny.

To compute the degree we use intersection theory on smooth varieties. Choose an ample

symmetric divisor D. Then deg([n]X) · (D)g = ([n]∗XD)g. But [n]∗XD is linearly equivalent to

n2 ·D, so ([n]∗XD)g = n2g · (D)g, and we find that deg([n]X) = n2g.

If char(k) = 0 then the last assertion is trivial. If char(k) = p > 0 with p ∤ n then also

p ∤ n2g = rank(X[n]), and the result follows from Cor. (4.48). Alternatively, as p does not divide

n2g =
[
k(X1) : k(X2)

]
, the field extension k(X2) ⊂ k(X1) given by f is separable. �

(5.10) Corollary. If X is an abelian variety over an algebraically closed field k then X(k) is aDivisible

divisible group. That is, for every P ∈ X(k) and n ∈ Z\{0} there exists a point Q ∈ X(k) with

n ·Q = P .

Note that if the ground field k is only assumed to be separably closed then it is not true in

general that X(k) is a divisible group. See ?? for an example.

– 74 –



torsion

torsion

isogeny!equivalen

isogenous

complex

abelian

complex

lattice

exponential

torsion

(5.11) Corollary. If (char(k), n) = 1 then X[n](ks) = X[n](k) ∼= (Z/nZ)2g.X[n]Struct

Proof. We know that X[n] is an étale group scheme of rank n2g. Hence X[n](ks) = X[n](k) is

an abelian group of order n2g, killed by n. Further, for every divisor d of n the subgroup of

elements killed by d is just X[d](ks) and has order d2g. It now readily follows from the structure

theorem for finite abelian groups that we must have X[n](ks) ∼= (Z/nZ)2g. �

(5.12) Proposition. If f : X → Y is an isogeny of degree d then there exists an isogenyfg=d=gf

g: Y → X with g ◦f = [d]X and f ◦g = [d]Y .

Proof. If deg(f) = d then Ker(f) is a finite group scheme of rank d and is therefore annihilated

by multiplication by d; see Exercise (4.4). It follows that [d]X factors as

[d]X = (X
f−→ Y

g−→ X)

for some isogeny g: Y → X. Then g ◦ [d]Y = [d]X ◦g = (g ◦f)◦g = g ◦(f ◦g), and by Lemma (5.4)

it follows that f ◦g = [d]Y . �

(5.13) Corollary. The relationIsogEqRel

X ∼k Y
def
= there exists an isogeny f : X → Y

is an equivalence relation on the set of abelian varieties over k.

If there is no risk of confusion we shall use the notation X ∼ Y instead of X ∼k Y . Note,

however, that the ground field plays a role: if k ⊂ K is a field extension then X ∼k Y implies

that XK ∼K YK , but the converse does not hold in general.

If there exists an isogeny f : X → Y then we say that X and Y are isogenous. Again this

notion is relative to a given ground field; if necessary we may specify that X and Y are isogenous

over the given field k.

(5.14) Example. Suppose we work over the field C of complex numbers. If X is an abelianIsog/C

variety over C, the associated analytic manifold Xan is a complex torus; see also (1.11). So

we can write Xan = V/L, where V is a complex vector space and L ⊂ V is a lattice. More

intrinsically, V can be identified with the tangent space of Xan at the origin, and the projection

map V → X is then the exponential map in the sense of Lie theory. We shall come back to this

in more detail in Chapter ??.

Let X1 and X2 be complex abelian varieties; write Xan
i = Vi/Li. Let f : X1 → X2

be a homomorphism. It follows from the previous remarks that the associated analytic map

fan: Xan
1 → Xan

2 is given by a C-linear map ϕ: V1 → V2 such that ϕ(L1) ⊆ L2. Conversely, any

such ϕ gives an analytic map ϕ̄: Xan
1 → Xan

2 , and it can be shown (using a result of Chow, see

HAG, Appendix B, Thm. 2.2) that there exists a unique algebraic homomorphism f : X1 → X2

with ϕ̄ = fan.

As an example, multiplication by n on X corresponds to ϕ = n·idV , which obviously maps L

into itself. We find that the group of n-torsion points X[n](C) is isomorphic to n−1L/L ⊂ V/L,

and if g = dim(X) then indeed n−1L/L ∼= (Z/nZ)2g.
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As an application we find that X1 ∼ X2 if and only if there exists a C-linear isomorphism

α: V1
∼−→ V2 such that α(L1 ⊗Q) = L2 ⊗Q; in other words, there should exist positive integers

m and n with m · L2 ⊆ α(L1) ⊆ n−1 · L2.

§2. Frobenius and Verschiebung.

As the next example of an isogeny, we look at Frobenius in characteristic p > 0.

(5.15) Proposition. Let X be a g-dimensional abelian variety over a field k with char(k) =FrobIsog

p > 0. Then the relative Frobenius homomorphism FX/k: X → X(p) is a purely inseparable

isogeny of degree pg.

Proof. Write X[F ] := Ker(FX/k). On underlying topological spaces, the absolute Frobenius

FrobX : X → X is the identity. It follows that the topological space underlying X[F ] is the

singleton {e}. Let now U = Spec(A), with A = k[x1, . . . , xr]/(f1, . . . , fn), be an affine open

neigbourhood of e in X such that e corresponds to the maximal ideal m = (x1, . . . , xr) ⊂ A.

Write f
(p)
i ∈ k[x1, . . . , xr] for the polynomial obtained from fi by raising all coefficients to the pth

power. Then U (p) = Spec(A(p)), with A(p) = k[x1, . . . , xr]/(f
(p)
1 , . . . , f

(p)
n ), and FU/k: U → U (p),

the restriction of FX/k to U , is given on rings by

A = k[x1, . . . , xr]/(f1, . . . , fn)←− A(p) = k[x1, . . . , xr]/(f
(p)
1 , . . . , f (p)

n )

xpi ←−7 xi .

It follows that X[F ] = Spec(B), with B = k[x1, . . . , xr]/(x
p
1, . . . , x

p
r , f1, . . . , fn). In particular,

X[F ] is finite, hence FX/k is an isogeny.

Write Â for the m-adic completion of A. Without loss of generality we may assume that

x1, . . . , xg form a basis of m/m2 = T∨X,e. The structure theory for complete regular local rings

tells us that there is an isomorphism

k[[t1, . . . , tg]]
∼−→ Â

sending ti to xi. (See Bourbaki [2], Chap. VIII, § 5, no 2.) Since (xp1, . . . , x
p
r) ⊂ m, we find that

B = A/(xp1, . . . , x
p
r)A
∼= Â/(xp1, . . . , x

p
r)Â

∼= Â/(xp1, . . . , x
p
g)Â

∼= k[[t1, . . . , tg]]/(t
p
1, . . . , t

p
g)

∼= k[t1, . . . , tg]/(t
p
1, . . . , t

p
g) .

In particular this shows that deg(FX/k) = rank(X[F ]) = pg and that X[F ] is a connected group

scheme. �

Our next goal is to define the Verschiebung isogeny for abelian varieties in characteristic p.

In fact, under a suitable flatness assumption the Verschiebung can be defined for arbitrary

commutative group schemes over a basis S with char(S) = p; we shall give the construction in

this generality. First we need some preparations.
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(5.16) Let R be a ring with char(R) = p > 0. Let A be an R-algebra. Write T p(A) :=VerschPrep

A ⊗R ⊗R · · · ⊗R A for the p-fold tensor product of A over R. The symmetric group Sp on p

letters naturally acts on T p(A) by ring automorphisms. Write Sp(A) ⊂ T p(A) for the subalgebra

of Sp-invariants, i.e., the subalgebra of symmetric tensors.

Let N : T p(A)→ Sp(A) be the “symmetrizer” map, i.e., the map given by

N(a1 ⊗ · · · ⊗ ap) =
∑

σ∈Sp

aσ(1) ⊗ · · · ⊗ aσ(p) .

If s ∈ Sp(A) is a symmetric tensor and t ∈ T p(A) then N(st) = sN(t). It follows that J :=

N
(
T p(A)

)
is an ideal of Sp(A).

Write U := Spec(A)→ T := Spec(R). Applying Thm. (4.8) we find that the quotient Sp(U)

of UpT := U ×T U ×T · · · ×T U (p factors) under the natural action of Sp exists and is given by

Sp(U) = Spec
(
Sp(A)

)
. The scheme Sp(U) is called the p-th symmetric power of U over T . Note

that Sp(U/T ) would be a better notation, as the base scheme is important in the construction.

We trust, however, that the simpler notation Sp(U) will not cause any confusion. Let U [p/T ] →֒
Sp(U) be the closed subscheme defined by the ideal J . If η: T p(A) → A is the multiplication

map, given by a1 ⊗ · · · ⊗ ap 7→ a1 · · · ap, then η
(
N(a1 ⊗ · · · ⊗ ap)

)
= p! · (a1 · · · ap) = 0. This

means that the morphism

U
∆p

U/T−−−−→ UpT −→ Sp(U)

factors through U [p/T ] ⊂ Sp(U). Write F ′U/T : U → U [p/T ] for the morphism thus obtained.

Write A(p/R) := A ⊗R,F R, where F = FrobR: R → R is the Frobenius homomorphism,

given by r 7→ rp. We view A(p/R) as an R-algebra via r 7→ 1 ⊗ r; so for a ∈ A and r ∈ R we

have the relations rp · (a⊗ 1) = a⊗ rp = (ra)⊗ 1. By definition, U (p/T ) = Spec
(
A(p/R)

)
. Now

observe that we have a well-defined map

ϕA/R: A(p/R) → Sp(A)/J

sending a⊗ r ∈ A(p/R) to (ra⊗ a⊗ · · · ⊗ a) mod J . Note that (ra⊗ a⊗ · · · ⊗ a) is an element

of Sp(A) because all tensors are taken over the ring R. Also note that ϕA/R is well-defined

precisely because we use p-tensors. (Check this yourself!) Write ϕU/T : U [p/T ] → U (p/T ) for the

morphism of schemes induced by ϕA/R. It is clear from the definitions that FU/T = ϕU/T ◦F ′U/T .

We now globalize these constructions. For this, consider a base scheme S of characteristic p

and an S-scheme π: X → S. Define Sp(X), the pth symmetric power of X over S, to be the

quotient of Xp
S under the natural action of Sp. If U ⊂ X and T ⊂ S are affine open subsets with

π(U) ⊆ T then Sp(U) is an affine open subset of Sp(X). The closed subschemes U [p/T ] →֒ Sp(U)

glue to a locally closed subscheme X [p/S] →֒ Sp(X). Also, the morphisms F ′U/T and ϕU/T glue

and give a factorization of the relative Frobenius morphism FX/S as

FX/S = (X
F ′

X/S−−−−→ X [p/S] ϕX/S−−−−→ X(p/S)) .

By construction, the composition of F ′X/S and the inclusion X [p/S] →֒ Sp(X) is the same as the

composition of the diagonal ∆p
X/S: X → Xp

S and the natural projection Xp
S → Sp(X). Summing
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up, we have a commutative diagram

X Xp
S

X [p/S] Sp(X)

X(p/S)

∆X/S−−−−→
yF ′

X/S

yϕX/S

y

−֒→FX/S

(5.17) Lemma. (i) The construction of X [p/S], as well as the formation of F ′X/S and ϕX/S , isVerschLem

functorial in X and compatible with flat base change T → S.

(ii) If X is flat over S then ϕX/S : X [p/S] → X(p/S) is an isomorphism of S-schemes.

Proof. Part (i) of the lemma is a straightforward verification. For (ii), it suffices to treat the

case that X = U = Spec(A) and S = T = Spec(R). Let M be an R-module. Just as before we

can form the p-fold tensor product T p(M) of M over R and the submodule Sp(M) ⊂ T p(M) of

symmetric tensors, and there is a symmetrizer mapN : T p(M)→ Sp(M). We have a well-defined

map

ϕM/R: M (p/R) −→ Sp(M)/N
(
T p(M)

)
given by m⊗ r 7→ [rm⊗m⊗ · · · ⊗m] .

Suppose M is a free R-module with a basis {ei}i∈I . The tensors ei := ei1 ⊗ ei2 ⊗ · · · ⊗ eip with

i = (i1, . . . , ip) ∈ Ip, form a basis of T p(M). Such a tensor ei can be symmetrized in a minimal

way. Namely, if H ⊂ Sp is the stabilizer of (i1, . . . , ip) in the natural action of Sp on Ip then

for σ̄ ∈ H\Sp the element eiσ̄(1)
⊗ eiσ̄(2)

⊗ · · · ⊗ eiσ̄(p)
is well-defined; now set

si :=
∑

σ̄∈H\Sp

eiσ̄(1)
⊗ eiσ̄(2)

⊗ · · · ⊗ eiσ̄(p)
.

The symmetric tensors si obtained in this way span Sp(M); note however that different se-

quences i may give the same tensor si. If i1 = i2 = · · · = ip then N(ei) = p! · si = 0; if not all

ij are equal then N(ei) is a unit times si. (Recall that R is an Fp-algebra.) We conclude that

the tensors ei ⊗ ei ⊗ · · · ⊗ ei form a basis of Sp(M)/N
(
T p(M)

)
, and it follows that ϕM/R is an

isomorphism if M is free over R.

Now we use a non-trivial result from commutative algebra. Namely, if M is flat over R

then it can be written as a filtered direct limit, say M = lim
−→

Mα, of free R-modules. For a proof

see [??]. Since lim
−→

is right exact and commutes with tensor products, ϕM/R can be identified

with lim
−→

ϕMα/R and is therefore again an isomorphism. Applying this to M = A the lemma

follows. �

We now consider a commutative S-group scheme G. The morphism m(p): GpS → G given

on sections by (g1, g2, . . . , gp) 7→ g1g2 · · · gp factors through Sp(G), say via m̄(p): Sp(G)→ G. It

follows that [p]: G→ G, which is equal to m(p)
◦∆p

G/S, factors as

[p] =
(
G

F ′
G/S−−−−→ G[p/S] −֒→ Sp(G)

m̄(p)

−−−→ G) . (2)Isogs:[p]
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(5.18) Definition. If G is a commutative flat group scheme over a basis S of characteristic pVerschDef

then we define the Verschiebung homomorphism

VG/S : G(p/S) −→ G

to be the composition

VG/S =
(
G(p/S)

ϕ−1
G/S−−−−→ G[p/S] −֒→ Sp(G)

m̄(p)

−−−→ G
)
.

That VG/S is indeed a homomorphism of group schemes follows from (i) of the lemma.

(5.19) Proposition. Let S be a scheme with char(S) = p > 0. Let G be a flat S-group scheme.VerschProp

(i) We have VG/S ◦FG/S = [p]G: G −→ G.

(ii) If G is finite locally free over S then the Verschiebung is Cartier dual to the Frobenius

homomorphism; more precisely, we have (VG/S)D = FGD/S and VG/S = (FGD/S)D.

Proof. Statement (i) follows from the definitions; indeed, if we write j: G[p/S] −֒→ Sp(G) for the

inclusion morphism then

VG/S ◦FG/S = (m̄(p)
◦j ◦ϕ−1

G/S)◦(ϕG/S ◦F ′G/S) = m̄(p)
◦j ◦F ′G/S = [p]G

by (2).

For (ii), suppose G is finite locally free over S. Without loss of generality we may assume

that S = Spec(R) is affine, so that G is given by an R-algebra A. Possibly after further

localization on S we may assume that A is free as a module over R, say with basis {e1, . . . , en}.
Recall from the proof of Lemma (5.17) that given a sequence i = (i1, i2, . . . , ip) ∈ {1, 2, . . . , n}p,
we can symmetrize the tensor ei1 ⊗ ei2 ⊗ · · · ⊗ eip in a minimal way. The resulting collection of

tensors

{si}16i16i26···6ip6n

is a basis of Sp(A). It follows from the proof of Lemma (5.17) that the Verschiebung VG/S is

given on rings by the composition

A
m̄(p)

−−−→ Sp(A) −→ A(p/R) ,

where m̄(p) is the homomorphism that corresponds to the morphism m̄(p): Sp(G) → G, and

where the homomorphism Sp(A)→ A(p/R) is given by

si 7→
{

0, if ij < ij+1 for some j;

ei ⊗ 1 if i = (i, i, . . . , i).
.

Now we apply the functor ( )D = HomR(−, R). We have an isomorphism

(
AD
)(p/R) ∼−→

(
A(p/R)

)D

by sending ϕ ⊗ ρ ∈ AD ⊗R,F R to the map a ⊗ r 7→ rρϕ(a)p. Further there is a canonical

isomorphism
(
Sp(A)

)
D ∼= Symp(AD); here we note that by our general conventions in (??),

Symp(AD) is a quotient of the p-fold tensor product T p(AD), whereas Sp(A) is a sub-algebra
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torsion

p-rank@

isogenous

of T p(A). Using these identifications, and writing {ε1, . . . , εn} for the R-basis of AD dual to

{e1, . . . , en}, the dual of the map Sp(A)→ A(p/R) is the map

(
AD
)(p/R) −→ Symp(AD) given by εi ⊗ ρ 7→ [ρεi ⊗ εi ⊗ · · · ⊗ εi] .

Furthermore, by definition of the ring structure on AD, the dual of the map m̄(p): A → Sp(A)

is the multiplication map Symp(AD) → AD given by [ϕ1 ⊗ · · · ⊗ ϕp] 7→ ϕ1 · · ·ϕp. Combining

this we see that the Cartier dual of VG/S is given on rings by the map

(
AD
)(p/R) → A sending ϕ⊗ r to r · ϕp .

This shows that (VG/S)D = FGD/S . By Cartier duality then also VG/S = (FGD/S)D. �

Now we apply this to abelian varieties.

(5.20) Proposition. Let X be an abelian variety over a field k with char(k) = p. Then theVerschAV

Verschiebung homomorphism VX/k: X
(p) → X is an isogeny of degree pg. We have VX/k ◦FX/k =

[p]X and FX/k ◦VX/k = [p]X(p) .

Proof. Write F = FX/k and V = VX/k. We have already seen that V ◦F = [p]X . It follows that

V satisfies (a) of Proposition (5.2); hence it is an isogeny. That V has degree pg follows from

the relation p2g = deg
(
[p]
)

= deg(V ) · deg(F ) = deg(V ) · pg. Finally, F ◦V ◦F = F ◦ [p] = [p]◦F ,

and because F is an epimorphism this implies that F ◦V = [p]. �

(5.21) Let X be a k-scheme, where k is a field of characteristic p. For m > 1 we write X(pm)FVIterates

for the base change of X over the mth power Frobenius homomorphism Frobmk : k → k. By a

slight abuse of notation we write

FmX/k = FX(pm−1)/k
◦ · · · ◦FX(p)/k ◦FX/k: X → X(p) → X(p2) → · · · → X(pm)

for the “mth power” of Frobenius, or “iterated Frobenius”. Similarly, we can define an “mth

iterated Verschiebung” V mX/k: X
(pm) → X by

V mX/k = VX/k ◦VX(p)/k ◦ · · · ◦VX(pm−1)/k .

By an easy induction on m we find that [pm]X = V mX/k ◦FmX/k and [pm]X(pm) = FmX/k ◦V mX/k.

Indeed, for m = 1 this is just Proposition (5.20), and to make the induction we note that

V m+1
X/k

◦Fm+1
X/k = VX/k ◦V mX(p)/k

◦FmX(p)/k
◦FX/k

= VX/k ◦ [pm]X(p) ◦FX/k

= [pm]X ◦VX/k ◦FX/k = [pm+1]X .

(Likewise for the relation [pm]X(pm) = FmX/k ◦V mX/k.)

Let us now look what is the analogue of (5.11) in case char(k) | n. In fact, since all X[n](k)

are finite abelian, it suffices to consider the case that n = pm, where p = char(k) > 0.

(5.22) Proposition. Suppose char(k) = p > 0. There is an integer f = f(X), withX[pm]Struct

0 6 f 6 g = dim(X), such that X[pm](k) ∼= (Z/pmZ)f for all m > 0. If Y is isogenous to X

then f(Y ) = f(X).
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Proof. We can factor pm: X → X as

[pm]X =

(
X

Fm
X/k−−−−→ X(pm) h1−−→ Y

h2−−→ X

)
,

where h1 ◦FmX/k is purely inseparable and h2 is a separable isogeny. Looking at the degrees we

find that X[pm](k) is an abelian group of rank deg(h2) = pd(m), where d(m) is an integer with

0 6 d(m) 6 gm. Write f = d(1), so that X[p](k) ∼= (Z/pZ)f . It follows from Corollary (5.10)

that we have exact sequences of (abstract) groups

0 −→ X[pm−1](k) −→ X[pm](k)
pm−1

−−−−→ X[p](k) −→ 0 .

The claim that X[pm](k) ∼= (Z/pmZ)f for all m > 0 follows by induction on m.

Finally, suppose h: X → Y is an isogeny, say of degree d. Then X[pm](k) maps to Y [pm](k),

and the kernel has order at most d. Taking m large enough, it follows that f(Y ) > f(X). As

X ∼ Y is a symmetric relation, we conclude that f(X) = f(Y ). �

(5.23) Definition. The integer f = f(X), which lies in the range 0 6 f 6 g := dim(X), ispRankDef

called the p-rank of X.

(5.24) Caution. Let X be an abelian variety of p-rank f > 0 over a non-perfect field k, andpRankCaution

let k ⊂ ks ⊂ k be respectively a separable closure and an algebraic closure of k. Then we have

natural injective maps X[pm](ks) → X[pm](k), but these are not, in general, isomorphisms. In

other words, in order to see all pmf distinct physical points of order pm, in general we need an

inseparable extension of the ground field.

At first sight this may seem to contradict the fact that an étale k-group scheme becomes

constant over ks. For instance, taking m = 1 we have a short exact sequence of k-group schemes

1 −→ X[p]loc −→ X[p] −→ X[p]ét −→ 1 ,

(see Prop. (4.45)) and X[p]ét ⊗k ks is isomorphic to (Z/pZ)f . However, in order to split the

exact sequence, and hence to be able to lift the points of X[p]ét to points of X[p], we in general

need to pass to an inseparable extension. See also the examples in (5.26) and (5.27) below for

a concrete illustration of this point.

(5.25) Remarks. (i) The p-rank does not depend on the ground field. More precisely, if k ⊂ KprkEllC

is a field extension and X is an abelian variety over k then f(X) = f(XK). To see this we may

assume that k and K are both algebraically closed. By (4.45) the group scheme X[p] is a product

of its local and étale parts, i.e., X[p] ∼= X[p]loc × X[p]ét. Over k = k the étale part becomes

a constant group scheme, i.e., X[p]ét = Γk with Γ = X[p](k). But after extension of scalars

to K the local and étale parts of X[p] remain local and étale, respectively; see ??. Therefore

X[p](K) = Γk(K) = Γ, so indeed f(X) = f(XK).

(ii) Later we shall prove that the p-rank may take any value between 0 and dim(X): given

a field k with char(k) = p > 0 and integers 0 6 f 6 g, there exists an abelian variety X over k

with dim(X) = g and f(X) = f . In fact, as clearly f(X1 ×X2) = f(X1) + f(X2), it suffices to

show that there exist elliptic curves X0 and X1 over k with f(Xi) = i.

(iii) An elliptic curve X is said to be ordinary if f(X) = 1 and supersingular if f(X) = 0.

In the examples below we shall use this terminology. In Chapter ??, we shall define the notions
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“ordinary” and “supersingular” for abelian varieties of arbitrary dimension. It should be noted

that for dim(X) > 2, “supersingular” is not equivalent to “p-rank = 0”.

(5.26) Example. Let X be an elliptic curve over a field k with char(k) = 2. Then X can beFEllCExa

given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , (3)Isogs:Weier

such that the origin is the “point at infinity” ∞ = (0 : 1 : 0). A point P ∈ X(k) with affine

coordinates (ξ, η) is a 2-torsion point precisely if the tangent line at P passes through ∞. An

easy calculation shows that this happens if and only if a1ξ + a3 = 0. We cannot have a1 = a3,

because X then would be singular. We conclude:

f(X) =

{
0 if a1 = 0;

1 if a1 6= 0.

It should be noted that if a1 = 0 and k = k then there is a linear change of coordinates

such that the equation for X becomes y2 + y = x3. So, up to isomorphism this is the only

supersingular elliptic curve in characteristic 2 (over k = k).

In the ordinary case, a1 6= 0, we find that the non-trivial point of order 2 in X(k) is the

point with affine coordinates (a3/a1, η), where η ∈ k satisfies

η2 = (a3/a1)
3 + a2(a3/a1)

2 + a4(a3/a1) + a6 .

In particular, we see illustrated here the point made in (5.24) that in general we need to pass

to an inseparable extension of the ground field in order to have all p-torsion points rational.

(5.27) Example. Let X be an elliptic curve given by a Weierstrass equation (3), this time overFEllCExaB

a field k with char(k) = 3. Then P ∈ X(k) \ {0} is a 3-torsion point if and only if P is a flex

point, i.e., a point at which the tangent line TX,P intersects X with multiplicity 3. (As X is

a nonsingular cubic curve the intersection multiplicity cannot be bigger.) Again this allows to

compute the p-rank by hand. To simplify, let us assume that a1 = a3 = 0; this is achieved after

a linear change of variables. Then P = (ξ, η) ∈ X(k) is a flex point if and only if

4a2η
2 = 4a2

2ξ
2 + 4a2a4ξ + a2

4 . (4)Isogs:Flex

Combined with the equation for X this is equivalent to

4a2ξ
3 + (4a2a6 − a2

4) = 0 . (5)Isogs:Flex2

As X is nonsingular we cannot have a2 = a4 = 0. Hence

X is ordinary
def⇐⇒ X[3](k) ∼= Z/3Z ⇐⇒ a2 6= 0 .

Note that if a2 6= 0 then (5) has a unique solution for ξ ∈ k, and if ±η are the corresponding

solutions of (5.27.1) then (ξ,±η) are the only two non-trivial 3-torsion points in X(k). So

indeed X[3](k) ∼= Z/3Z and f = 1. Further note that solving (4) in general requires passing to

an inseparable extension of k.
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(5.28) Example. Let k be a field of characteristic 2. Consider the elliptic curve X ⊂ P2
k givenIsogExa

by the homogeneous equation x2
1x2 +x1x

2
2 = x3

0, with ∞ = (0 : 1 : 0) as origin. As we have seen

above, X is supersingular, which for an elliptic curve is the same as saying that X has p-rank

zero.

Recall that the group scheme α2 = α2,k is given by α2 = Spec
(
k[ε]/(ε2)

)
, with co-

multiplication ε 7→ ε ⊗ 1 + 1 ⊗ ε. We are going to give an action ρ: α2 × X → X of α2

on X. For this, write X as the union of two affine open subsets: X = U1 ∪ U2, with

U1 = X \ {(0 : 1 : 0)} = Spec
(
k[x, y]/(x3 − y2 − y)

)

and

U2 = X \ {(0 : 0 : 1)} = Spec
(
k[x, z]/(x3 − z2 − z)

)
.

Now we can give the action ρ on rings: let ρ1: α2 × U1 → U1 be given by the homomorphism

k[x, y]/(x3 − y2 − y) −→ k[x, y, ε]/(x3 − y2 − y, ε2) with x 7→ x+ ε , y 7→ y + εx2 ,

and, similarly, let ρ2: α2 × U2 → U2 be given on rings by x 7→ x+ ε and z 7→ z + εx2. It is not

hard to verify that these homomorphisms are well-defined, that ρ1 and ρ2 agree on U1∩U2, and

that the resulting morphism ρ is indeed a group scheme action. Note that the points (0 : 1 : 0)

and (0 : 0 : 1) are α2-stable when viewed as points in the underlying topological space |X|, but

that they are not fixed points of the action. In fact, the action is strictly free.

On U1 the functions ξ := x2 and η := y2 are α2-invariant. They generate a subring of

O(U1) of index 2; as the functions x and y themselves are clearly not invariant we conclude that

O(U1)
α2 ∼= k[ξ, η]/(ξ3 − η2 − η) −֒→ O(U1) = k[x, y]/(x3 − y2 − y) .

Similarly, the algebra of α2-invariants in O(U2) is generated by x2 and z2. We find that the

quotient α2\X is isomorphic to X itself, where the quotient map X → X is just the Frobenius

endomorpism, given on points by (x, y) 7→ (x2, y2).

It can be shown that there is an isomorphism X[F ] ∼= α2 such that the action ρ described

above becomes precisely the action of X[F ] on X by translations. As Exercise (??) shows,

this does not immediately follow from the fact that the quotient map for the α2-action is the

Frobenius morphism. Note that from the given definition of the action ρ it is not clear that this

is an action of a subgroup scheme by translations. We shall return to this later; see (??).

(5.29) Example. Let X be an elliptic curve over a field k with char(k) = p, such that X[F ] ∼=IsogsParam

αp,k. It is not hard to verify that k
∼−→ Endk(αp,k), where the map sends λ ∈ k to the

endomorphism of αp,k = Spec
(
k[t]/(tp)

)
given on rings by t 7→ λ · t. For (λ, µ) ∈ A2(k) we

obtain an embedding ϕ(λ,µ): αp,k →֒ X ×X by taking the composition

αp,k
(λ,µ)−−−→ αp,k × αp,k ∼= X[F ]×X[F ] ⊂ X ×X .

The image of ϕ(λ,µ) only depends on (λ : µ) ∈ P1(k). (� : �)�p � �p
Figure ??.
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We get a family of abelian surfaces over P1 by considering Y(λ:µ) := (X ×X)/ϕ(λ,µ)(αp). It can

be shown that given (λ0 : µ0) ∈ P1(k), there are only finitely many (λ : µ) with Y(λ:µ)
∼= Y(λ0:µ0).

The conclusion is that we have a non-trivial “continuous” family of isogenies X ×X → Y(λ:µ).

As we shall see later, such examples only exist in characteristic p > 0.

§3. Density of torsion points.

(5.30) Theorem. Let X be an abelian variety over a field k and let p be a prime number.TorsionDense

Then the collection of subschemes X[pm] for m > 0 is scheme-theoretically dense in X.

Let im: X[pm] →֒ X be the inclusion homomorphism. By definition, saying that the col-

lection of subschemes X[pm] ⊂ X is scheme-theoretically dense in X means that there does not

exist a proper closed subscheme Y ( X such that all im factor through Y . If p 6= char(k) we can

express the density of the torsion points of p-power order in a more elementary way. Namely, in

that case the following statements hold, as we shall see in the proof.

(1) Topological density: the union of the subspaces
∣∣X[pm]

∣∣ ⊂ |X| is dense in |X|;
(2) Function-theoretic density: the homomorphism of sheaves OX →

∏
m>0 OX[pm] that is

induced by the homomorphisms im is injective.

Because X is reduced, properties (1) and (2) are equivalent, and (1) immediately implies that

the collection of subschemes X[pn] is scheme-theoretically dense in X.

By contrast, if p = char(k) then (1) and (2) do not hold, in general. Indeed, if the p-

rank of X is zero then the group schemes X[pm] are local, which means that the underlying

topological space is reduced to the single point 0. So in this case we can only interprete the

density statement scheme-theoretically.

Proof. We give separate proofs for the cases p = char(k) and p 6= char(k).

First assume that p 6= char(k). It suffices to prove the assertion for k = k, which from now

on we assume. In this case we know that X[pm] is étale and consists of p2gm distinct closed

points. Let T ⊂ X(k) be the union of all X[pm](k), and let Y ⊂ X be the smallest closed

subscheme such that all im factor through Y . Note that Y is reduced; it is in fact just the

reduced closed subscheme of X whose underlying space is the Zariski closure of T . We shall first

prove that Y is a subgroup scheme of X.

If x ∈ T then the translation tx: X → X maps T into itself; hence tx(Y ) ⊆ Y . This holds

for all x ∈ T , so it follows that for all y ∈ Y (k) also the translation ty maps T into itself, and

hence ty(Y ) ⊂ Y . Because Y and Y ×k Y are reduced, this implies that under the group law

m: X ×X → X we have m(Y × Y ) ⊂ Y . As further it is clear that also Y is mapped into itself

under the inverse ι: X → X, we conclude that Y is indeed a subgroup scheme of X.

The identity component Y 0 is an abelian subvariety of X. Let N be the number of con-

nected components of Y . Further, let g = dim(X) and h = dim(Y 0). By Prop. (5.9) we have

#Y 0[pm](k) = p2mh for all m > 0, and it follows that #Y [pm](k) 6 N · p2mh. (If W ⊂ Y is a

connected component that contains a torsion point w with pm ·w = 0 then translation by w gives

an isomorphism Y 0[pm]
∼−→ W ∩ X[pm].) But by construction, Y contains all torsion points

of X of p-power order; so #Y [pm](k) = p2mg. Taking m very large we see that we must have

h = g, which gives that Y 0 = X.

Next we deal with the case p = char(k). Let Fm = FmX/k: X → X(pm) be the mth power
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of the Frobenius homomorphism, and let X[Fm] ⊂ X be the kernel. Because [pm] = V m ◦Fm

(with V m = V mX/k the iterated Verschiebung; see (5.21)) we have X[Fm] ⊂ X[pm]. So we are

done if we can prove that the collection of group schemes X[Fm] is scheme-theoretically dense

in X. As in the proof of Prop. (5.15), let U = Spec(A) with A = k[x1, . . . , xr]/(f1, . . . , fn) be an

affine open neigbourhood of the origin e in X such that e corresponds to the maximal ideal m =

(x1, . . . , xr) ⊂ A. Write f
(pm)
i ∈ k[x1, . . . , xr] for the polynomial obtained from fi by raising all

coefficients to the power pm, and write A(pm) = k[x1, . . . , xr]/(f
(pm)
1 , . . . , f

(pm)
n ). The restriction

of Fm to U is given on rings by the homomorphism A(pm) → A that sends xj to xp
m

j . It follows

that X[Fm] is the closed subscheme of U defined by the ideal (xp
m

1 , . . . , xp
m

r , f1, . . . , fn) ⊂ A.

Suppose Y ⊂ X is a closed subscheme such that all inclusion homomorphisms X[Fm] →֒ X

factor through Y . Let J ⊂ A be the ideal of Y ∩ U . As in the proof of Prop. (5.15), let Â

be the m-adic completion of A and choose the coordinates xi in such a way that x1, . . . , xg
(with g = dim(X)) form a basis of m/m2. We then have an isomorphism k[[t1, . . . , tg]]

∼−→ Â

via ti 7→ xi, and we shall identify Â with k[[t1, . . . , tg]] via this isomorphism. The assumption

that X[Fm] is a subscheme of Y means that JÂ is contained in the ideal (tp
m

1 , . . . , tp
m

g ). The

intersection of the ideals (tp
m

1 , . . . , tp
m

g ) ⊂ Â for all m > 0 is the zero ideal, so we conclude

that JÂ = (0). But then the complete local ring ÔY,e = Â/JÂ of Y at the origin has Krull

dimension g, and consequently Y = X. �

We now prove the fact stated in Remark (2.14) that the results in (2.13) are true over an

arbitrary, not necessarily perfect, ground field.

(5.31) Proposition. Let X be an abelian variety over a field k. If Y →֒ X is a closed subgroupPfAVsubvarFact

scheme then the connected component Y 0 ⊂ Y that contains the origin is an open and closed

subgroup scheme of Y that is geometrically irreducible. The reduced underlying scheme Y 0
red →֒

X is an abelian subvariety of X.

Proof. The assertion that Y 0 is open and closed in Y and is geometrically irreducible, was proven

in Prop. (3.17). To prove that Y 0
red is an abelian subvariety of X we may assume, to simplify

notation, that Y = Y 0. We are going to prove that Yred is geometrically reduced. Before we

give the argument, let us explain how the desired conclusion follows. If Yred is geometrically

reduced then we have, with k ⊂ k an algebraic closure, that Yred,k = (Yk)red is a closed subgroup

scheme of Yk; see Exercise (3.2). But then also Yred is a closed subgroup scheme of Y . Indeed,

the assertion that Yred is a subgroup scheme just means that the morphism Yred × Yred → Y

given on points by (y1, y2) 7→ y1 − y2 factors through Yred ⊂ Y . If this holds after extension of

scalars to k then it also holds over k. So the conclusion is that Yred is a subgroup scheme of X

that is geometrically integral; hence it is an abelian subvariety.

We now prove that Yred is geometrically reduced. If char(k) = 0 then Y = Yred by

Thm. (3.20) and we are done by Prop. (3.17). Assume then that char(k) = p > 0. For all positive

integers n with p ∤ n the subgroup scheme Y [n] ⊂ Y is étale; hence we have Y [n] ⊂ Yred ⊂ Y .

This gives us a homomorphism of sheaves hn: OYred
→ OY [n] on |Yred| = |Y |, and we define

h: OYred
→
∏

p∤n

OY [n]

by h(f) =
∏
n hn(f). Further we know that (Yk)red ⊂ Xk is an abelian subvariety. By

Thm. (5.30) the collection of Y [n]k, for n > 1 with p ∤ n, is topologically dense in |Yk| = |(Yk)red|.
This implies that also the collection of all Y [n] is topologically dense in |Y | = |Yred|, and because

Yred is reduced, the homomorphism h is injective.
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Suppose that Yred is not geometrically reduced. Then there is a finite, purely inseparable

field extension k ⊂ K such that (Yred)K is not reduced. (See EGA IV, Prop. 4.6.1.) As

k ⊂ K is purely inseparable, we have |(Yred)K | = |Yred| and |Y [n]K | = |Y [n]| for all n. The

structure sheaves of (Yred)K and Y [n]K are just OYred
⊗k K and OY [n] ⊗k K, respectively, and

the homomorphism

h⊗ id: OYred
⊗k K →

(∏

p∤n

OY [n]

)
⊗k K

can be identified with the map

hK : O(Yred)K
→
∏

p∤n

OY [n]K

induced by the inclusions Y [n]K →֒ (Yred)K . By our assumptions, (Yred)K is not reduced,

whereas all Y [n]K are reduced schemes. Hence h⊗ id = hK must have a non-trivial kernel. But

then also h has a non-trivial kernel (k ⊂ K being faithfully flat), which contradicts our earlier

conclusion that it is injective. �

Exercises.

(5.1) Let f : X → Y be a surjective homomorphism of abelian varieties. Show that f is flat.Ex:surjfflat

(5.2) Let k = Fp. By definition, αp is a subgroup scheme of Ga, so that we get a naturalEx:SameQuot

action ρ: αp × Ga → Ga. Similarly, µp is a subgroup scheme of Gm, which gives an action

σ: µp ×Gm → Gm.

(i) Identify Gm with the open subscheme of Ga given by x 6= 0. Show that the action ρ restricts

to a free action ρ′ of αp on Gm, and that the Frobenius endomorphism F : Gm → Gm, given

on points by x 7→ xp, is a quotient morphism for ρ′.

(ii) Conclude that σ and ρ′ give rise to the same quotient morphism, even though αp 6∼= µp.
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Chapter VI. The Picard scheme of an abelian variety.

§1. Relative Picard functors.

To place the notion of a dual abelian variety in its context, we start with a short discussion of

relative Picard functors. Our goal is to sketch some general facts, without much discussion of

proofs.

Given a scheme X we write

Pic(X) = H1(X,O∗X ) = {isomorphism classes of line bundles on X} ,

which has a natural group structure. (If τ is either the Zariski, or the étale, or the fppf topology

on Sch/X then we can also write Pic(X) = H1
τ (X,Gm), viewing the group scheme Gm = Gm,X

as a τ -sheaf on Sch/X ; see Exercise ??.)

If C is a complete non-singular curve over an algebraically closed field k then its Jacobian

Jac(C) is an abelian variety parametrizing the degree zero divisor classes on C or, what is the

same, the degree zero line bundles on C. (We refer to Chapter 14 for further discussion of

Jacobians.) Thus, for every k ⊂ K the degree map gives a homomorphism Pic(CK) → Z, and

we have an exact sequence

0 −→ Jac(C)(K) −→ Pic(CK) −→ Z −→ 0 .

In view of the importance of the Jacobian in the theory of curves one may ask if, more generally,

the line bundles on a variety X are parametrized by a scheme which is an extension of a discrete

part by a connected group variety.

If we want to study this in the general setting of a scheme f : X → S over some basis S, we

are led to consider the contravariant functor PX/S : (Sch/S)0 → Ab given by

PX/S : T 7→ Pic(XT ) = H1(X ×S T,Gm) .

However, one easily finds that this functor is not representable (unless X = ∅.). The reason

for this is the following. Suppose {Uα}α∈A is a Zariski covering of S and L is a line bundle

on X such that the restrictions L|X×SUα
are trivial. Then it is not necessarily the case that

L is trivial. This means that PX/S is not a sheaf for the Zariski topology on Sch/S , hence not

representable. (See also Exercise (6.1).)

The previous arguments suggest that in order to arrive at a functor that could be repre-

sentable we should first sheafify (or “localize”) PX/S with respect to some topology.

(6.1) Definition. The relative Picard functor PicX/S: (Sch/S)0 → Ab is defined to be the fppfRelPicDef

sheaf (on (S)FPPF) associated to the presheaf PX/S . An S-scheme representing PicX/S (if such

a scheme exists) is called the relative Picard scheme of X over S.

Concretely, if T is an S-scheme then we can describe an element of PicX/S(T ) by giving an

fppf covering T ′ → T and a line bundle L on XT ×T T ′ such that the two pull-backs of L to

XT ×T (T ′×T T ′) are isomorphic. Now suppose we have a second datum of this type, say an fppf

DualAV1, 8 februari, 2012 (635)
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covering U ′ → T and a line bundle M on XT ×T U ′ whose two pull-backs to XT ×T (U ′ ×T U ′)
are isomorphic. Then (T ′ → T,L) and (U ′ → T,M) define the same element of PicX/S(T )

if there is a common refinement of the coverings T ′ and U ′ over which the bundles L and M

become isomorphic.

As usual, if PicX/S is representable then the representing scheme is unique up to S-

isomorphism; this justifies calling it the Picard scheme.

(6.2) Let us study PicX/S in some more detail in the situation thatRigLineB

(∗)





the structure morphism f : X → S is quasi-compact and quasi-separated,

f∗(OX×ST ) = OT for all S-schemes T ,

f has a section ε: S → X.

For instance, this holds if S is the spectrum of a field k and X is a complete k-variety with

X(k) 6= ∅ (see also Exercise ??); this is the case we shall mostly be interested in.

Rather than sheafifying PX/S we may also rigidify the objects we are trying to classify.

This is done as follows. If L is a line bundle on XT for some S-scheme T then, writing εT : T →
XT for the section induced by ε, by a rigidification of L along εT we mean an isomorphism

α: OT
∼−→ ε∗TL. (In the sequel we shall usually simply write ε for εT .)

Let (L1, α1) and (L2, α2) be line bundles on XT with rigidification along ε. By a homomor-

phism h: (L1, α1) → (L2, α2) we mean a homomorphism of line bundles h: L1 → L2 with the

property that (ε∗h)◦α1 = α2. In particular, an endomorphism of (L,α) is given by an element

h ∈ Γ(XT , OXT
) = Γ

(
T, f∗(OXT

)
)

with ε∗(h) = 1. By the assumption that f∗(OXT
) = OT we

therefore find that rigidified line bundles on XT have no nontrivial automorphisms.

Now define the functor PX/S,ε: (Sch/S)0 → Ab by

PX/S,ε: T 7→
{

isomorphism classes of rigidified

line bundles (L,α) on X ×S T

}
,

with group structure given by

(L,α) · (M,β) = (L⊗M,γ) ,

γ = α⊗ β: OT = OT ⊗
OT

OT → ε∗L ⊗
OT

ε∗M = ε∗(L⊗M) .

If h: T ′ → T is a morphism of S-schemes and (L,α) is a rigidified line bundle on X ×S T then

PX/S,ε(h): PX/S,ε(T )→ PX/S,ε(T
′) sends (L,α) to (L′, α′), where L′ = (idX × h)∗L and where

α′: OT ′
∼−→ ε∗T ′L′ = h∗

(
ε∗TL

)
is the pull-back of α under h.

Suppose PX/S,ε is representable by an S-scheme. On X×S PX/S,ε we then have a universal

rigidified line bundle (P, ν); it is called the Poincaré bundle. The universal property of (P, ν)

is the following: if (L,α) is a line bundle on X ×S T with rigidification along the section ε then

there exists a unique morphism g: T → PX/S,ε such that (L,α) ∼= (idX × g)∗(P, ν) as rigidified

bundles on XT .

Under the assumptions (∗) on f it is not so difficult to prove the following facts. (See for

example BLR, § 8.1 for details.)

(i) For every S-scheme T there is a short exact sequence

0 −→ Pic(T )
pr∗T−−−→ Pic(XT ) −→ PicX/S(T ) . (1)DualAV1:exseq1
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This can be viewed as a short exact sequence obtained from a Leray spectral sequence. The

existence of a section is not needed for this.

(ii) For every S-scheme T , we have an isomorphism

Pic(XT )/pr∗TPic(T )
∼−→ PX/S,ε(T )

obtained by sending the class of a line bundle L on XT to the bundle L ⊗ f∗ε∗L−1 with its

canonical rigidification.

(iii) The functor PX/S,ε is an fppf sheaf. (Descent theory for line bundles.)

Combining these facts we find that PX/S,ε ∼= PicX/S and that these functors are given by

T 7→ Pic(XT )

pr∗TPic(T )
=

{line bundles on XT }
{line bundles of the form f∗L, with L a line bundle on T} .

In particular, the exact sequence (1) extends to an exact sequence

0 −→ Pic(T ) −→ Pic(XT ) −→ PicX/S(T ) −→ 0 . (2)DualAV1:exseq2

It also follows that PicX/S equals the Zariski sheaf associated to PX/S.

(6.3) Returning to the general case (i.e., no longer assuming that f satisfies the conditions (∗)PicRepr

in (6.2)), one finds that PicX/S cannot be expected to be representable unless we impose further

conditions on X/S. (See Exercise ?? for an example.) The most important general results

about representability all work under the assumption that f : X → S is proper, flat and of finite

presentation. We quote some results:

(i) If f is flat and projective with geometrically integral fibres then PicX/S is representable

by a scheme, locally of finite presentation and separated over S. (Grothendieck, FGA, Exp. 232.)

(ii) If f is flat and projective with geometrically reduced fibres, such that all irreducible

components of the fibres of f are geometrically irreducible then PicX/S is representable by

a scheme, locally of finite presentation (but not necessarily separated) over S. (Mumford,

unpublished.)

(iii) If S = Spec(k) is the spectrum of a field and f is proper then PicX/S is representable

by a scheme that is separated and locally of finite type over k. (Murre [1], using a theorem of

Oort [1] to reduce to the case that X is reduced.)

If we further weaken the assumptions on f , e.g., if in (ii) we omit the condition that the

irreducible components of the fibres are geometrically irreducible, then we may in general only

hope for PicX/S to be representable by an algebraic space over S. Also if we only assume X/S

to be proper, not necessarily projective, then in general PicX/S will be an algebraic space rather

than a scheme. For instance, in Grothendieck’s FGA, Exp. 236 we find the following criterion.

(iv) If f : X → S is proper and locally of finite presentation with geometrically integral

fibres then PicX/S is a separated algebraic space over S.

We refer to ??, ?? for further discussion.

(6.4) Remark. Let X be a complete variety over a field k, let Y be a k-scheme and let L beMaxTrivRem

a line bundle on X × Y . The existence of maximal closed subscheme Y0 →֒ Y over which L is

trivial, as claimed in Proposition (2.4), is an immediate consequence of the existence of PicX/k.

Namely, the line bundle L gives a morphism Y → PicX/k and Y0 is simply the fibre over the

zero section of PicX/k under this morphism. (We use the exact sequence (1); as remarked earlier

this does not require the existence of a rational point on X.)
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Let us now turn to some basic properties of PicX/S in case it is representable. Note that

PicX/S comes with the structure of an S-group scheme, so that the results and definitions of

Chapter 3 apply.

(6.5) Proposition. Assume that f : X → S is proper, flat and of finite presentation, withLiePic

geometrically integral fibres. As discussed above, PicX/S is a separated algebraic space over S.

(Those who wish to avoid algebraic spaces might add the hypothesis that f is projective, as in

that case PicX/S is a scheme.)

(i) Write T for the relative tangent sheaf of PicX/S over S. Then the sheaf e∗T (“the

tangent space of PicX/S along the zero section”) is canonically isomorphic to R1f∗OX .

(ii) Assume moreover that f is smooth. Then every closed subscheme Z →֒ PicX/S which

is of finite type over S is proper over S.

For a proof of this result we refer to BLR, Chap. 8.

(6.6) Corollary. Let X be a proper variety over a field k.LiePicCor

(i) The tangent space of PicX/S at the identity element is isomorphic to H1(X,OX ). Fur-

ther, Pic0
X/S is smooth over k if and only if dim Pic0

X/S = dimH1(X,OX), and this always holds

if char(k) = 0.

(ii) If X is smooth over k then all connected components of PicX/k are complete.

Proof. This is immediate from (6.5) and the results discussed in Chapter 3 (notably (3.17)

and (3.20)). As we did not prove (6.5), let us here give a direct explanation of why the tangent

space of PicX/S at the identity element is isomorphic to H1(X,OX), and why the components

of PicX/k are complete.

Let S = Spec
(
k[ε]
)
, where k[ε] is the ring of dual numbers over k. Note that X and XS

have the same underlying topological space. On this space we have a short exact sequence of

sheaves

0 −→ OX
h−→ O∗XS

res−−→ O∗X −→ 1

where h is given on sections by f 7→ exp(εf) = 1 + εf and where res is the natural restriction

map. On cohomology in degree zero this gives the exact sequence

0 −→ k −→ k[ε]∗ −→ k∗ −→ 1

where the maps are given by f 7→ 1 + εf and a+ εb 7→ a. On cohomology in degree 1 we then

find an exact sequence

0 −→ H1(X,OX )
h−→ Pic(XS)

res−−→ Pic(X) . (3)DualAV1:Lie

Concretely, if γ ∈ H1(X,OX ) is represented, on some open covering U = {Uα}α∈A, by a Čech

1-cocyle {fαβ ∈ OX(Uα ∩ Uβ)} then h(γ) is the class of the line bundle on XS which is trivial

on each Uα (now to be viewed as an open subset of XS) and with transition functions 1 + εfαβ .

Write T for the tangent space of PicX/k at the identity element. We can descibe T as the

kernel of the restriction map PicX/k(S) → PicX/k(k); see Exercise 1.2. If γ ∈ H1(X,OX ) then

h(γ) restricts to the trivial class on X. Hence γ defines an element of T , and this gives a linear

map ξ: H1(X,OX )→ T . As Pic(S) = {1} it follows from the exact sequences (1) and (3) that

ξ is injective.

So far we have not used anything about X. To prove that ξ is also surjective it suffices to

show that dim
(
H1(X,OX )

)
= dim(T ). Both numbers do not change if we extend the ground
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Jacobian!definitifield. Without loss of generality we may therefore assume that X(k) is non-empty, so that

assumptions (∗) in (6.2) are satisfied. Then the surjectivity of the map ξ follows from the exact

sequence (2). This proves that H1(X,OX )
∼−→ T .

Next let us explain why the components of PicX/S are complete. We already know that

PicX/S is a group scheme, locally of finite type over k. By Propositions (3.12) and (3.17), all

connected components are separated and of finite type over k. To show that they are complete,

we may extend the ground field; hence we can again assume that the assumptions (∗) in (6.2) are

satisfied. In this situation we apply the valuative criterion for properness. Let R be a k-algebra

which is a dvr. Let K be its fraction field, and suppose we have a K-valued point of PicX/k,

say represented by a line bundle L on XK . We want to show that L extends to a line bundle

on XR. Since X/k is smooth, L is represented by a Weil divisor. But if P ⊂ XK is any prime

divisor then the closure of P inside XR is a prime divisor of XR. It follows that L extends to a

line bundle on XR. �

(6.7) Remark. If char(k) = p > 0 then PicX/k is in general not reduced, even if X is smoothPicNotRedRem

and proper over k. An example illustrating this will be given in (7.31) below.

(6.8) Let C be a complete curve over a field k. Then PicC/k is a group scheme, locally of finiteJacDef

type over k; see (6.3). We claim that PicC/k is smooth over k. To see this we may extend

the ground field and assume that C(k) 6= ∅, so that the assumptions (∗) in (6.2) are satisfied.

Because PicC/k is locally of finite type over k, it suffices to show that any point of PicC/k with

values in R0 := k[t]/(tn) can be lifted to a point with values in R := k[t]/(tn+1). But if we have

a line bundle L0 on C ⊗k R0 then the obstruction for extending L0 to a line bundle on C ⊗k R
lies in H2(C,OC ), which is zero because C is a curve.

In particular, we find that the identity component Pic0
C/k is a group variety over k. If in

addition we assume that C is smooth then by Cor. (6.6) Pic0
C/k is complete, and is therefore an

abelian variety. In this case we usually write Jac(C) for Pic0
C/k; it is called the Jacobian of C.

Jacobians will be further discussed in Chapter 14. We remark that the term “Jacobian of C”,

for a complete and smooth curve C/k, usually refers to the abelian variety Jac(C) := Pic0
C/k

together with its natural principal polarisation.

(6.9) Remark. SupposeX is a smooth proper variety over an algebraically closed field k. RecallAlgEqDiv

that two divisors D1 and D2 are said to be algebraically equivalent (notation D1 ∼alg D2) if

there exist (i) a smooth k-variety T , (ii) codimension 1 subvarieties Z1, . . . , Zn of X ×k T which

are flat over T , and (iii) points t1, t2 ∈ T (k), such that D1 − D2 =
∑n
i=1(Zi)t1 − (Zi)t2 as

divisors on X; here (Zi)t := Zi ∩ (X × {t}), viewed as a divisor on X. Translating this to line

bundles we find that D1 ∼alg D2 precisely if the classes of L1 = OX(D1) and L2 = OX(D2) lie

in the same connected component of PicX/k. (Note that the components of the reduced scheme

underlying PicX/k are smooth k-varieties.) The discrete group π0(PicX/k) = PicX/k/Pic0
X/k is

therefore naturally isomorphic to the Néron-Severi group NS(X) := Div(X)/ ∼alg. For a more

precise treatment, see section (7.24).

§2. Digression on graded bialgebras.

In our study of duality, we shall make use of a structure result for certain graded bialgebras.

– 91 –



Before we can state this result we need to set up some definitions.

Let k be a field. (Most of what follows can be done over more general ground rings; for our

purposes the case of a field suffices.) Consider a graded k-module H• = ⊕n>0H
n. An element

x ∈ H• is said to be homogeneous if it lies in Hn for some n, in which case we write deg(x) = n.

By a graded k-algebra we shall mean a graded k-module H• together with a unit element 1 ∈ H0

and an algebra structure map (multiplication) γ: H• ⊗k H• → H• such that

(i) the element 1 is a left and right unit for the multiplication;

(ii) the multiplication γ is associative, i.e., γ(x, γ(y, z)) = γ(γ(x, y), z) for all x, y and z;

(iii) the map γ is a morphism of graded k-modules, i.e., it is k-linear and for all homogeneous

elements x and y we have that γ(x, y) is homogeneous of degree deg(x) + deg(y).

If no confusion arises we shall simply write xy for γ(x, y).

A homomorphism between graded k-algebras H•

1 and H•

2 is a k-linear map f : H•

1 → H•

2

which preserves the gradings, with f(1) = 1 and such that f(xy) = f(x)f(y) for all x and y

in H•

1 .

We say that the graded algebra H• is graded-commutative if

xy = (−1)deg(x)deg(y)yx

for all homogeneous x, y ∈ H•. (In some literature this is called anti-commutativity, or some-

times even commutativity.) The algebra H• is said to be connected if H0 = k · 1; it is said

to be of finite type over k if dimk(H
n) < ∞ for all n (which is weaker than saying that H• is

finite-dimensional).

If H•

1 and H•

2 are graded k-algebras then the graded k-module H•

1 ⊗k H•

2 inherits the

structure of a graded k-algebra: for homogeneous elements x, ξ ∈ H•

1 and y, η ∈ H•

2 one sets

(x ⊗ y) · (ξ ⊗ η) = (−1)deg(y)deg(ξ) · (xξ ⊗ yη). As an exercise the reader may check that H• is

graded-commutative if and only if the map γ: H• ⊗ H• → H• is a homomorphism of graded

k-algebras. The field k itself shall be viewed as a graded k-algebras with all elements of degree

zero.

(6.10) Definition. A graded bialgebra over k is a graded k-algebra H• together with twoGrHopfDef

homomorphisms of k-algebras

µ: H
• → H

• ⊗k H•
called co-multiplication,

ε: H
• → k the identity section,

such that

(µ⊗ id)◦µ = (id⊗ µ)◦µ: H
• → H

• ⊗k H• ⊗k H•

and

(ε⊗ id)◦µ = (id⊗ ε)◦µ: H
• → H

•

(using the natural identifications H• ⊗k k = H• = k ⊗k H•).

(6.11) Examples. (i) If all elements of H• have degree zero, i.e., H• = H0, then we can ignoreGrHopfExa

the grading and we “almost” find back the definition of a Hopf algebra as in (3.9). The main

distinction between Hopf algebras and bialgebras is that for the latter we do not require an

antipode.
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(ii) If V is a vector space over k then we can form the exterior algebra ∧•V = ⊕n>0 ∧n V .

The multiplication is given by the “exterior product”, i.e.,

(x1 ∧ · · · ∧ xr) · (y1 ∧ · · · ∧ ys) = x1 ∧ · · · ∧ xr ∧ y1 ∧ · · · ∧ ys .

By definition we have ∧0V = k.

A k-linear map V1 → V2 induces a homomorphism of graded algebras ∧•V1 → ∧•V2. Fur-

thermore, there is a natural isomorphism ∧•(V ⊕ V )
∼−→ (∧•V ) ⊗ (∧•V ). Therefore, the di-

agonal map V → V ⊕ V induces a homomorphism µ: ∧•V → ∧•V ⊗ ∧•V . Taking this as

co-multiplication, and defining ε: ∧•V → k to be the projection onto the degree zero component

we obtain the structure of a graded bialgebra on ∧•V .

(iii) If H•

1 and H•

2 are two graded bialgebras over k then H•

1 ⊗k H•

2 naturally inherits

the structure of a graded bialgebra; if a ∈ H•

1 with µ1(a) =
∑
xi ⊗ ξi and b ∈ H•

2 with

µ2(b) =
∑
yj ⊗ ηj then the co-multiplication µ = µ1 ⊗ µ2 is described by

µ(a⊗ b) =
∑

i,j

(−1)deg(yj)deg(ξi)(xi ⊗ yj)⊗ (ξi ⊗ ηj) .

(iv) Let x1, x2, . . . be indeterminates. We give each of them a degree di = deg(xi) > 1 and we

choose si ∈ Z>2∪{∞}. Then we can define a graded-commutative k-algebra H• = k〈x1, x2, . . .〉
generated by the xi, subject to the conditions xsi

i = 0. Namely, we take the monomials

m = xr11 x
r2
2 · · · (ri 6= 0 for finitely many i)

as a k-basis, with deg(m) = r1d1 + r2d2 + · · ·, and where we set xsi

i = 0. Then there is a unique

graded-commutative multiplication law such that γ(xi, xj) = xixj for i 6 j, and with this

multiplication k〈x1, x2, . . .〉 becomes a graded k-algebra. Note that k〈x1, x2, . . . xN 〉 is naturally

isomorphic to k〈x1〉 ⊗k · · · ⊗ k〈xN 〉.
It is an interesting question whether k〈x1, x2, . . .〉 can have the structure of a bialgebra. It

turns out that the existence of such a structure imposes conditions on the numbers di and si.

Let us first do the case of one generator; the case of finitely many generators will follow from

this together with Borel’s theorem to be discussed next. So, we consider a graded k-algebra

H• = k〈x | xs = 0〉 with deg(x) = d > 0. Suppose that H• has the structure of a bialgebra.

Then:

conditions on s:

char(k) = 0, d odd s = 2

char(k) = 0, d even s =∞
char(k) = 2 either s =∞ or s = 2n for some n

char(k) = p > 2, d odd s = 2

char(k) = p > 2, d even either s =∞ or s = pn for some n

For a proof of this result (in fact a more general version of it) we refer to Milnor and Moore [1],

§ 7. Note that the example given in (ii) is of the form k〈x1, x2, . . .〉 where all xi have di = 1 and

si = 2.

(6.12) Theorem. (Borel-Hopf structure theorem) Let H• be a connected, graded-commutativeBorelHopf

bialgebra of finite type over a perfect field k. Then there exist graded bialgebrasH•

i (i = 1, . . . , r)

and an isomorphism of bialgebras

H
• ∼= H

•

1 ⊗k · · · ⊗k H•

r
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such that the algebra underlying H•

i is generated by one element, i.e., the algebras H•

i are of

the form k〈xi | xsi
i = 0〉, with deg(xi) = di > 0.

For a proof of this result, which is due to A. Borel, we refer to Borel [1] or Milnor and

Moore [1].

(6.13) Corollary. Let H• be as in (6.12). Assume there is an integer g such that Hn = (0) forBorHCor

all n > g. Then dimk(H
1) 6 g. If dimk(H

1) = g then H• ∼= ∧•H1 as graded bialgebras.

Proof. Decompose H• = H•

1 ⊗k · · · ⊗k H•

r as in (6.12). Note that dimk(H
1) equals the number

of generators xi such that di = 1. Now x1 · · · xr (:= x1 ⊗ · · · ⊗ xr) is a nonzero element of

H• of degree d1 + · · · + dr. Therefore d1 + · · · + dr 6 g, which implies dimk(H
1) 6 g. Next

suppose dimk(H
1) = g, so that all generators xi have degree 1. If x2

i 6= 0 for some i then

x1 · · · xi−1x
2
ixi+1 · · · xg is a nonzero element of degree g + 1, contradicting our assumptions.

Hence x2
i = 0 for all i which means that H• ∼= ∧•H1. �

(6.14) Let us now turn to the application of the above results to our study of abelian varieties.BorHAppl

Given a g-dimensional variety X over a field k, consider the graded k-module

H
•

= H
•
(X,OX ) :=

g⊕

n=0

Hn(X,OX) .

Cup-product makes H• into a graded-commutative k-algebra, which is connected since X is

connected.

In case X is a group variety the group law induces on H• the structure of a graded bialgebra.

Namely, via the Künneth formula H•(X×kX,OX×X) ∼= H•(X,OX )⊗kH•(X,OX ) (which is an

isomorphism of graded k-algebras), the group law m: X ×k X → X induces a co-multiplication

µ: H
• → H

• ⊗k H•
.

For the identity section ε: H• → k we take the projection onto the degree zero component, which

can also be described as the map induced on cohomology by the unit section e: Spec(k) → X.

Now the statement that these µ and e make H• into a graded bialgebra over k becomes a simple

translation of the axioms in (1.2) satisfied by m and e.

As a first application of the above we thus find the estimate dimk(H
1(X,OX )) 6 g for a

g-dimensional group variety X over a field k. (Note that dimk(H
1(X,OX )) does not change

if we pass from k to an algebraic closure; we therefore need not assume k to be perfect.) For

abelian varieties we shall prove in (6.18) below that we in fact have equality.

We summarize what we have found.

(6.15) Proposition. Let X be a group variety over a field k. Then H•(X,OX) has a naturalDimEstim

structure of a graded k-bialgebra. We have dimk(H
1(X,OX )) 6 dim(X).

To conclude this digression on bialgebras, let us introduce one further notion that will be

useful later.

(6.16) Definition. Let H• be a graded bialgebra with comultiplication µ: H• → H• ⊗k H•.PrimEltDef

Then an element h ∈ H• is called a primitive element if µ(h) = h⊗ 1 + 1⊗ h.
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(6.17) Lemma. Let V be a finite dimensional k vector space, and consider the exterior algebraPrimEltLem

∧•V as in (6.11). Then V = ∧1V ⊂ ∧•V is the set of primitive elements in ∧•V .

Proof. We follow Serre [1]. Since the co-multiplication µ is degree-preserving, an element of a

graded bialgebra H• is primitive if and only if all its homogeneous components are primitive.

Thus we may restrict our attention to homogeneous elements of ∧•V .

It is clear that the non-zero elements of ∧0V = k are not primitive. Further we see directly

from the definitions that the elements of ∧1V = V are primitive. Let now y ∈ ∧nV with n > 2.

Write

[(∧•
V )⊗ (∧•

V )]n =
⊕

p+q=n

∧pV ⊗ ∧qV ,

and write µ(y) =
∑
µ(y)p,q with µ(y)p,q ∈ ∧pV ⊗ ∧qV . For instance, one easily finds that

µ(y)n,0 = y = µ(y)0,n via the natural identifications ∧nV ⊗ k = ∧nV = k ⊗∧nV . Similarly, we

find that the map y 7→ µ(y)1,n−1 is given (on decomposable tensors) by

v1 ∧ · · · ∧ vn 7→
n∑

i=1

(−1)i+1vi ⊗ (v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vn) .

It follows that for λ ∈ V ∗ the composition ∧nV → V ⊗ ∧n−1V → ∧n−1V given by y 7→
(λ⊗ id)(µ(y)1,n−1) is just the interior contraction y 7→ y yλ. The assumption that y is primitive

and n > 2 implies that µ(y)1,n−1 = 0 so we find y y λ = 0 for all λ ∈ V ∗. This only holds for

y = 0. �

§3. The dual of an abelian variety.

From now on, let π: X → S = Spec(k) be an abelian variety over a field k. We shall admit from

the general theory that PicX/k is a group scheme over k with projective connected components.

One of the main results of this section is that Pic0
X/k is reduced, and is therefore again an abelian

variety.

Note that PicX/k also represents the functor PX/k,0 of line bundles with rigidification along

the zero section. As above, the identification between the two functors is given by sending the

class of a line bundle L on X ×k T to the class of L⊗ pr∗T e
∗L−1 with its canonical rigidification

along {0} × T . (In order to avoid the notation 0∗L we write e for the zero section of XT .)

In particular, we have a Poincaré bundle P on X ×k PicX/k together with a rigidification

α: OPicX/k

∼−→P|{0}×PicX/k
.

If L is a line bundle on X we have the associated Mumford bundle Λ(L) on X × X. In

order to distinguish the two factors X, write X(1) = X × {0} and X(2) = {0} × X. Viewing

Λ(L) as a family of line bundles on X(1) parametrised by X(2) we obtain a morphism

ϕL: X = X(2) −→ PicX/k

which is the unique morphism with the property that (idX × ϕL)∗P ∼= Λ(L). On points, the

morphism ϕL is of course given by x 7→ [t∗xL⊗ L−1], just as in (2.10). We have seen in (2.10),

as a consequence of the Theorem of the Square, that ϕL is a homomorphism. Further we note

that ϕL factors through Pic0
X/k, as X is connected and ϕL(0) = 0.
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(6.18) Theorem. Let X be an abelian variety over a field k. Then Pic0
X/k is reduced, hence itPicReduced

is an abelian variety. For every ample line bundle L the homomorphism ϕL: X → Pic0
X/k is an

isogeny with kernel K(L). We have dim(Pic0
X/k) = dim(X) = dimkH

1(X,OX ).

Proof. Let L be an ample line bundle on X. By Lemma (2.17), ϕL has kernel K(L). Since

K(L) is a finite group scheme it follows that dim(Pic0
X/k) > dim(X). Combining this with (6.6)

and (6.15) we find that dim(Pic0
X/k) = dim(X) = dimkH

1(X,OX ) and that Pic0
X/k is re-

duced. �

(6.19) Definition and Notation. The abelian variety Xt := Pic0
X/k is called the dual of X.DualAVDef

We write P, or PX , for the Poincaré bundle on X ×Xt (i.e., the restriction of the Poincaré

bundle on X × PicX/k to X ×Xt). If f : X → Y is a homomorphism of abelian varieties over k

then we write f t: Y t → Xt for the induced homomorphism, called the dual of f or the transpose

of f . Thus, f t is the unique homomorphism such that

(id × f t)∗PX
∼= (f × id)∗PY

as line bundles on X × Y t with rigidification along {0} × Y t.

(6.20) Remark. We do not yet know whether f 7→ f t is additive; in other words: if we havefftRem

two homomorphisms f , g: X → Y , is then (f +g)t equal to f t+gt ? Similarly, is (nX)t equal to

nXt ? We shall later prove that the answer to both questions is “yes”; see (7.17). Note however

that such relations certainly do not hold on all of PicX/k; for instance, we know that if L is a

line bundle with (−1)∗L ∼= L then n∗L ∼= Ln
2

which is in general not isomorphic to Ln.

Exercises.

(6.1) Show that the functor PX/S defined in §1 is never representable, at least if we assume XEx:PXSnotRep

to be a non-empty scheme.

(6.2) Let X and Y be two abelian varieties over a field k.Ex:XxYdual

(i) Write iX : X → X×Y and iY : Y → X×Y for the maps given by x 7→ (x, 0) and y 7→ (0, y),

respectively. Show that the map (itX , i
t
Y ): (X × Y )t → Xt × Y t that sends a class [L] ∈

Pic0
(X×Y )/k to

(
[L|X×{0}], [L|{0}×Y ]

)
, is an isomorphism. [Note: in general it is certainly

not true that the full Picard scheme PicX×Y/k is isomorphic to PicX/k × PicY/k.]

(ii) Write

p: X × Y ×Xt × Y t −→ X ×Xt and q: X × Y ×Xt × Y t −→ Y × Y t

for the projection maps. Show that the Poincaré bundle of X×Y is isomorphic to p∗PX ⊗
q∗PY .

(6.3) Let L be a line bundle on an abelian variety X. Consider the homomorphism (1, ϕL): X →Ex:(1phiL)*P

X ×Xt. Show that (1, ϕL)∗PX
∼= L⊗ (−1)∗L.

(6.4) The goal of this exercise is to prove the restrictions listed in (iv) of (6.11). We consider aEx:GrHopfEx

graded bialgebra H• over a field k, with co-multiplication µ. We define the height of an element

x ∈ H• to be the smallest positive integer n such that xn = 0, if such an n exists, and to be ∞
if x is not nilpotent.
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(i) If y ∈ H• is an element of odd degree, and char(k) 6= 2, show that y2 = 0.

(ii) If x ∈ H• is primitive, show that µ(xn) =
∑n
i=0

(
n
i

)
xi⊗xn−i. Conclude that if x has height

n <∞ then char(k) = p > 0 and n is a power of p.

(iii) If H• = k〈x | xs = 0〉 with deg(x) = d, show that x is a primitive element. Deduce the

restrictions on the height of x listed in (iv) of (6.11).
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Chapter VII. Duality.

§1. Formation of quotients and the descent of coherent sheaves.

(7.1) Definition. Let S be a base scheme. Let ρ: G×S X → X be an action (from the left) ofGrActonSh

an S-group scheme G on an S-scheme X. Let F be a coherent sheaf of OX -modules. Then an

action of G on F , compatible with the action ρ, is an isomorphism λ: pr∗2F
∼−→ ρ∗F of sheaves

on G×S X, such that on G×S G×S X we have a commutative diagram

pr∗3F
pr∗23(λ)−−−−−→ pr∗23ρ

∗F

(m×idX)∗(λ)

y
y(idG×ρ)

∗(λ)

(m× idX)∗ρ∗F === (idG × ρ)∗ρ∗F .

Here is a more concrete explanation of what this means. If T is an S-scheme and g ∈ G(T ),

write ρg: XT → XT for the action of the element g. Then to have an action of G on F

that is compatible with ρ means that for every g ∈ G(T ) we have an isomorphism of sheaves

λg: FT
∼−→ ρ∗gFT such that λgh = ρ∗h(λg)◦λh for all g, h ∈ G(T ).

If F is a locally free OX -module we can take a more geometric point of view. First recall

that a locally free OX -module is “the same” as a geometric vector bundle over X. Namely,

V := V(F∨) is a geometric vector bundle over X, and F is the sheaf of sections of the structure

morphism π: V → X. Then a ρ-compatible G-action on F corresponds to an action ρ̃: G×SV →
V such that (i) the structure morphism π: V → X is G-equivariant, and (ii) the action ρ̃ is

“fibrewise linear”, meaning that for every S-scheme T and every g ∈ G(T ), x ∈ X(T ), the

isomorphism ρ̃(g): Vx → Vgx is OT -linear. We refer to such an action ρ̃ as a lifting of ρ.

With this notion of a G-action on a sheaf, we can formulate a useful result on the descent

of modules.

(7.2) Proposition. Let ρ: G ×S X → X be an action of an S-group scheme G on an S-ShQuot

scheme X. Suppose there exists an fppf quotient p: X → Y of X by G. If F is a coherent

sheaf of OY -modules then the canonical isomorphism λcan: pr∗2(p
∗F )

∼−→ ρ∗(p∗F ) defines a ρ-

compatible G-action on p∗F . The functor F 7→ (p∗F, λcan) gives an equivalence between the

category of coherent OY -modules and the category of coherent OX -modules with (ρ-compatible)

G-action. This restricts to an equivalence between the category of finite locally free OY -modules

and the category of finite locally free OX -modules with G-action.

This proposition should be seen as a statement in (faithfully flat) descent theory; it follows

for instance from the results of SGA 1, Exp. VIII, § 1. (See also [BLR], § 6.1, Thm. 4.) Given

such results in descent theory, the only point here is that a ρ-compatible G-action on a coherent

OX -module is the same as a descent datum on this module. (Recall that we have an isomorphism

(ρ,pr2): G×S X
∼−→ X ×Y X.) The assertion that finite locally free OX -modules with G-action

give rise to finite locally free OY -modules follows from EGA IV, Prop. 2.5.2.

(7.3) Example. We consider the situation of the proposition. The geometric vector bundleShQuotExa

corresponding to the structure sheaf OX is just the affine line A1
X over X.

DualAV2, 8 februari, 2012 (635)
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On OX (geometrically: on A1
X) we have a “trivial” action ρ̃triv, given by

ρ̃triv = ρ× idA1
S
: G×S A1

X = G×S X ×S A1
S −→ X ×S A1

S = A1
X .

The OY -module corresponding to (OX , ρ̃triv) is just OY itself.

Let ρ̃ be some other lifting of ρ to a G-action on A1
X . Let T be an S-scheme and g ∈

G(T ). The automorphism ρ̃(g) · ρ̃triv(g)−1 of A1
X ×S T = A1

XT
is given on every fibre A1

x

by some (invertible) scalar multiplication. This means that ρ̃(g) · ρ̃triv(g)−1 is given by an

element ν(g) ∈ Γ(XT , O
∗
XT

). We find that an action ρ̃ gives rise to a morphism of functors

ν: G→ ResX/SGm,X on the category Sch/S . The condition that ρ̃ is a group action means that

ν satisfies a cocycle condition ν(g1g2)
(
x
)

= ν(g1)
(
g2x) · ν(g2)

(
x
)
, where we simply write g2x for

ρ(g2)
(
x
)
. Conversely, given a morphism ν: G → ResX/SGm,X that satisfies this condition, one

finds back a G-action ρ̃ by ρ̃(g) = ν(g) · ρ̃triv(g).

Now suppose that the structure morphism f : X → S satisfies f∗(OXT
) = OT for all S-

schemes T . This holds for instance if X is a proper variety over a field. Then ResX/SGm,X
∼=

Gm,S as functors on Sch/S . In particular, any morphism ν: G → ResX/SGm,X is G-invariant,

in the sense that for all g1, g2 ∈ G(T ) and x ∈ X(T ) we have ν(g1)
(
g2x) = ν(g1)

(
x
)
. Hence the

cocycle condition in this case just says that ν is a homomorphism. So the conclusion is that the

liftings ρ̃ of ρ to a G-action on A1
X are in bijective correspondence with HomGS
h/S

(G,Gm). In

case G is a commutative, finite locally free S-group scheme this is just the Cartier dual GD(S).

Via Proposition (7.2), we can use this to obtain a description of the line bundles L on Y

such that p∗L ∼= OX . The result is as follows.

(7.4) Proposition. Let G be a commutative, finite locally free S-group scheme. Let ρ: G ×SLBonQuot

X → X be a free action of G on an S-scheme X. Let p: X → Y be the quotient of X by G.

Suppose that f∗(OXT
) = OT for all S-schemes T . Then for any S-scheme T there is a canonical

isomorphism of groups

δT :

(
isomorphism classes of line bundles

L on YT with p∗L ∼= OXT

)
∼−→ GD(T ) ,

and this isomorphism is compatible with base change T ′ → T .

Proof. To define δT for arbitrary S-schemes T we may replace S by T and p: X → Y by

pT : XT → YT . Note that by Theorem (4.16) and what was explained in Example (4.29), pT is

again the quotient morphism of XT by the action of GT , and of course also the assumption that

f∗(OXT
) = OT for all S-schemes T is preserved under base change. Hence it suffices to define

the isomorphism δS .

Let L be a line bundle on Y with p∗L ∼= OX . Via the choice of an isomorphism α: p∗L
∼−→

OX (or, more geometrically, the isomorphism α: p∗V(L−1)
∼−→ A1

X over X) the canonical G-

action on p∗L translates into a G-action ρ̃ on A1
X , and as explained above this gives us a character

ν: G → Gm,S. We claim that this character is independent of the choice of α. In general, any

other isomorphism p∗L
∼−→ OX is of the form α′ = γ ◦α for some γ ∈ Γ(X,O∗X ). Write ρ̃ and ρ̃′

for the G-actions on A1
X obtained using α and α′, respectively, and let ν and ν′ be the associated

characters. If g ∈ G(T ) and y is a T -valued point of p∗V(L−1) lying over x ∈ X(T ) then we

have the relations

ρ̃triv

(
g, α′(y)

)
= γ(x) · ρ̃triv

(
g, α(y)

)
and ρ̃′

(
g, α′(y)

)
= γ(gx) · ρ̃

(
g, α(y)

)
,
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where γ(x) is the image of γ under the homomorphism Γ(X,O∗X )→ Γ(T,O∗T ) induced by x: T →
X, and similarly for γ(gx). (Note that elements such as ρ̃

(
g, α(y)

)
are T -valued points of A1

X

lying over the point gx ∈ X(T ), and on such elements we have the “fibrewise” multiplication by

functions on T .) But now our assumption that f∗(OX) = OS implies that γ is the pull-back of

an element in Γ(S,O∗S), so γ(x) = γ(gx). Hence ν = ν′, as claimed.

Now we can simply apply the conclusion from (7.3), and define δS as the map that sends the

isomorphism class of L to the character ν: G→ Gm,S given on points by ν(g) = ρ̃(g) · ρ̃triv(g)−1.

By Proposition (7.2), together with what was explained in Example (7.3), the map δS thus

obtained is indeed an isomorphism.

Finally we note that the maps δT are indeed compatible with base change, as is immediate

from the construction. �

§2. Two duality theorems.

(7.5) Theorem. Let f : X → Y be an isogeny of abelian varieties. Then f t: Y t → Xt is againDuality1

an isogeny and there is a canonical isomorphism of group schemes

Ker(f)D
∼−→ Ker(f t) .

Proof. If T is a k-scheme, any class in Ker(f t)(T ) is uniquely represented by a line bundle L

on YT such that f∗L ∼= OXT
. Indeed, if L′ represents a class in Ker(f t)(T ) then there is a line

bundle M on T such that f∗L′ ∼= pr∗TM . Then L := L′ ⊗ pr∗TM
−1 represents the same class

as L′ and satisfies f∗L ∼= OXT
. Conversely, if L1 and L2 represent the same class then they

differ by a line bundle of the form pr∗TM ; hence f∗L1
∼= f∗L2 implies L1

∼= L2.

Applying Proposition (7.4) we obtain the desired isomorphism Ker(f t)
∼−→ Ker(f)D. In

particular this shows that f t has a finite kernel and therefore is again an isogeny. �

(7.6) Proposition. Let f : X → Y be a homomorphism. Let M be a line bundle on Y andPullbphiL

write L = f∗M . Then ϕL: X → Xt equals the composition

X
f−→ Y

ϕM−−→ Y t
ft

−−→ Xt .

If f is an isogeny and M is non-degenerate then L is non-degenerate too, and rank(K(L)) =

deg(f)2 · rank(K(M)).

Proof. That ϕL = f t ◦ϕM ◦f is clear from the formula t∗xf
∗M = f∗t∗f(x)M . For the second

assertion recall that a line bundle L is non-degenerate precisely if ϕL is an isogeny, in which

case rank(K(L)) = deg(ϕL). Now use (7.5). �

(7.7) The Poincaré bundle on X ×Xt comes equipped with a rigidification along {0}×Xt. AskappaXDef

P|X×{0}
∼= OX we can also choose a rigidification of P along X × {0}. Such a rigidification is

unique up to an element of Γ(X,O∗X) = k∗. Hence there is a unique rigidification along X ×{0}
such that the two rigidifications agree at the origin (0, 0).

Now we view P as a family of line bundles onXt parametrised byX. This gives a morphism

κX : X −→ Xtt .
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As κX(0) = 0 it follows from Prop. (1.14) that κX is a homomorphism.

(7.8) Lemma. Let L be a line bundle on X. Then ϕL = ϕtL ◦κX : X → Xt.phiLtLem

Proof. Let s: X ×X → X ×X and s: X ×Xt → Xt ×X be the morphisms switching the two

factors; on points: s(x, y) = (y, x). We have a canonical isomorphism s∗Λ(L) ∼= Λ(L). Let T be

a k-scheme and x ∈ X(T ). Writing [M ] for the class of a bundle M on X × T in Pic0
X/k(T ) we

have

ϕL(x) =
[
(X × T id×x−−−→ X ×X)∗Λ(L)

]

=
[
(X × T id×x−−−→ X ×X s−→ X ×X)∗Λ(L)

]

=
[
(X × T id×x−−−→ X ×X s−→ X ×X id×ϕL−−−−→ X ×Xt)∗P

]

=
[
(X × T ϕL×id−−−−→ Xt × T id×x−−−→ Xt ×X s−→ X ×Xt)∗P

]
= ϕtL ◦κX(x) .

As this holds for all T and x the lemma is proven. �

(7.9) Theorem. Let X be an abelian variety over a field. Then the homomorphism κX : X −→Duality2

Xtt is an isomorphism.

Proof. Choose an ample line bundle L on X. The formula ϕL = ϕtL ◦κX shows that Ker(κX) is

finite; hence κX is an isogeny. Furthermore,

rank
(
K(L)

)
= deg(ϕL) = deg(ϕtL) · deg(κX) = rank

(
K(L)D

)
· deg(κX) ,

using (7.5). But rank
(
K(L)D

)
= rank

(
K(L)

)
, so κX has degree 1. �

(7.10) Corollary. If L is a non-degenerate line bundle on X then K(L) ∼= K(L)D.K(L)selfdual

Proof. Apply (7.5) to ϕL and use (7.8) and (7.9). �

§3. Further properties of Pic0
X/k.

Let X be an abelian variety over a field k. A line bundle L on X gives rise to a homo-

morphism ϕL: X → Xt. We are going to extend this construction to a more general situation.

Namely, let T be a k-scheme, and suppose L is a line bundle on XT := X ×k T . We are going

to associate to L a homomorphism ϕL: XT → Xt
T .

As usual we write Λ(L) := m∗L⊗ p∗1L−1 ⊗ p∗2L−1 for the Mumford bundle on XT ×T XT

associated to L. (Note that we are working in the relative setting, viewing T as the base scheme.

If we rewrite XT ×T XT as X×kX×k T then Λ(L) becomes (m× idT )∗L⊗p∗13L−1⊗p∗23L−1.) In

order to distinguish the two factors XT , let us write X
(1)
T = XT ×T e(T ) and X

(2)
T = e(T )×T XT

where e(T ) ⊂ XT is the image of the zero section e: T → XT . Viewing Λ(L) as a family of line

bundles on X
(1)
T parametrized by X

(2)
T we obtain a morphism

ϕL: XT = X
(2)
T −→ PicXT /T = PicX/k ×k T .

As ϕL(0) = 0 and the fibres Xt are connected, ϕL factors through Xt
T = Pic0

X/k ×k T .
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(7.11) Lemma. (i) The morphism ϕL only depends on the class of L in PicX/k(T ).phiL/TLem

(ii) Let f : T → S be a morphism of k-schemes. If M is a line bundle on XS and L =

(idX × f)∗M on XT , then ϕL: XT → Xt
T is the morphism obtained from ϕM : XS → Xt

S by

pulling back via f on the basis.

(iii) The morphism ϕL: XT → Xt
T is a homomorphism.

Part (i) of the lemma will be sharpened in (7.15) below. As a particular case of (ii), note

that the fibre of ϕL above a point t ∈ T is just ϕLt
, where we write Lt for the restriction of L

to X × {t}.

Proof. (i) If L1 and L2 have the same class then they differ by a factor pr∗TM . But then Λ(L1)

and Λ(L2) differ by a factor π∗M−1, where π: XT ×T XT → T is the structural morphism. This

implies that ϕL1
= ϕL2

, as claimed.

(ii) This readily follows from the definitions.

(iii) The assertion that ϕL is a homomorphism means that we have an equality of two

morphisms

ϕL ◦m = m◦(ϕL × ϕL): XT ×T XT −→ Xt
T .

For every t ∈ T we already know that the two morphisms agree on the fibres above t. Hence

the lemma is true if T is reduced. In particular, the lemma is true in the “universal” case that

T = PicX/k and L is the Poincaré bundle on X ×k PicX/k. In the general case, consider the

morphism f : T → PicX/k associated to the line bundle L. This morphism is characterized by the

property that L and (id× f)∗P have the same class in PicX/k(T ). Now apply (i) and (ii). �

In the above we allow L—to be thought of as a family of line bundles on X parametrized

by T—to be non-constant. But the abelian variety we work on is a constant one. We can go

one step further by also letting the abelian varieties Xt “vary with t”. This generalization will

be discussed in Chapter ??; see in particular (?.?).

We write K(L) := Ker(ϕL) ⊂ XT . It is the maximal subscheme of XT over which Λ(L) is

trivial, viewing XT ×T XT as a scheme over XT via the second projection. In particular, ϕL = 0

if and only if Λ(L) is trivial over XT , meaning that Λ(L) = pr∗2M for some line bundleM on XT .

Using (2.17) we can make this a little more precise.

(7.12) Lemma. Let T be a locally noetherian k-scheme. Write π: XT ×T XT → T for thephiLtriv

structural morphism. For a line bundle L on XT , consider the following conditions.

(a) ϕL = 0.

(b) Λ(L) ∼= pr∗2M for some line bundle M on XT .

(c) Λ(L) ∼= π∗N for some line bundle N on T .

(d) ϕLt
= 0 for some t ∈ T .

Then (a) ⇔ (b) ⇔ (c) ⇒ (d), and if T is connected then all four conditions are equivalent. If

these equivalent conditions are satisfied then N ∼= e∗L−1 and M = pr∗TN .

Proof. The implications (d)⇐ (a)⇔ (b)⇐ (c) are clear. Let us write XT×TXT as X×kX×kT .

In this notation we have Λ(L) = (m× idT )∗L⊗ p∗13L−1⊗ p∗23L−1 and π becomes the projection

onto the third factor. Set N := e∗L−1. We find that

Λ(L)|{0}×X×T ∼= pr∗TN
∼= Λ(L)|X×{0}×T

as line bundles on X × T .

– 102 –



Suppose T is connected and ϕLt
= 0 for some t ∈ T . Then

Λ(L)|X×X×{t} ∼= OX×X×{t}

by (iii) of (2.17). By Thm. (2.5) the line bundle Λ(L) ⊗ p∗3N−1 on X × X × T is trivial, i.e.,

Λ(L) ∼= π∗N . This shows that (d)⇒ (a) for connected T . For arbitrary T we get the implication

(a) ⇒ (c) by applying the previous to each of its connected components.

The last assertion of the lemma is obtained by restricting Λ(L) to {0} × {0} × T and to

{0} ×X × T . �

(7.13) Fact. Let X and Y be two projective varieties over a field k. Then the contravariantHomFact

functor

HomS
h(X,Y ): (Sch/k)→ Sets given by T 7→ HomS
h/T
(XT , YT )

is representable by a k-scheme, locally of finite type.

This fact is a consequence of the theory of Hilbert schemes. A reference is ??. Note that in

this proof the projectivity of X and Y is used in an essential way. See also Matsumura-Oort [1]

for related results for non-projective varieties.

(7.14) Proposition. Let X and Y be two abelian varieties over a field k. Then the functorHomAVProp

HomAV(X,Y ): (Sch/k)→ Ab given by T 7→ HomGS
h/T
(XT , YT )

is representable by an étale commutative k-group scheme.

Proof. Let H = HomS
h(X,Y ) and H ′ = HomS
h(X ×X,Y ). Let f : XH → YH be the universal

morphism. Consider the morphism g: (X ×X)H → YH given on points by g(x1, x2) = f(x1 +

x2)− f(x1)− f(x2). Consider also the “trivial” morphism e: (X ×X)H → YH given on points

by e(x1, x2) = eY . Then g and e are H-valued points of H ′; in other words, they correspond to

morphisms ψg, ψe: H → H ′. The functor HomAV(X,Y ) is represented by the subscheme of H

given by the condition that ψg = ψe; in other words, it is given by the cartesian diagram

HomAV(X,Y ) −−−−−→ H ′
y

y∆H′/k

H
(ψg ,ψe)−−−−−→ H ′ ×k H ′ .

To get a group scheme structure on HomAV(X,Y ) we just note that HomAV(X,Y ) is natu-

rally a group functor; now apply (3.6).

It remains to be shown that HomAV(X,Y ) is an étale group scheme. We already know it is

locally of finite type over k, so it suffices to show that its tangent space at the origin is trivial.

It suffices to prove this in the special case that Y = X, for HomAV(X,Y ) embeds as a closed

subgroup scheme of EndAV(X × Y ) := HomAV(X × Y,X × Y ) by sending f : X → Y to the

endomorphism (x, y) 7→
(
0, f(x)

)
of X × Y .

A tangent vector of EndAV(X) at the point idX is the same as a homomorphism ξ: Xk[ε] →
Xk[ε] over Spec

(
k[ε]
)

that reduces to the identity modulo ε. Note that ξ is necessarily an

automorphism. (It is the identity on underlying topological spaces, and it is an easy exercise to

show that ξ gives an automorphism of the structure sheaf.) Hence by the results in Exercise (1.2),

ξ corresponds to a global vector field Ξ on X. As we know, the global vector fields on X are
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precisely the translation-invariant vector fields. On the other hand, a necessary condition for ξ

to be an endomorphism is that it maps the identity section of Xk[ε] to itself. This just means

that Ξ(eX) = 0. Hence Ξ is the trivial vector field. This shows that idX has non non-trivial

first order deformations. �

In line with the notational conventions introduced in (1.17), we shall usually simply write

Hom(X,Y ) for the group scheme of homomorphisms from X to Y . If we wish to refer to the

bigger scheme of arbitrary scheme morphisms from X to Y , or if there is a risk of confusion, we

shall use a subscript “AV” or “Sch” to indicate which of the two we mean.

By (i) and (ii) of Lemma (7.11), L 7→ ϕL gives rise to a morphism of functors ϕ: PicX/k →
Hom(X,Xt). If L and M are line bundles on XT then Λ(L ⊗M) ∼= Λ(L) ⊗ Λ(M) and we find

that ϕL⊗M = ϕL + ϕM . Summing up, we obtain a homomorphism of k-group schemes

ϕ: PicX/k → Hom(X,Xt) .

(7.15) Lemma. Let T be a connected k-scheme. Let L be a line bundle on XT . Write LtKerphiLem1

for L|X×{t}. Then for any two k-valued points s, t ∈ T (k) we have ϕLs
= ϕLt

. In particular,

Pic0
X/k ⊂ Ker(ϕ).

Proof. By (d) ⇒ (a) of (7.12), applied with T = Xt and with L = P the Poincaré bundle, we

find that Xt = Pic0
X/k ⊂ Ker(ϕ). As ϕ is a homomorphism, it is constant on the connected

components of PicX/k.

Let f : T → PicX/k be the morphism corresponding to L; it factors through some connected

component C ⊂ PicX/k. Let M := P|X×C be the restriction of the Poincaré bundle to X × C.

Using (i) and (ii) of (7.11) we find that ϕL: XT → Xt
T is obtained from ϕM : XC → Xt

C by

pulling back via f on the basis. But by the above, ϕMf(s)
= ϕMf(t)

. �

(7.16) Lemma. Let X be an abelian variety over k. Let T be a k-scheme and let L be a lineKerphiLem2

bundle on XT such that ϕL = 0.

(i) If Y is a T -scheme then for any two morphisms f , g: Y → XT of schemes over T we

have
[
(f + g)∗L

]
=
[
f∗L⊗ g∗L

]
in PicY/T (T ).

(ii) For n ∈ Z we have [n∗L] = [Ln] in PicX/k(T ).

Proof. If ϕL = 0 then Λ(L) = π∗N for some line bundle N on T . Pulling back via (f, g): Y →
XT ×T XT gives (f + g)∗L = f∗L ⊗ g∗L⊗ π∗N , where π: Y → T is the structural morphism.

But π∗N is trivial in PicY/T (T ), so we get (i). Applying this with f = idXT
and g = nXT

gives

the relation [(n + 1)∗L] = [L ⊗ n∗L]. By double induction on n, starting with the cases n = 0

and n = 1, we obtain (ii). �

Using that Pic0
X/k ⊂ Ker(ϕ) we obtain a positive answer to the questions posed in (6.20).

(7.17) Corollary. Let X and Y be abelian varieties over k. Then the map Hom(X,Y ) →fftCor

Hom(Y t,Xt) given on points by f 7→ f t is a homomorphism of k-group schemes. For all n ∈ Z

we have (nX)t = nXt .

Combining this last result with (7.5) we find that Xt[n] is canonically isomorphic to the

Cartier dual of X[n], for every n ∈ Z>0.

(7.18) Let X be an abelian variety. We call a homomorphism f : X → Xt symmetric if f = f t,SymmHomXXt

taking the isomorphism κX : X
∼−→ Xtt of (7.9) as an identification. It follows from the previous
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corollary that the functor of symmetric homomorphisms X → Xt is represented by a closed

subgroup scheme

Homsym(X,Xt) ⊂ Hom(X,Xt) .

In fact, Homsym(X,Xt) is just the kernel of the endomorphism of Hom(X,Xt) given by f 7→
f − f t.

By Lemma (7.8), the homomorphism ϕ: PicX/k → Hom(X,Xt) factors through the sub-

group Homsym(X,Xt). (Because Hom(X,Xt) is étale, it suffices to know that ϕ maps into

Homsym for points with values in a field.)

Our next goal is to show that not only Pic0
X/k ⊂ Ker(ϕ) but that the two are in fact equal.

First we prove a lemma about the cohomology of line bundles L with ϕL = 0. Note that we are

here again working over a field; this lemma has no straightforward generalization to the relative

setting.

(7.19) Lemma. Let L be a line bundle on X with ϕL = 0. If L 6∼= OX then Hi(X,L) = 0 forKerphiLem3

all i.

Proof. First we treat the group H0(X,L). If there is a non-trivial section s then (−1)∗s is a

non-trivial section of (−1)∗L ∼= L−1; so both L and L−1 have a non-trivial section, and this

implies that L is trivial. Since we have assumed this is not the case, H0(X,L) = {0}.
Let now i > 1 be the smallest positive integer such that Hi(X,L) 6= 0. Consider the

composition

X → X ×X m−→ X , given by x 7→ (x, 0) 7→ x .

On cohomology this induces the maps

Hi(X,L)→ Hi(X ×X,m∗L)→ Hi(X,L) ,

the composition of which is the identity. But since m∗L ∼= p∗1L ⊗ p∗2L, the Künneth formula

gives

Hi(X ×X,m∗L) ∼= Hi(X ×X, p∗1L⊗ p∗2L) ∼=
∑

a+b=i

Ha(X,L)⊗Hb(X,L) .

Since H0(X,L) = {0} we may consider only those terms in the RHS where a > 1 and b > 1.

But then a < i which by our choice of i implies that Ha(X,L) = 0. This shows that the identity

map on Hi(X,L) factors via zero. �

In the proof of the next proposition we need some facts about cohomology and base change.

Here is what we need.

(7.20) Fact. Let f : X → Y be a proper morphism of noetherian schemes, with Y reduced andCohBCFacts

connected. Let F be a coherent sheaf of OX -modules on X.

(i) If y 7→ dimk(y)H
q(Xy, Fy) is a constant function on Y then Rqf∗(F ) is a locally free sheaf

on Y , and for all y ∈ Y the natural map Rqf∗(F )⊗OY
k(y)→ Hq(Xy, Fy) is an isomorphism.

(ii) If Rqf∗(F ) = 0 for all q > q0 then Hq(Xy , Fy) = 0 for all y ∈ Y and q > q0.

A proof of this result can be found in [MAV], § 5.

(7.21) Proposition. Let X be an abelian variety over an algebraically closed field k. Let LKerphikbar

be an ample line bundle on X and M a line bundle with ϕM = 0. Then there exists a point

x ∈ X(k) with M ∼= t∗xL⊗ L−1.
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Proof. We follow Mumford’s beautiful proof. The idea is to look at the cohomology on X ×X
of the line bundle

K := Λ(L)⊗ p∗2M−1 .

The projections p1, p2: X ×X → X give rise to two Leray spectral sequences

Ep,q2 = Hp(X,Rqp1,∗(K))⇒ Hp+q(X ×X,K)

and

E′p,q2 = Hp(X,Rqp2,∗(K))⇒ Hp+q(X ×X,K) .

The restrictions of K to the horizontal and vertical fibres are given by

K|{x}×X ∼= t∗xL⊗ L−1 ⊗M−1 ,

K|X×{x} ∼= t∗xL⊗ L−1 .

Assume that there is no x ∈ X(k) such that t∗xL⊗L−1 ∼= M . It then follows that K|{x}×X is

a non-trivial bundle in Ker(ϕ) for every x. (Note that [t∗xL⊗L−1] = ϕL(x) ∈ Pic0
X/k ⊂ Ker(ϕ).)

By Lemma (7.19) and (7.20) this gives Rqp1,∗(K) = (0) for all q, and from the first spectral

sequence we find that Hn(X ×X,K) = 0 for all n.

Now use the second spectral sequence. For x /∈ K(L) the bundle t∗xL⊗L−1 is a non-trivial

bundle in Ker(ϕ). Again by Lemma (7.15) we find that supp(Rqp2,∗K) ⊂ K(L). Since K(L) is

a finite subscheme of X (the bundle L being ample) we find

E′p,q2 =

{ ⊕
x∈K(L)

Rqp2,∗(K)x if p = 0;

0 otherwise.

As we only have non-zero terms for p = 0, the spectral sequence degenerates at level E′2. This

gives Hn(X ×X,K) = ⊕x∈K(L)R
np2,∗(K)x.

Comparing the two answers for Hn(X × X,K) we find that Rnp2,∗(K) = 0 for all n. By

(7.20) this implies that Hn(X,K|X×{x}) = 0 for all x. But K|X×{0} is the trivial bundle, so

taking n = 0 and x = 0 gives a contradiction. �

(7.22) Corollary. Let X be an abelian variety over a field k. Then Pic0
X/k = Ker

(
ϕ: PicX/k →KerphiPic

Hom(X,Xt)
)
.

Proof. We already know that Ker(ϕ) is a subgroup scheme of PicX/k that contains Pic0
X/k.

Hence Ker(ϕ) is the union of a number of connected components of PicX/k. By the proposition,

every k-valued point of Ker(ϕ) lies in Pic0. The claim follows. �

(7.23) Corollary. Let X be an abelian variety over a field k. Let L be a line bundle on X.LinPic0

(i) If [Ln] ∈ Pic0
X/k for some n 6= 0 then [L] ∈ Pic0

X/k. In particular, if L has finite order,

i.e., Ln ∼= OX for some n ∈ Z>1, then [L] ∈ Pic0
X/k.

(ii) We have [L⊗ (−1)∗L−1] ∈ Pic0
X/k.

(iii) We have

[L] ∈ Pic0
X/k ⇐⇒ n∗L ∼= Ln for all n ∈ Z

⇐⇒ n∗L ∼= Ln for some n ∈ Z \ {0, 1}.
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Proof. (i) Since ϕ is a homomorphism we have ϕLn(x) = n · ϕL(x) = ϕL(n · x). Hence if

[Ln] ∈ Pic0(X) then ϕL is trivial on all points in the image of nX . But nX is surjective, so ϕL
is trivial.

(ii) Direct computation shows that ϕ(−1)∗L(x) = −ϕL(x) for all L and x. Since also

ϕL−1(x) = −ϕL(x), we find that [L⊗ (−1)∗L−1] ∈ Ker(ϕ).

(iii) The first implication “⇒” was proven in (7.16) above; the second is trivial. Suppose that

n∗L ∼= Ln for some n /∈ {0, 1}. Since n∗L ∼= Ln⊗ [L⊗(−1)∗L](n
2−n)/2 it follows that L⊗(−1)∗L

has finite order, hence its class lies in Pic0
X/k. By (ii) we also have [L ⊗ (−1)∗L−1] ∈ Pic0

X/k.

Hence [L2] ∈ Pic0
X/k and by (i) then also [L] ∈ Pic0

X/k. �

(7.24) In (3.29) we have associated to any group scheme G locally of finite type over a field kNerSeveri

an étale group scheme of connected components, denoted by ̟0(G). We now apply this with

G = PicX/k for X/k an abelian variety. The associated component group scheme

NSX/k := ̟0(PicX/k)

is called the Néron-Severi group scheme of X over k. The natural homomorphism q: PicX/k →
NSX/k realizes NSX/k as the fppf quotient of PicX/k modulo Pic0

X/k; hence we could also write

NSX/k = PicX/k/Pic0
X/k .

We refer to the group

NS(X) := NSX/k(k)

as the Néron-Severi group of X. Note that NS(X) equals the subgroup of Gal(ks/k)-invariants

in NS(Xks
).

We say that two line bundles L and M are algebraically equivalent, notation L ∼alg M , if

[L] and [M ] have the same image in NS(X). As NS(X) naturally injects into NS(Xk), algebraic

equivalence of line bundles (or divisors) can be tested over k, and there it coincides with the

notion defined in Remark (6.9). Hence we can think of the Néron-Severi group scheme as being

given by the classical, geometric Néron-Severi group NS(Xks
) = NS(Xk) of line bundles (or

divisors) modulo algebraic equivalence, together with its natural action of Gal(ks/k). Note,

however, that a k-rational class ξ ∈ NS(X) may not always be representable by a line bundle

on X over the ground field k.

Let us rephrase some of the results that we have obtained in terms of the Néron-Severi

group.

(7.25) Corollary. The Néron-Severi group NS(X) is torsion-free. If n ∈ Z and L is a lineNSquadratic

bundle on X then n∗L is algebraically equivalent to Ln
2

; in other words, n∗: NS(X) → NS(X)

is multiplication by n2.

Proof. The first assertion is just (i) of Corollary (7.23). The second assertion follows from (ii)

of that Corollary together with Corollary (2.12). �

(7.26) Corollary (7.22) can be restated by saying that the natural homomorphism ϕ: PicX/k →NSHomSymm

Homsym(X,Xt) ⊂ Hom(X,Xt) factors as

PicX/k
q−→ NSX/k ֒

ψ−→ Homsym(X,Xt)
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for some injective homomorphism ψ: NSX/k →֒ Homsym(X,Xt). This says that the homomor-

phism ϕL associated to a line bundle L only depends on the algebraic equivalence class of L,

and that ϕL = ϕM only if L ∼alg M . We shall later show that ψ is actually an isomorphism;

see Corollary (11.3).

§4. Applications to cohomology.

(7.27) Proposition. Let X be an abelian variety with dim(X) = g. Cup-product gives anHodgeCohom

isomorphism ∧•H1(X,OX)
∼−→ H•(X,OX ). For every p and q we have a natural isomorphism

Hq(X,ΩpX/k)
∼= (∧qTXt,0) ⊗ (∧pT∨X,0). The Hodge numbers hp,q = dimHq(X,ΩpX/k) are given

by hp,q =
(
g
p

)(
g
q

)
.

Proof. Use (6.13) and the isomorphisms ΩpX/k
∼= (∧pT∨X,0)⊗k OX . �

(7.28) Corollary. Multiplication by an integer n on X induces multiplication by np+q onnXonCohom

Hq(X,ΩpX).

Proof. Immediate from the fact that nX induces multiplication by n on TX,0, applied to both

X and Xt. �

Before we state the next corollary, let us recall that the algebraic de Rham cohomology of

a smooth proper algebraic variety X over a field k is defined to be the hypercohomology of the

de Rham complex

Ω
•

X/k = (OX
d−→ Ω1

X/k
d−→ Ω2

X/k
d−→ · · ·) ,

with OX in degree zero. We have the so-called “stupid filtration” of this complex, by the

subcomplexes σ>pΩ
•

X/k given by

[σ>pΩ
•

X/k]
i =

{
0 for i < p

ΩiX/k for i > p.

This gives rise to a spectral sequence

Ep,q1 = Hq(X,ΩpX)⇒ Hp+q
dR (X/k)

called the “Hodge–de Rham” spectral sequence.

If k has characteristic zero then it follows from Hodge theory that this spectral sequence

degenerates at the E1-level, see Deligne [1], section 5. If k has characteristic p > 0 then this is

no longer true in general. For examples and further results we refer to Deligne-Illusie [1] and

Oesterlé [1].

As we shall now show, for abelian varieties the degeneration of the Hodge-de Rham spectral

sequence at level E1 follows from (6.12) without any restrictions on the field k.

(7.29) Corollary. Let X be an abelian variety over a field k. Then the “Hodge-de Rham”HdeRSS

spectral sequence of X degenerates at level E1.

Proof. We follow the proof given by Oda [1]. We have to show that the differentials dr: E
p,q
r →

Ep+r,q−r+1
r are zero for all r > 1. By induction we may assume that this holds at all levels < r.

(The empty assumption if r = 1.)
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Write E∗r (X) = ⊕Ep,qr , graded by total degree. Cup-product makes E∗r (X) into a connected,

graded-commutative k-algebra. By our induction assumption and the Künneth formula there is

a canonical isomorphism

E∗r (X ×X) ∼= E∗r (X)⊗k E∗r (X) .

Write µ: E∗r (X)→ E∗r (X) ⊗k E∗r (X) for the map induced by the multiplication law on X, and

write ε: E∗r (X) → E0
k(X) = k for the projection onto the degree zero component. One checks

that µ and ε give E∗r (X) the structure of a graded bialgebra over k.

Let g = dim(X). By what was shown above, E1
r (X) = H1(X,OX) ⊕ H0(X,Ω1

X/k) has

dimension 2g. Also, Eir(X) = 0 for i > 2g. The Borel-Hopf structure theorem (6.12) then gives

E∗r (X) ∼= ∧∗E1
r (X) .

Since dr is compatible with the product structure (cup-product) on E∗r (X), it suffices to

show that dr is zero on E1
r (X), which is just the space of primitive elements of E∗r (X). (See

6.17.) By functoriality of the Hodge–de Rham spectral sequence we have µ◦dr = (dr ⊗ dr)◦µ.

Therefore, for ξ ∈ E1
r (X) we have µ(dr(ξ)) = dr(ξ) ⊗ 1 + 1 ⊗ dr(ξ). This shows that dr(ξ) is

again a primitive element. But dr(ξ) ∈ E2
r (X) which, by (6.17), contains no non-zero primitive

elements. This shows that dr = 0. �

(7.30) Corollary. There is an exact sequenceHdeRCor

0 −→ Fil1H1
dR(X/k) −→ H1

dR(X/k) −→ H1(X,OX) −→ 0 ,

where Fil1H1
dR(X/k) := H0(X,Ω1

X/k)
∼= T∨X,0.

To close this section let us fulfil an earlier promise and give an example of a smooth projec-

tive variety with non-reduced Picard scheme. We refer to Katsura-Ueno [1] for similar examples.

(7.31) Example. Let k be an algebraically closed field of characteristic 3. Let E1 be the ellipticIgusaExa

curve over k given by the Weierstrass equation y2 = x3 − x. From (5.27) we know that E1 is

supersingular. Let σ be the automorphism of E1 given by (x, y) 7→ (x + 1, y). Then σ has

order 3, so that we get an action of G := Z/3Z on E1. The quotient of E1 by G is isomorphic

to P1
k; in affine coordinates te quotient map is just (x, y) 7→ y.

Let E2 be an ordinary elliptic curve over k. Let τ be the translation over a point of (exact)

order 3 on E2. Then (σ, τ) is an automorphism of order 3 of the abelian surfaceX := E1×E2; this

gives a strictly free action of G := Z/3Z on X, and we can form the quotient π: X → Y := G\X.

By (??) π is an étale morphism, so Y is again a non-singular algebraic surface. We have a

natural morphism Y → (G\E1) ∼= P1; this exhibits Y as an elliptic surface over P1. In fact, for

all P ∈ P1(k) with P 6=∞ the fibre YP above P is isomorphic to E2.

We compute h1(Y,OY ) using Hirzebruch-Riemann-Roch and Chern numbers for algebraic

surfaces. (A reference is ??.) The Euler number c2 of Y is a multiple of the Euler number of X,

and this is 0. By the Hirzebruch-Riemann-Roch formula we have

1− h1(Y,OY ) + h2(Y,OY ) = (c21 + c2)/12 = 0 ,

since c21 = 0 for every elliptic surface. By Serre duality, h2(Y,OY ) = h0(Y,Ω2
Y/k). Now we use

that H0(Y,Ω2
Y/k) is isomorphic to the space of G-invariants in H0(X,Ω2

X/k). If ωi is a basis for

H0(Ei,Ω
1
Ei/k

) then ω1 ∧ ω2 is a basis for H0(X,Ω2
X/k). But ω1 is a multiple of dy, which is

– 109 –



invariant under σ, and ω2 is translation invariant, in particular invariant under τ . In sum, we

find that h2(Y,OY ) = 1 and h1(Y,OY ) = 2.

On the other hand, π: X → Y induces a homomorphism π∗: Pic0
Y/k → Xt = Pic0

X/k. The

same arguments as in the proof of Theorem (7.5) show that Ker(π∗) ∼= µ3. On the other hand,

π∗ factors via the subscheme of G-invariants in Xt. (See Exercise ?? for the existence of such

a subscheme of G-invariants.) The point here is that we are describing line bundles on Y as

coming from line bundles L on X together with an action of G. But such an action is given by

an isomorphism ρ∗L
∼−→ pr∗XL of line bundles on G×kX. The existence of such an isomorphism

says precisely that L corresponds to a G-invariant point of Xt.

By Exercises ?? and ??, Xt ∼−→ X. The induced action of G on Xt is given by the

automorphism (σ, id). (Cf. Exercise ??) Therefore, the subscheme of G-invariants in Xt is

E
〈σ〉
1 × E2. The only geometric point of E1 fixed under σ is the origin. A computation in local

coordinates reveals that E
〈σ〉
1 is in fact the Frobenius kernel E1[F ] ⊂ E1 which can be shown to

be isomorphic to α3. In any case, we find that Pic0
Y/k is 1-dimensional, whereas we have shown

its tangent space at the identity, isomorphic to H1(Y,OY ), to be 2-dimensional. Hence Pic0
Y/k

is non-reduced.

§5. The duality between Frobenius and Verschiebung.

(7.32) Let S be a scheme of characteristic p. Recall that for any S-scheme aX : X → S we haveRelFrobRevisit

a commutative diagram with Cartesian square

X

X(p/S)
WX/S−−−−→ X

ya(p)

X

yaX

S
FrobS−−−−→ S

If there is no risk of confusion we simply write X(p) for X(p/S). Note that if aT : T → S

is an S-scheme then we have aT ◦FrobT = FrobS ◦aT and this gives a natural identification

(XT )(p/T ) = (X(p/S))T . We denote this scheme simply by X
(p)
T .

Let us write T(p) for the scheme T viewed as an S-scheme via the morphism aT(p)
:=

FrobS ◦aT = aT ◦FrobT : T → S. The morphism FrobT : T → T is not, in general, a morphism

of S-schemes, but if we view it as a morphism T(p) → T then it is a morphism over S. To avoid

confusion, let us write FrT : T(p) → T for the morphism of S-schemes given by FrobT .

Let Y be an S-scheme. Recall that we write Y (T ) for the T -valued points of Y . It is

understood here (though not expressed in the notation) that all schemes and morphisms of

schemes are over a fixed base scheme S; so Y (T ) is the set of morphisms T → Y over S. There

is a natural bijection

wY,T : Y (p)(T )
∼−→ Y (T(p)) ,

sending a point η: T → Y (p) to WY/S ◦η, which is a T(p)-valued point of Y . The composition

wY,T ◦FY/S(T ): Y (T )→ Y (T(p))
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is the map that sends y ∈ Y (T ) to y ◦FrT : T(p) → Y , which is the same as y ◦FrobT : T → Y

viewed as a morphism T(p) → Y .

(7.33) Consider an abelian variety X over a field k of characteristic p. Take S := Spec(k). IfRelFrobPic

T is any S-scheme then X ×S T(p) is the same as X(p) ×S T , and we find that

Pic
(p)
X/k(T )

∼−−−−−−−→
wPicX/k,T

PicX/k(T(p)) =

{
isomorphism classes of rigidified

line bundles (L,α) on X ×S T(p)

}

=

{
isomorphism classes of rigidified

line bundles (L,α) on X(p) ×S T

}
= PicX(p)/S(T ) .

In this way we obtain an isomorphism Pic
(p)
X/S

∼−→ PicX(p)/S , which we take as an identification.

Applying (7.32) with Y = PicX/k we find that the relative Frobenius of PicX/k over k is the

homomorphism that sends a point y ∈ PicX/k(T ) to y ◦FrobT , viewed as a morphism T(p) →
PicX/k. Because the diagram

X
(p)
T

WXT /T−−−−−→ XT

a
(p)

X

y
yaX

T
FrobT−−−−→ T

is Cartesian this just means that FPic/k: PicX/k → PicX(p)/k sends the class of a rigidified line

bundle (L,α) on XT to the class of
(
L(p), α(p)

)
on X

(p)
T , where L(p) := W ∗XT /T

L, and where

α(p): OT
∼−→ e∗L(p) = Frob∗T (e∗L) is the rigidification of L(p) along the zero section obtained by

pulling back α via FrobT .

(7.34) Proposition. Let X be an abelian variety over a field k of characteristic p. We identifyFVDualProp

(Xt)(p) = (X(p))t as in (7.33), and we denote this abelian variety by Xt,(p). Then we have the

identities

F tX/k = VXt/k: X
t,(p) → Xt and V tX/k = FXt/k: X

t → Xt,(p) .

Proof. It suffices to prove that F tX/k ◦FXt/k: X
t → Xt equals [p]Xt , because if this holds then

together with Proposition (5.20) and the fact that FXt/k is an isogeny it follows that F tX/k =

VXt/k. The other assertion follows by duality.

Let T be a k-scheme. Consider a rigidified line bundle (L,α) on XT that gives a point

of Xt(T ). As explained in (7.33) FXt/k sends (L,α) to
(
L(p), α(p)

)
with L(p) = W ∗XT /T

L.

Because WXT /T
◦FXT /T = FrobXT

, pull-back via FXT /T gives the line bundle Frob∗XT
L on XT .

But if Y is any scheme of characteristic p andM is a line bundle on Y then Frob∗Y (M) ∼= Mp; this

follows for instance by taking a trivialization of M and remarking that FrobY raises all transition

functions to the power p. The rigidification we have on F ∗XT /T
W ∗XT /T

L = Frob∗XT
L = Lp is the

isomorphism

OT = Frob∗TOT
∼−→ e∗XT

F ∗XT /T
W ∗XT /T

L = e∗
X

(p)

T

W ∗XT /T
L = Frob∗T e

∗
XT
L = (e∗XT

L)p

that is obtained from α by pulling back via FrobT , which just means it is αp. In sum, F tX/k ◦FXt/k

sends (L,α) to (Lp, αp), which is what we wanted to prove. �
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Exercises.

(7.1) Let X be an abelian variety. Let mX : X ×X → X be the group law, and let ∆X : X →Ex:mtdiagt

X ×X be the diagonal morphism. Show that (mX)t = ∆Xt : Xt×Xt → Xt, and that (∆X)t =

mXt : Xt ×Xt → Xt.

(7.2) Let L be a line bundle on an abelian variety X.Ex:Ln=OX

(i) Show that, for n ∈ Z,

n∗L ∼= OX ⇐⇒ Ln ∼= OX .

(ii) Show that, for n ∈ Z \ {−1, 0, 1},

n∗L ∼= L ⇐⇒ Ln−1 ∼= OX .

(7.3) Let X be an abelian variety over an algebraically closed field k. Show that every lineEx:L=L1L2

bundle L on X can be written as L = L1⊗L2, where L1 is symmetric and [L2] ∈ Pic0
X/k. [Hint:

By (7.23), the class of the line bundle (−1)∗L⊗ L−1 is in Pic0
X/k. As Pic0 is an abelian variety

and k = k, there exists a line bundle M on X with [M ] ∈ Pic0 and M2 ∼= (−1)∗L⊗ L−1. Now

show that L⊗M is symmetric.]

(7.4) Let P be the Poincaré bundle on X × Xt. For m, n ∈ Z, consider the endomorphismEx:(m,n)P

(m,n) of X ×Xt. Show that (m,n)∗P ∼= Pmn.

(7.5) Let P be the Poincaré bundle on X × Xt. Show that the associated homomorphismEx:phiP

ϕP : X×Xt → Xt×Xtt is the homomorphism given by ϕP(x, ξ) =
(
ξ, κX(x)

)
. [Hint: Compute

the restrictions of t(x, ξ)
∗P ⊗P−1 to X × {0} and {0} ×Xt.]

(7.6) If τ is a translation on an abelian variety, then what is the induced automorphism τ t ofEx:transldual

the dual abelian variety?

(7.7) Let X be an abelian variety over a field k. Let i: Y →֒ X be an abelian subvariety. WriteEx:AVQuotDual

q: X → Z := X/Y for the fppf quotient morphism, which exists by Thm. (4.38). Note that Z

is an abelian variety; see Example (4.40).

(i) Show that for any k-scheme T we have q∗(OXT
) = OZT

.

(ii) Prove that qt: Zt → Xt is injective and gives an isomorphism between Zt and Ker(it: Xt →
Y t)0red.

(7.8) Let L be a line bundle on an abelian variety X. For a symmetric m×m-matrix S withEx:Lsqtens

integer coefficients sij we define a line bundle L⊠S on Xm by

L⊠S :=
( m
⊗
i=1

p∗iL
sii

)
⊗
(

⊗
16i<j6m

p∗ijΛ(L)sij

)
.

If α =
(
aij
)

is an integer valued matrix of size m × n we define a homomorphism of abelian

varieties [α]X : Xn → Xm by α(x1, . . . , xn) = (y1, . . . , ym) with yi =
∑n
j=1 aijxj .

(i) Prove that [α]∗X
(
L⊠S

)
is algebraically equivalent to L⊠(tαSα).

(ii) Assume that L is a symmetric line bundle. Prove that [α]∗X
(
L⊠S

) ∼= L⊠(tαSα).

Notes. (nog aanvullen)
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Chapter VIII. The Theta group of a line bundle.

To a line bundle L on an abelian variety X we shall associate a group scheme, the theta group

G (L) of L. If the class of L is in Pic0
X/k = Xt then G (L) is an extension ofX by the multiplicative

group Gm and is commutative. If [L] 6∈ Pic0
X/k then G (L) is much smaller and in general not

commutative. The theta group is a convenient tool for studying when a line bundle descends

over an isogeny. Further we study the structure of so-called non-degenerate theta groups, and

their representations.

§1. The theta group G (L).

(8.1) Let X be an abelian variety over a field k. Let L be a line bundle on X. Write L = V(L∨)G(L)Def

for the corresponding geometric line bundle over X.

For a k-scheme T define G (L)(T ) to be the set of pairs (x, ϕ) where x ∈ X(T ) and where

ϕ: LT → t∗xLT is an isomorphism. Geometrically this means that we have ϕL: LT
∼−→ LT ,

fibrewise linear, fitting in a commutative diagram

LT
ϕL−−→ LTy

y

XT −−→
tx

XT .

Note that x is uniquely determined by ϕ, so that G (L)(T ) is in natural bijection with the set of

ϕL: LT
∼−→ LT lying over a translation on XT .

The set G (L)(T ) carries a natural group structure, with multiplication given by (x1, ϕ1) ·
(x2, ϕ2) = (x1 + x2, t

∗
x2
ϕ1 ◦ϕ2). Since the association T 7→ G (L)(T ) is functorial in T we obtain

a group functor G (L): (Sch/k)
0 → Gr.

The (fibrewise linear) automorphisms of LT lying over the identity on XT are just the

multiplications by elements of Γ(XT , OXT
)∗ = Γ(T,OT )∗. This gives an identification of Gm,k

with the kernel of the natural homomorphism (of group functors) G (L) → K(L) ⊂ X. Notice

that Gm,k is central in G (L).

(8.2) Lemma. The group functor G (L) is representable. There is an exact sequence of groupG(L)Repr

schemes

0 −→ Gm,k −→ G (L) −→ K(L) −→ 0 , (1)ThetaGr:exseq

where the map G (L)→ K(L) is given on points by (x, ϕ) 7→ x.

Proof. Since the functor K(L) is representable, it suffices to show that the homomorphism

π: G (L) → K(L) is (relatively) representable by a Gm-torsor. So, let T be a k-scheme and

x ∈ K(L)(T ). Write

M := prT,∗(L
−1
T ⊗ t∗xLT ) ,

ThetaGr, 8 februari, 2012 (635)
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which is a line bundle on T . If T ′ is a T -scheme then the ϕ: LT ′
∼−→ LT ′ such that (x, ϕ) ∈

G (L)(T ′) are precisely the nowhere vanishing sections of MT ′ . Thus, writing M∗ for the Gm,T -

torsor corresponding to M (i.e., the T -scheme obtained from the geometric line bundle M :=

V(M∨) by removing the zero section), we find that the fibre π−1(x) is representable by the

T -scheme M∗. That the sequence (1) is exact (even as a sequence of Zariski sheaves on Sch/k)

is clear from the remarks preceding the lemma and the definition of K(L). �

(8.3) We indicate another proof of (8.2). For this, consider the Gm-torsor L∗ over X associatedG(L)ReprBis

to L. Write ξ: L∗ → X for the structure morphism. Let Y = ξ−1(K(L)) = K(L) ×X L∗, the

scheme obtained by pulling back L∗ via the inclusion map K(L) →֒ X. Choose a k-rational point

P ∈ L∗(0). (This gives a trivialization L∗(0) ∼= Gm,k.) We obtain a morphism rP : G (L)→ Y by

sending a point (x, ϕ) ∈ G (L)(T ) to the image point ϕL(P ) ∈ Y (T ) ⊂ L∗(T ). It is not difficult

to see that rP gives an isomorphism of (set-valued) functors. So G (L) is represented by the

scheme Y = ξ−1(K(L)).

(8.4) Definition. Let L be a line bundle on an abelian variety. The group scheme G (L) isThetaGrDef

called the theta group of L.

(8.5) Consider the morphism [ , ]: G (L)×G (L)→ G (L) given on points by (g1, g2) 7→ [g1, g2] =eLDef

g1g2g
−1
1 g−1

2 . Since K(L) is commutative this morphism factors through Gm ⊂ G (L). The fact

that Gm is central in G (L) then implies that [ , ] factors modulo Gm × Gm. We thus obtain a

pairing

eL: K(L)×K(L)→ Gm ,

called the commutator pairing of the theta group. Note that eL is alternating, meaning that

eL(x, x) = 1 for every x ∈ K(L). For fixed x ∈ K(L)(T ) the morphisms K(L)T → Gm,T given

by y 7→ eL(x, y) resp. y 7→ eL(y, x) are homomorphisms. In sum we find that the theta group

G (L) gives rise to an alternating bilinear form eL.

The alternating form eL has the following properties.

(8.6) Proposition. (i) If f : X → Y is a homomorphism of abelian varieties and L is a lineeLProps

bundle on Y then

ef
∗(L) = eL ◦(f, f) on f−1(K(L))× f−1(K(L)) .

(ii) If L and M are line bundles on X then eL⊗M = eL · eM on K(L) ∩K(M).

(iii) If [L] ∈ Pic0
X/k then eL = 1.

(iv) For x ∈ K(L) and y ∈ n−1
X (K(L)) = K(Ln) we have eL

n

(x, y) = eL(x, ny).

Proof. (i) Note that f−1(K(L)) ⊆ K(f∗L), for if x ∈ X then

t∗xf
∗L = f∗(t∗f(x)L) . (2)ThetaGr:pullb

Now suppose T is a k-scheme and x1, x2 ∈ f−1(K(L))(T ). We can cover T by Zariski-open

subsets U such that there exist automorphisms ϕ1,L and ϕ2,L of the geometric line bundle LU ,

lying over the translations tf(x1) and tf(x2), respectively. As it suffices to show that ef
∗(L) =

eL ◦(f, f) on [f−1(K(L))× f−1(K(L))](U) for every such U , we may replace T by U .

By construction, the automorphism [ϕ1,L, ϕ2,L] of L is the (fibrewise) multiplication by

eL(f(x1), f(x2)). Then f∗ϕ1,L and f∗ϕ2,L are automorphisms of f∗L which, by formula (2), lie
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over the translations tx1
resp. tx2

on X. Since clearly [f∗ϕ1,L, f
∗ϕ2,L] = f∗[ϕ1,L, ϕ2,L], we find

that ef
∗(L)(x1, x2) = eL(f(x1), f(x2)).

(ii) If we have elements (ϕ1, x), (ϕ2, y) ∈ G (L)(T ) and (ψ1, x), (ψ2, y) ∈ G (M)(T ) then

(ϕ1,L⊗ψ1,M)◦(ϕ2,L⊗ψ2,M) = (ϕ1,L ◦ϕ2,L)⊗ (ψ1,M ◦ψ2,M) as (fibrewise linear) automorphisms of

L⊗M. The claim readily follows from this.

(iii) If the class of L is in Pic0 then K(L) = X, and since X is complete the pairing

eL: X ×X → Gm must be constant.

(iv) For n > 0 this follows by induction from (ii) and the bilinearity of the pairing eL. The

case n 6 0 then follows from (ii) and (iii). �

Let k be a field. As we have seen in (4.41), the category C of commutative group schemes

of finite type over k is abelian. In particular, given objects A and B of C we can form the

groups Extn
C

(A,B) of n-extensions of A by B. If there is no risk of confusion we shall simply

write Ext(A,B) for Ext1C(A,B). Thus, the elements of Ext(A,B) are equivalence classes of

exact sequences

0 −→ B −→ E −→ A −→ 0

where E is again an object of C.

It can be shown (but this requires some work) that C does not contain any injective or

projective objects. In particular, the computation of Ext-groups by homological methods cannot

be done “directly” in C. To repair this, one may work in an Ind- or Pro-category, cf. ?? and ??.

We shall further discuss extensions of group schemes in Chapter ??. In this chapter we only

need the following two facts.

(8.7) Fact. Let k be an algebraically closed field.ExtGmFact

(i) Write C for the category of commutative group schemes of finite type over k. If G is a

finite commutative k-group scheme then Ext1C(G,Gm) = 0. In other words, for every extension

0 → Gm,k → G → G → 0 with G commutative, there exists a section s: G → G which is a

homomorphism of group schemes.

(ii) Let G be a finite k-group scheme of prime order. If 0 → Gm,k → G → G → 0 is an

exact sequence of k-group schemes then G is commutative.

(8.8) We shall use the notion of a theta group to obtain an interpretation of Xt = Pic0
X/k asLBExtGM

being ExtC(X,Gm), where C is the category of commutative k-group schemes of finite type.

In one direction this is quite easy. Namely, suppose that L is a line bundle on X which

gives a class in Pic0. Then K(L) = X and the pairing eL is trivial. This means that G = G (L)

is a commutative group scheme fitting in an exact sequence

0 −→ Gm −→ G −→ X −→ 0. (3)ThetaGr:GmExt

Thus, if [L] ∈ Pic0
X/k then G (L) gives an element of Ext(X,Gm).

Conversely, suppose G is a commutative k-group scheme for which we have an exact se-

quence (3). Then G can be viewed as a Gm-torsor over X. Write LG for the corresponding line

bundle on X. (See Appendix ??) We claim that LG is a line bundle in Pic0
X/k with theta group

isomorphic to G. To see this, suppose that G1 and G2 are commutative k-group schemes and

that we have a commutative diagram

0 −→ Gm
j1−→ G1

π1−−→ X −→ 0

γ

y
yϕ

yf

0 −→ Gm
j2−→ G2

π2−−→ X −→ 0
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with exact rows. Here f is only required to be a morphism of schemes and ϕ is required to

be “fibrewise linear” (meaning that ϕ(j1(c) · g) = j2γ(c) · ϕ(g) for all c ∈ Gm and g ∈ G1.)

Then ϕ gives an isomorphism of Gm-torsors G1
∼−→ f∗G2, hence it induces a homomorphism

ϕ: LG1

∼−→ f∗LG2
. Now take G1 = G2 = G and let ϕ = tg be the translation over an element

g ∈ G. If x ∈ X is the image of g then we obtain a pair (x, ϕ) ∈ G (LG). Since this construction is

obviously functorial, it gives a homomorphism h: G→ G (LG), compatible with the projections

toX. In particular this shows thatK(LG) = X, so that the class of LG is in Pic0
X/k. Furthermore

it is clear that h is injective, and it follows that h is an isomorphism.

In sum, we can pass from line bundles L on X with [L] ∈ Pic0 to commutative group

schemes G as in (3) and vice versa.

(8.9) Theorem. Let X be an abelian variety over a field k. Write C for the (abelian) categoryXt=ExtGm

of commutative group schemes of finite type over k. Associating G (L) to a line bundle L with

[L] ∈ Pic0
X/k gives an isomorphism Xt(k)

∼−→ Ext1
C

(X,Gm).

Proof. All that remains to be shown is that L ∼= LG (L) as line bundles on X. This follows

from the construction in (8.3), as it shows that G (L) is (non-canonically) isomorphic to L∗ as a

Gm-torsor. �

We shall later extend this result, obtaining an isomorphism of group schemes Xt ∼−→
Ext(X,Gm). The main problem here is to set up a framework in which we can define Ext(X,Gm)

correctly.

§2. Descent of line bundles over homomorphisms.

Theta groups are a useful tool in studying when a line bundle on an abelian variety descends

over an isogeny. The basic result is in fact just a reformulation of what we have seen in (7.2).

(8.10) Theorem. Let f : X → Y be a surjective homomorphism of abelian varieties. Let LDescLB1

be a line bundle on X. Then there is a bijective correspondence between the M ∈ Pic(Y ) with

f∗M ∼= L and the homomorphisms Ker(f)→ G (L) lying over the natural inclusion Ker(f) →֒ X.

Note that such homomorphisms Ker(f) → G (L) can only exist if Ker(f) ⊆ K(L) and

Ker(f) is totally isotropic for the pairing eL.

Proof. Write V1 for the set of isomorphism classes of pairs (M,α) where M is a line bundle

on Y and α: f∗M
∼−→ L. Write V2 for the set of isomorphism classes of line bundles M on Y

such that f∗M ∼= L. Using that Aut(M) = k∗ = Aut(L) we see that the natural map V1 → V2

(forgetting α) is a bijection.

Write H = Ker(f). Then Y represents the fppf quotient of X by H. We have seen in (7.2)

that the pairs (M,α) ∈ V1 correspond to the H-actions on L compatible with the natural action

of H on X. It is an immediate translation of the definitions that such H-actions correspond to

homomorphisms H → G (L) lifting the inclusion H →֒ X. �

For isogenies over an algebraically closed field this leads to a handy criterion for when a

line bundle descends. To prove it we shall make use of a result about extensions that we stated

above.
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(8.11) Corollary. Let X and Y be abelian varieties over an algebraically closed field k. LetLBDesc2

f : X → Y be an isogeny. Then a line bundle L on X is the pull-back of a line bundle on Y if

and only if Ker(f) is a subgroup scheme of K(L) which is totally isotropic with respect to the

pairing eL.

Proof. According to the preceding theorem one must check whether Ker(f) →֒ X can be lifted

to a homomorphism Ker(f) → G (L). If it can then Ker(f) is a subgroup scheme of K(L) and

eL is trivial when restricted to Ker(f)×Ker(f).

Conversely, if Ker(f) is a totally isotropic subgroup scheme of K(L) then we consider the

extension

0 −→ Gm −→ π−1(Ker(f))) −→ Ker(f) −→ 0 ,

where π: G (L) → K(L) is the projection. Since we assume Ker(f) to be totally isotropic, the

group scheme G := π−1(Ker(f))) is commutative. By (8.7), the extension splits, i.e., there exists

a (homomorphic) section Ker(f)→ G. �

(8.12) Remarks. (i) In the “if” statement of the theorem we really need the assumption thatLBDescRem

k = k̄: if k is an arbitrary field and Ker(f) is a totally isotropic subgroup scheme of K(L) then

in general L descends to a line bundle on Y only after we pass to a finite extension of k.

(ii) The condition in (8.11) that the kernel of f is finite is necessary. IfK(L) is not finite (i.e.,

L is degenerate) then Y := K(L)0red is a nonzero abelian subvariety of X (assuming the ground

field is perfect), and the quotient Z = X/Y exists as an abelian variety; see Example (4.40). In

this situation L is not, in general, the pullback of a line bundle on Z, even though Y ⊂ K(L) is

totally isotropic with respect to eL. For example, if the class of L is in Pic0
X/k then Y = X, so

if L is non-trivial it is not a pullback from Z = {0}.
If q: X → Z is the quotient map then possibly after replacing the ground field by a finite

separable extension it is still true that there exists a line bundle M on Z such that L⊗ q∗M−1

is in Pic0
X/k; see Exercise (11.3) below.

(8.13) Definition. A level subgroup of the theta group G (L) is a subgroup scheme H̃ ⊂ G (L)LevelSgDef

such that Gm ∩ H̃ = {1}, i.e., H̃ maps isomorphically to its image H ⊂ K(L) under π.

With this notion of a level subgroup we have the following corollary to the theorem.

(8.14) Corollary. Let L be a line bundle on an abelian variety X over a field k. Then thereLBDesc3

is a bijective correspondence between the set of level subgroups H̃ ⊂ G (L) and the set of

isomorphism classes of pairs (f,M) where f : X → Y is a surjective homomorphisms and M is

a line bundle on Y with f∗M ∼= L. If H̃ corresponds to the pair (f,M) then Ker(f) = π
(
H̃
)
.

Proof. Given a level subgroup H̃ ⊂ G (L), set H := π(H̃) ⊂ K(L) and write ξ: H
∼−→ H̃ ⊂ G (L)

for the inverse of π|H̃ . The projection f : X → X/H =: Y is a surjective homomorphism and

Theorem (8.10) shows that ξ corresponds to a line bundle M on Y with f∗M ∼= L.

Conversely, if f : X → Y is a surjective homomorphism and M is a line bundle on Y

with f∗M ∼= L then the image of the corresponding homomorphism Ker(f) → G (L) is a level

subgroup. One now easily verifies that these two constructions give the desired bijection. �

Given a pair (f,M) as in the corollary, we can describe the theta group G (M) in terms

of G (L) and the level subgroup H̃.

(8.15) Proposition. Let f : X → Y be a surjective homomorphism of abelian varieties. Let LLevSgDesc
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be a line bundle on X and let M be a line bundle on Y with f∗M ∼= L. Write H̃ ⊂ G (L) for the

level subgroup corresponding to the pair (f,M). Then f−1
(
K(M)

)
⊆ K(L), the centralizer CH̃

of H̃ inside G (L) is given by

CH̃ = {g ∈ G (L) | π(g) ∈ f−1(K(M))} ,

and G (M) ∼= CH̃/H̃.

Proof. As already remarked in the proof of (8.6), we have f−1
(
K(M)

)
⊆ K(L). Write H =

Ker(f) = π(H̃) ⊂ K(L). Let ξ: H → G (L) be the homomorphism giving the canonical H-action

on L. By construction, H̃ is the image of ξ. As remarked after (7.2), such an H-action on L

(compatible with the H-action on X by translations) is nothing but a descent datum on L with

respect to the morphism f .

Let T be a k-scheme and (x, ϕ) ∈ G (L)(T ). Write y = f(x) ∈ Y (T ). Then t∗xξ: H → G (t∗xL)

gives a descent datum on t∗xL. This descent datum corresponds to the line bundle t∗yM on Y , and

we have a natural identification f∗(t∗yM) = t∗xL. Now the isomorphism ϕ: L
∼−→ t∗xL descends

to an isomorphism ψ: M
∼−→ t∗yM if and only if ϕ is equivariant with respect to the descent

data ξ and t∗xξ. This last condition precisely means that (x, ϕ) · (h, ξ(h)) = (h, ξ(h)) · (x, ϕ) for

all (h, ξ(h)) ∈ H̃, i.e., (x, ϕ) ∈ CH̃ . Thus we obtain a homomorphism γ: CH̃ → G (M).

By construction, if (x, ϕ) maps to (y, ψ) then f∗ψ = ϕ as homomorphisms from L to t∗xL.

Thus, if (x, ϕ) ∈ Ker(γ) then x ∈ H = Ker(f) and ϕ = ξ(x): L
∼−→ t∗xL. This means precisely

that (x, ϕ) ∈ H̃ ⊂ CH̃ . (Note that H̃ is commutative, being isomorphic to H, so that H̃ is

indeed contained in CH̃ .)

Conversely, if (ψ, y) ∈ G (M)(T ), then there is an fppf cover T ′ → T and an x ∈ X(T ′) with

f(x) = y. Then (f∗ψ, x) is an element of CH̃(T ′) with γ(f∗ψ, x) = (ψ, y). Thus γ is surjective

and G (M) ∼= CH̃/H̃.

Finally, it is clear from the above that CH̃ ⊆ {g ∈ G (L) | π(g) ∈ f−1(K(M))}. Conversely,

if g = (ϕ, x) ∈ G (L) with f(x) ∈ K(M) then we have shown that there exists an element of the

form (ϕ′, x) in CH̃ . As CH̃ clearly contains the central subgroup Gm,k ⊂ G (L), it follows that

also g ∈ CH̃ . �

If x is a T -valued point of K(L) for some k-scheme T then y 7→ eL(x, y) defines a homo-

morphism K(L)T → Gm,T . The bilinearity of the pairing eL implies that the map K(L) →
Hom

(
K(L),Gm

)
given on points by x 7→ eL(x,−) is a homomorphism of group schemes.

(8.16) Corollary. In the situation of the proposition we have f−1(K(M)) = H⊥ := {k ∈K(M)Cor

K(L) | eL(k, h) = 1 for every h ∈ H}. We have K(M) ∼= H⊥/H.

Proof. It easily follows from the definition of eL that CH̃ = {(x, ϕ) ∈ G (L) | x ∈ H⊥}. With

this remark the corollary directly follows from the proposition. �

§3. Theta groups of non-degenerate line bundles.

It will be helpful to reformulate some of the notions we have encountered without reference to

line bundles.

(8.17) Definition. Let k be a field. A theta-group over k is an exact sequence of k-groupAbstrThGr
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schemes

0 −→ Gm,k
i−→ G

π−→ K −→ 0

such that i(Gm,k) is contained in the center of G and K is commutative. The commutator

pairing e: K × K → Gm,k of the theta group is the alternating bilinear pairing induced by

the commutator [ , ]: G × G → G . We say that two theta groups are isomorphic if they are

isomorphic as extensions of a group scheme K by Gm,k.

Suppose that we have a theta group as above such that K is finite. If T is a k-scheme and

x ∈ K(T ) then y 7→ e(x, y) defines a homomorphism KT → Gm,T , i.e., an element of KD(T ).

In this way the pairing e gives a homomorphism ν: K → KD. The relation e(x, y) = e(y, x)−1

gives that νD = ν−1.

(8.18) Definition. A theta group G as above is said to be non-degenerate if K is finite and ifNondegThGr

ν: K → KD is an isomorphism.

Notice that the non-degeneracy condition can also be expressed by saying that i(Gm,k) is

the center of G .

As the terminology suggests, the theta group of a non-degenerate line bundle is non-

degenerate. This is a consequence of the following result.

(8.19) Proposition. Let L be a non-degenerate line bundle on an abelian variety X. If H ⊂MaxIsotrop

K(L) is a subgroup scheme which is maximal totally isotropic with respect to the pairing eL

then H = H⊥ and rank(H)2 = rank(K(L)).

Proof. It suffices to prove this over an algebraically closed field. Write f : X → X/H =: Y for

the projection. By (8.11) there is a line bundle M on Y with f∗M ∼= L.

We claim that K(M) = {1}. Suppose not. Then there is a subgroup scheme K ′ ⊂ K(M) of

prime order. By (8.7) this K ′ is totally isotropic for eM . Then (i) of (8.6) shows that f−1(K ′) is

totally isotropic for eL. As H ( f−1(K ′) this contradicts our choice of H. So indeed K(M) =

{1}. It then follows from (8.16) that H⊥ = H and by (7.6) we have rank(K(L)) = rank(H)2. �

(8.20) Corollary. If L is a non-degenerate line bundle on an abelian variety then the thetaNondegCor

group G (L) is non-degenerate.

Proof. Choose H as above. Remark that ν: K(L)→ K(L)D fits in a commutative diagram with

exact rows

0 −→ H⊥ −→ K(L) −→ K(L)/H⊥ −→ 0
yν′

yν
yν̄

0 −→ [K(L)/H]D −→ K(L)D −→ HD −→ 0 .

By definition of H⊥ the homomorphism ν̄ is injective. Now νD = ν−1 so that ν̄D: H →
[K(L)/H⊥]D is the map obtained by restricting ν−1 to H. But H = H⊥, so we find that

ν′ = (ν̄D)−1 is surjective. By rank considerations it follows that ν′ and ν̄ are isomorphisms.

Hence ν is an isomorphism. �

(8.21) Heisenberg groups. We now discuss an important example of non-degenerate theta-HeisGr

groups, the so-called Heisenberg groups.
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We work over a field k. Let H be a finite abelian group; we shall view it as a (constant)

k-group scheme. Write HD := Hom(H,Gm,k) for its Cartier dual. (If k = k one would also refer

to HD as the character group of H.) So

H ∼= (Z/d1Z)× · · · × (Z/dnZ) , HD ∼= µd1,k × · · · × µdn,k ,

with d1|d2| · · · |dn. To the pair (H,HD) we associate a Heisenberg group H ; it is defined by

H = Gm,k ×H ×HD as a k-scheme, with multiplication given by

(λ, x, χ) · (λ′, x′, χ′) = (λλ′χ′(x), x+ x′, χχ′) . (4)ThetaGr:Heisenb

Then H is a theta-group: we have an exact sequence

0 −→ Gm,k −→H −→ H ×HD −→ 0 .

The commutator pairing e: (H × HD) × (H × HD) → Gm,k is given by e((x, χ), (x′, χ′)) =

χ′(x)χ(x′)−1. As this is clearly a perfect pairing, H is non-degenerate.

The construction clearly generalizes to the case where we start with an arbitrary finite

commutative k-group scheme H. For H we now take Gm,k×H ×HD, and the group structure

is again given on points by (4). We refer to the resulting theta group as the Heisenberg group

associated to the group scheme H (or to the pair (H,HD)).

Our next goal is to show that under suitable assumptions the theta group of a line bundle

can be described as a Heisenberg group.

(8.22) Lemma. Let 0 −→ Gm,k −→ G
π−→ K −→ 0 be a non-degenerate theta group over aLagrLem

field k. Let H ⊂ K be a subgroup scheme. Consider the following conditions.

(i) H is maximal totally isotropic w.r.t. the commutator pairing e: K ×K → Gm,k,

(ii) H is totally isotropic and rank(H)2 = rank(K),

(iii) H = H⊥.

Then (iii) ⇔ (ii) ⇒ (i). If k is algebraically closed the three conditions are equivalent.

Proof. The isomorphism ν: K
∼−→ KD induces an isomorphism K/H⊥

∼−→ HD. In particular,

rank(K) = rank(H) · rank(H⊥). Now H is totally isotropic precisely if H ⊆ H⊥. This readily

gives (iii) ⇔ (ii) ⇒ (i).

To see that (i) ⇒ (iii) if k = k, let H be maximal totally isotropic and assume that

H ( H⊥. By (8.7) the extension 0 −→ Gm,k −→ π−1(H)
π−→ H −→ 0 splits, so there exists

a level subgroup H̃ ⊂ G with π(H̃) = H. Writing G ′ := π−1(H⊥)/H̃ we obtain a new theta

group 0 −→ Gm,k −→ G ′
π′

−−→ H⊥/H −→ 0. As H 6= H ′ and k = k we can choose a subgroup

scheme Γ ⊂ H⊥/H of prime order. By (8.7) π′
−1

(Γ) is commutative. It follows that the inverse

image of Γ under H⊥ → H⊥/H is totally isotropic. This contradicts the assumption that H is

maximal totally isotropic. �

(8.23) Definition. Let G be a non-degenerate theta group over a field k.LagrDef

(i) A k-subgroup scheme H ⊂ K satisfying (ii) and (iii) in (8.22) is called a Lagrangian

subgroup. If H̃ ⊂ G is a level subgroup then we say that H̃ is a Lagrangian level subgroup if

π(H̃) ⊂ K is Lagrangian.

(ii) A Lagrangian decomposition of K is an isomorphism K
∼−→ H1×H2 such that ν: K

∼−→
KD induces an isomorphism ν̄: H1

∼−→ HD
2 .
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Condition (i) in (8.22) shows that for every non-degenerate theta group over k = k there

exist Lagrangian subgroups H ⊂ K. By (8.7) every such H can be lifted (still with k = k) to a

Lagrangian level subgroup of G .

If H is a Heisenberg group then, with the notations of (8.21), H and HD are Lagrangian

subgroups. So, a necessary condition for a theta group G to be a Heisenberg group is that there

exists a Lagrangian decomposition. This is not always the case. For instance, suppose that E is

a supersingular elliptic curve over a field k of characteristic p > 0 and that G is a theta group

with finite quotient equal to E[p]. One can show that E[p] has a unique non-trivial subgroup

scheme, isomorphic to αp. It follows that G is not a Heisenberg group H as in (8.21).

If the ground field is algebraically closed and K admits a Lagrangian decomposition then

we can describe G as a Heisenberg group.

(8.24) Lemma. Suppose G is a non-degenerate theta group over an algebraically closed field k.LagrDecLem

(i) Assume that K = G /Gm,k admits a Lagrangian decomposition, say K ∼= H1×H2. Then

G is isomorphic, as a theta group, to the Heisenberg group associated to the pair (H1,H
D
1 ).

(ii) If rank(K) is prime to char(k) then K admits a Lagrangian decomposition.

Proof. (i) Lift Hi (i = 1, 2) to a Lagrangian level subgroup H̃i ⊂ G and write ξi: Hi
∼−→ H̃i for

the inverse of the projection. Write H = Gm,k ×H1×HD
1 for the Heisenberg group associated

to the pair (H1,H
D
1 ). If α: HD

1
∼−→ H2 is the inverse of ν̄D: H2

∼−→ HD
1 then the map H → G

given by

(λ, x, χ) 7→ i(λ) · ξ2(α(χ)) · ξ1(x)

gives the desired isomorphism of theta groups.

The proof of (ii) is done by the usual procedure of putting a symplectic pairing in canonical

form. For details we refer to Exercise ??. �

We apply this to non-degenerate line bundles L such thatK(L) is finite and prime to char(k).

This last condition is equivalent to saying that the isogeny ϕL: X → Xt is separable (see Exercise

??), hence we say that L is a non-degenerate line bundle of separable type.

(8.25) Corollary. Let k be algebraically closed field. Let X be an abelian variety over k andThGr=Heis

let L be a non-degenerate line bundle on X of separable type. Then there is a sequence of

integers d1|d2| · · · |dn, called the type of L such that G (L) is isomorphic to the Heisenberg group

associated to the group H = (Z/d1Z)× · · · × (Z/dnZ).

Here is another case where a theta group can be descibed as a Heisenberg group.

(8.26) Example. Let X be an abelian variety. If P = PX is the Poincaré bundle on X ×XtThGr=HeisExa

then we know from Exercise (7.5) that ϕP : X×Xt → Xt×X is given by (x, y) 7→ (y, x). Hence

K(P) = {0} and G (P) = Gm is the trivial theta group.

Next consider an isogeny h: X → Xt, and let M := (1× h)∗PX on X ×X. (If h = ϕL for

some non-degenerate line bundle L then M = Λ(L).) Note that also M = (ht × 1)∗s∗P, where

s: X × Xt ∼−→ Xt × X is the isomorphism switching the two factors. Identifying Ker(ht) =

Ker(h)D as in Thm. (7.5) we find that {0}×Ker(h) ⊂ K(M) and Ker(h)D ×{0} ⊂ K(M), and

by comparing ranks it follows that in fact K(M) = Ker(h)D ×Ker(h).

We claim that the theta group G (M) is naturally isomorphic to the Heisenberg group H

associated to the pair
(
Ker(h)D,Ker(h)

)
. We already have natural actions of Ker(h)D × {0}

and {0} × Ker(h) on M , compatible with the actions on the basis by translations; this realizes
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Ker(h)D and Ker(h) as Lagrangian level subgroups of G (M). An isomorphism H
∼−→ G (M) is

then obtained in the same manner as in the proof of (8.24).

§4. Representation theory of non-degenerate theta groups.

As we have seen in (2.27), an abelian variety X of dimension g can only be embedded in

projective spaces of dimension at least 2g. Hence we will need, at least for large g, a rather large

number of equations to describe X. In a beautiful series of papers, Mumford [1] showed how one

can nevertheless set up a systematic study of the equations defining an abelian variety. Theta

groups play a crucial role in this. To explain why, suppose we choose an ample line bundle L

on X. To find the equations for X in the projective embedding defined by (some power of) L,

we must try to describe the kernel of the map

Sym
•
H0(X,L) −→

⊕

n>0

H0(X,Ln)

given by cup-product. The key observation is that H0(X,L) has a natural action of G (L).

Under suitable assumptions we can identify G (L) with a Heisenberg group, in which case the

representation H0(X,L) can be described very precisely. This then allows to choose a basis

for H0(X,L) (the elements of which are referred to as theta functions) that has particular

properties.

What is sketched here is discussed in much greater detail in Chapter ?? below. First,

however, we shall study representations of non-degenerate theta groups.

(8.27) Definition. Let G be a theta group over a field k. If ρ: G → GL(V ) is a representationRepWtDef

of G then we say that ρ is a representation of weight n (n ∈ Z) if ρ◦ i: Gm,k → GL(V ) is given

by z 7→ zn · idV .

We shall mainly be interested in representations of weight 1.

(8.28) Theorem. Let k be an algebraically closed field. Let 0 → Gm,k → G → K → 0 be aHeisRepThm

non-degenerate theta group over k such that rank(K) is prime to char(k). Then G has a unique

irreducible representation ρ = ρG : G → GL(V ) of weight 1 (up to isomorphism). We have

dim(V )2 = rank(K).

If W is any representation of G of weight 1 then W is isomorphic to a direct sum of copies

of ρG . More precisely, if H̃ ⊂ G is a maximal level subgroup then W ∼= V ⊕a with a = dimk(W
H̃)

equal to the dimension of the subspace of H̃-invariants in W .

Proof. Choose a maximal level subgroup H̃ ⊂ G . (By (8.22) it is Lagrangian.) As rank(K) is

prime to char(k) and k = k we can view K and H̃ as constant groups.

Let τ : G → GL(W ) be a representation of weight 1. Viewing W as a module under H̃

(which is abelian) it decomposes as a direct sum of character spaces:

W =
⊕

χ∈Hom(H̃,k∗)

Wχ , with Wχ := {w ∈W | τ(h)(w) = χ(h) · w for all h ∈ H̃} .

An element g ∈ G defines a character χg ∈ Hom(H̃, k∗) by g−1 · h · g = χg(h) · h. (That is,

χg(h) = [g−1, h] ∈ Gm.) Then τ(g)Wχ = Wχ·χg
.
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As H̃ is Lagrangian, its centralizer CH̃ ⊂ G equals Gm · H̃ (cf. the proof of (8.16)) and

g 7→ χg gives an isomorphism

γ: CH̃\G
∼−→ Hom(H̃, k∗) .

As furthermore the elements of CH̃ = Gm · H̃ act on each Wχ through scalar multiplications,

it follows that: (a) all Wχ have the same dimension, and (b) if 0 6= w ∈ Wχ then the elements

τ(g)(w) span a G -submodule V ⊂W with dim(V ∩Wχ) = 1 for all χ.

Choose a section σ: Hom(H̃, k∗) ∼= CH̃\G → G of the projection G →→ CH̃\G . Suppose

that W is irreducible. Choose 0 6= w1 ∈ W1, where 1 ∈ Hom(H̃, k∗) is the trivial character.

For χ ∈ Hom(H̃, k∗) set wχ := τ(σ(χ))(w1) ∈ Wχ. Then {wχ} is a k-basis of W . If g ∈ G has

image η in Hom(H̃, k∗) then there is a unique c = c(g, χ) ∈ CH̃ such that g · σ(χ) = c · σ(η · χ).

Then the representation τ is completely described by τ(g)(wχ) = τ(c(g, χ))(wηχ). (Note that

c(g, χ) ∈ Gm ·H̃, so we know how it acts on the spaces Wψ.) As the elements c(g, χ) only depend

on the structure of G and the chosen section σ, it follows that there is at most one irreducible

representation of weight 1, up to isomorphism. Conversely, our description gives a simple recipe

of how to construct one. (See also (8.29) below.) This shows that there is a unique irreducible

representation ρ: G → GL(V ) of weight 1.

To prove the last assertions, write r = rank(K) = rank(H̃)2 and consider the subgroup

G [r] ⊂ G of elements g with gr = 1. As G is generated by Gm and G [r], a weight 1 representation

W of G is completely reducible (i.e., a direct sum of irreducible representations) if and only if it is

completely reducible as a representation of G [r]. But G [r] is a finite group of order not divisible

by char(k). Therefore all k-representations of G [r] are completely reducible. If W ∼= V ⊕a then

a = dim(W1) = dim(W H̃). �

(8.29) The standard representation of a Heisenberg group. By (8.24), the theta group G in theStRepHeis

theorem is isomorphic to a Heisenberg group H = Gm,k ×H ×HD with

H ∼= (Z/d1Z)× · · · × (Z/dnZ) , HD = Hom(H, k∗) ∼= µd1(k)× · · · × µdn
(k) .

We can take H̃ := {(1, h, 1) | h ∈ H} as a Lagrangian level subgroup. In the proof of the

theorem we have seen how to construct an irreducible weight 1 representation. The result can

be described as follows.

Let V be the space of functions on H with values in k. Then we have a representation

ρ: H → GL(V ) given by [ρ(λ, x, χ)(f)](h) = λ ·χ(h) ·f(x+h) for f ∈ V and h ∈ H. One easily

checks that this indeed gives an irreducible representation of weight 1.

More generally, let H be an arbitrary finite commutative group scheme over a field k. Write

AH := Γ(H,OH) for its affine algebra and let H = Gm,k×H×HD be the associated Heisenberg

group, as defined in (8.21). Then we have a representation

ρ: H −→ GL(AH)

by letting (λ, x, χ) ∈H act on AH by

f 7→ λ · χ · t∗x(f) ,

where we view χ as an invertible element of AH . More precisely, we should write (λ, x, χ) ∈
H (T ), where T is a k-scheme. For simplicity, assume that T = Spec(R) is affine. Then ρ(λ, x, χ)

is an R-linear automorphism of AH ⊗k R. Now notice that χ is given by an invertible element

of AH ⊗k R.
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Again this resentation ρ is irreducible of weight 1. We shall refer to it as ??.

(8.30) We now wish to lift the restrictions on the characteristic of k. In the case consideredRepGeneral

above the desired representation was realized as a representation on the space of functions on a

Lagrangian level subgroup. Therefore is natural to consider representations of G on spaces of

functions on G .

We work over an algebraically closed field k. As K is a semi-local scheme, we can trivialize

G as a Gm-torsor over K. So, we can choose an isomorphism G
∼−→ Gm ×K of K-schemes via

which the Gm-action on G corresponds to multiplication in Gm on the right hand term. Writing

K = Spec(A0) this gives G = Spec(B), with

B = A0[t, t
−1] =

⊕

i∈Z

Ai , where we set Ai := A0 · ti .

We can view Ai as the vector space of those functions f : G → A1 such that f(λx) = λi · f(x)

for all λ ∈ Gm. (This has to be read functorially: if R is a k-algebra then Ai ⊗k R = {f ∈
HomR(GR,A

1
R) | f(λx) = λi · f(x) for all λ ∈ Gm}.)

As will become clear in the proof of (8.32), the space A1 is the most interesting for us.

(That is, if we want to study representations of weight 1.) Note that dim(A1) is the square

of the dimension of the irreducible G -representation that we are looking for. We consider the

action of G × G on A1 given by

[(g, h) · f ](x) = f(h−1xg) for f ∈ A1 , (g, h) ∈ G × G and x ∈ G .

(Again this has to be read functorially.)

(8.31) Lemma. With this action A1 is an irreducible G × G -module.A1Lemma

Proof. First we look at the diagonal G -action. If g ∈ G and f ∈ A1 then (g, g) · f is the function

given by

x 7→ f(g−1xg) = f(g−1xgx−1 · x)
= f([g−1, x] · x)
= [g−1, x] · f(x) (because f ∈ A1 and [g−1, x] ∈ Gm)

= e(π(g)−1, π(x)) · f(x) .

Each γ ∈ K defines a character e(γ,−): K → Gm. If χ is any such character then χ◦π: G →
Gm ⊂ A1 can be viewed as an element of A0. The previous calculations show that G

∆−→ G×G →
GL(A1) factors through G →→ K and that the resulting action of K on A1 is given by

γ · f = [π ◦e(γ−1,−)] · f for γ ∈ K , f ∈ A1 .

Suppose that E ⊂ A1 is a G ×G -submodule. The non-degeneracy of our theta group means

that every character χ: K → Gm is of the form e(γ−1,−) for some γ ∈ K. Furthermore, the

k-characters χ form a k-basis of the k-algebra A0; see Exercise ??. It thus follows from the above

that E is an A0-submodule of A1. But A1 = A0 · t, so E is of the form IA1 with I an ideal

of A0.

So far we have only used the diagonal action of G . Using the full action of G × G again we

see that E is stable under all translations by elements of G . Combined with the previous it now

readily follows that E = (0) or E = A1 �
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We can now generalize Theorem (8.28).

(8.32) Theorem. Let G be a non-degenerate theta group over an algebraically closed field k.HeisRepBIS

Then G has a unique irreducible representation ρ = ρG : G → GL(V ) of weight 1 (up to isomor-

phism). We have dim(V )2 = rank(K). If W is any representation of G of weight 1 then W is

isomorphic to a direct sum of copies of ρG .

Proof. Let τ : G → GL(W ) be a representation of G of weight 1. Then τ gives rise to a homo-

morphism of G × G -modules r: W ∗ ⊗W → A1, by

r(ϕ⊗ w)(g) = ϕ(τ(g)(w)) for ϕ ∈W ∗ , w ∈W and g ∈ G .

Suppose that W is irreducible. Then W ∗ ⊗k W is an irreducible G × G -module. (Here we

need that k = k ! The point is that EndG×G (W ∗ ⊗W ) = EndG (W ∗) ⊗k EndG (W ). As k = k

the irreducibility of W implies that EndG (W ) = k = EndG (W ∗).) As r is obviously not the zero

map it follows from the lemma that r is an isomorphism. We conclude that A1
∼= W ⊕ · · · ⊕W

(dim(W ) factors) as a G -module, that there is a unique irreducible G -module of weight 1, and

that rank(K) = dim(A1) is the square of its dimension. We also see that A1 is completely

reducible as a G -module.

Now let W be an arbitrary G -module of weight 1 again. Then r gives a k-linear map

r′: W → Hom(W ∗, A1) = W ⊗A1, sending w ∈W to ϕ 7→ r(ϕ⊗w). From r(ϕ⊗w)(1) = ϕ(w)

we see that r′ is injective. Moreover, if we let G act on W ⊗A1 through its action on A1 then

r′ is G -equivariant. We conclude that W is isomorphic to a G -submodule of A
dim(W )
1 . As A1 is

a completely reducible G -module, W is also completely reducible. �

Exercises.

(8.1) Let k be an algebraically closed field. Let K be a finite commutative group scheme ofEx:K+pairing

order prime to char(k). Let e: K ×K → Gm be a non-degenerate alternating bilinear pairing,

i.e., e is a morphism of k-schemes such that (a) e(x, y) = e(y, x)−1, (b) for fixed x ∈ K the maps

y 7→ e(x, y) and y 7→ e(y, x) are homomorphisms, and (c) the homomorphism K → KD given

by x 7→ e(x,−) is an isomorphism.

(i) Show that K is isomorphic to a constant group scheme of the form

K ∼= (Z/d1Z)× (Z/d2Z)× · · · × (Z/dnZ) ,

where we may require that d1|d2| · · · |dn. (And if char(k) = p > 0 then p ∤ dn.)

(ii) Choose an element a ∈ K such that K is a product K = 〈a〉 ×K ′. Let d be the order of

a and let ζd ∈ k be a primitive dth root of unity. Show that there is a unique b ∈ K with

e(a, b) = ζd and e(k, b) = 1 for all k ∈ K ′.
(iii) Let K ′′ := {k ∈ K ′ | e(a, k) = 1}. Show that K decomposes as a product of groups

K = 〈a〉×〈b〉×K ′′. Also show that the restriction of e to K ′′×K ′′ is again non-degenerate.

(iv) Prove that there exists a finite commutative k-group scheme H and an isomorphism K
∼−→

H ×HD via which the pairing e corresponds to the pairing on H ×HD given by

(
(x, χ), (x′, χ′)

)
7→ χ′(x) · χ(x′)−1 .
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Chapter IX. The cohomology of line bundles.

In this chapter we study the cohomology of line bundles on abelian varieties. The main results

are the Riemann-Roch Theorem (9.11) and the Vanishing Theorem for non-degenerate line

bundles (9.14). The key step in deriving these results is the computation of the cohomology of

the Poincaré bundle on X ×Xt.

(9.1) Theorem. Let X be a g-dimensional abelian variety over a field k. Let P be the PoincaréCohPBThm

bundle on X × Xt and write p2: X × Xt → Xt for the second projection. Then the sheaves

Rnp2,∗P and the cohomology of P are given by

Rnp2,∗P =

{
0 if n 6= g;

i0(k) if n = g,

and

Hn(X ×Xt,P) =

{
0 if n 6= g;

k if n = g.

Here i0(k) denotes the skyscraper sheaf at 0 ∈ Xt with stalk k.

Proof. As the proof is a somewhat long we divide it into steps, (9.2)–(9.9).

(9.2) We look at the higher direct image sheaves Rnp2,∗P on Xt. If y ∈ Xt \ {0} then theCPBStep1

restriction of P to X × {y} is a non-trivial line bundle on X with class in Pic0. As was proven

in (7.19) such sheaves have zero cohomology. Applying (i) of (7.20), it follows that Rnp2,∗P

has support only at 0 ∈ Xt, for all n. As the closed point 0 is a zero-dimensional subscheme

of Xt we have Hi(Xt, Rnp2,∗P) = 0 for all i > 1. (Use HAG, III, Thm. 2.7 and Lemma 2.10.)

Applying the Leray spectral sequence

Ep,q2 = Hp(Xt, Rqp2,∗P) ⇒ Hp+q(X ×Xt,P)

we find that

Hn(X ×Xt,P) ∼= H0(Xt, Rnp2,∗P) . (1)CohomLB:HnP

As p2 is projective of relative dimension g we have (HAG, III, Cor. 11.2) Rnp2,∗P = 0 for all

n > g. Hence also Hn(X ×Xt,P) = 0 for n > g.

Next we apply Serre duality to the Poincaré bundle. We have P−1 ∼= (−1, 1)∗P ∼=
(1,−1)∗P; see Exercise (7.4). In particular the cohomology of P−1 is the same as that of P.

As X×Xt is an abelian variety its dualizing sheaf is trivial, and Serre duality (in the form given

by HAG, III, Cor. 7.7) gives

Hn(X ×Xt,P) ∼= H2g−n(X ×Xt,P−1)∨ ∼= H2g−n(X ×Xt,P)∨ .

Hence Hn(X × Xt,P) = 0 for all n < g too. By (1) and the fact that the Rnp2,∗P are

supported at 0 we also have Rnp2,∗P = 0 for n 6= g.

CohomLB, 8 februari, 2012 (635)
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(9.3) Let A := OXt,0 be the local ring of Xt at 0. Let m ⊂ A be the maximal ideal. It followsCPBStep2

from (1) that (Rgp2,∗P)0 is an A-module of finite length. By (??) the natural map

(Rgp2,∗P)⊗OXt κ(0) −→ Hg
(
X × {0},P|X×{0}

)
= Hg(X,OX) ∼= k

is an isomorphism. Using the Nakayama lemma, we find that (Rgp2,∗P)0 ∼= A/a for some

m-primary ideal a ⊂ A.

To complete the proof of (9.1) it remains to be shown that a = m. This is the hardest

part of the proof. We need to exploit the fact that P is the universal line bundle on X ×Xt;

thus far we have not made full use of this. In particular, we know that P is trivial over

X × {0} = X × Spec(A/m), but not over any “thickening” X × Spec(A/J) for J ( m. The

problem is how to translate this into information about Rgp2,∗P.

We shall give two proofs of the fact that a = m. The first proof uses Grothendieck duality

and is fairly short; the second relies on essentially the same ideas but is more elementary.

(9.4) Let Z be a scheme. Write Mod(Z) for the category of OZ -modules and D(Z) for itsCPBStep3

derived category. If F is a sheaf of OZ -modules and n ∈ Z, write F [n] for the object of D(Z)

represented by the complex whose only non-zero term is the sheaf F , sitting in degree −n. The

functor Mod(Z) → D(Z) given by F 7→ F [0] realizes Mod(Z) as a full subcategory of D(Z).

If C• is a complex of OZ -modules with the property that H i(C•) = 0 for all i 6= n, for some

integer n, then C• ∼= H n(C•)[−n] in D(Z).

To simplify notation we write Y := X×Xt. A corollary of Grothendieck duality, applied to

the morphism p2: Y → Xt, is that for quasi-coherent OXt -modules G we have an isomorphism

HomOY
(P, p∗2G)

∼−→ HomOXt (R
gp2,∗P, G) , (2)CohomLB:GrDual1

which is functorial in G. Before we start exploiting this, let us indicate how this is obtained

from the general machinery of Grothendieck duality.

We already know that p2 is a smooth morphism of relative dimension g and that ΩgY/Xt
∼=

OY . Consider a bounded complex F • of quasi-coherent OY -modules and a bounded complex G•

of quasi-coherent OXt -modules. Then a consequence of Grothendieck duality is that we have a

canonical isomorphism

HomD(Y )

(
F

•
, p∗2G

•
[g]
) ∼−→ HomD(Xt)(Rp2,∗F

•
, G

•
) . (3)CohomLB:GrDual2

See Hartshorne [1], Chap. III, § 11, and use that the functor p!
2 is given by G• 7→ p∗2G

•[g]; see

op. cit., Chap. III, § 2. We apply this with F • = P. We already know that Rp2,∗F
• only has

cohomology in degree g. As explained above, this implies that Rp2,∗F
• is isomorphic, in D(Xt),

to Rgp2,∗P[−g]. If we now apply (3) with G• = G[−g] for some quasi-coherent OXt -module G

then we obtain (2).

(9.5) Let J ⊂ A be a proper ideal (with A = OXt,0, as above). Write Z(J) := Spec(A/J),CPBStep4

and let i(J): Z(J) →֒ Xt be the natural closed immersion. Write Y (J) := X × Spec(A/J) =

p−1
2

(
Z(J)

)
⊂ Y . In particular, Y (m) = X × {0}. If we write P(J) for the restriction of P

to Y (J) then HomOY
(P, OY (J)) = HomOY (J)

(
P(J), OY (J)

)
.

Suppose J is an m-primary ideal. Via the natural map OXt → i(J)∗OZ(J), the structure

sheaf OZ(J) is then just the skyscraper sheaf i0(A/J) at 0 ∈ Xt with stalk A/J . Further Y (J) is

the closed subscheme of Y = X ×Xt with underlying topological space |X ×{0}| and structure

sheaf p∗2OZ(J) = OX ⊗k A/J .
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As explained in (9.3), we have Rgp2,∗P = i0(A/a) for some m-primary ideal a ⊂ A. Now

consider the commutative diagram

HomOY
(P, OY (a))

∼−→ HomOXt

(
i0(A/a), i0(A/a)

) ∼= A/a
y y y

HomOY
(P, OY (m))

∼−→ HomOXt

(
i0(A/a), i0(k)

) ∼= k ,

where the horizontal arrows are given by (2) and the vertical arrows are induced by the quotient

map A/a→ A/m = k.

We have a natural isomorphism h: P(m) = P|X×{0}
∼−→ OX . This gives us an element

h ∈ HomOY

(
P, OY (m)

)
= HomOX×{0}

(
P|X×{0}, OX×{0}

)
.

From the diagram we see that h can be lifted to an element

h̃ ∈ HomOY
(P, OY (a)) = HomOY (a)

(
P(a), OY (a)

)
.

Then h̃: P(a) → OY (a) is a homomorphism of line bundles on Y (a) which is an isomorphism

modulo m. It follows that h̃ is an isomorphism, too. This shows that the pull-back of P under

idX × i(a): X × Spec(A/a) →֒ X × Xt is trivial. By the universal property of P this implies

that i(a): Spec(A/a) →֒ Xt factors through the closed point {0} = Spec(k) ⊂ Xt. Hence a = m

and Rgp2,∗P = i0(k). This finishes our (first) proof of Theorem (9.1). �

(9.6) Our second proof that (Rgp2,∗P)0 ∼= k is not very different from the first, but it replacesCPBStep5

Grothendieck duality by more explicit arguments.

We use the notation introduced in (9.5). In particular, if J ⊂ A is a proper ideal, the second

projection p2: X ×Xt → Xt restricts to a morphism p2: Y (J)→ Z(J). We shall systematically

confuse Rgp2,∗P(J) with its A/J-module of global sections. Note that Z
(
(0)
)

= Spec(A)→ Xt

is a flat morphism; hence Rgp2,∗P
(
(0)
)

is the same as the restriction of Rgp2,∗P to Z
(
(0)
)
.

(See HAG, Chap. III, Prop. 9.3.) Thus, our goal is to prove that Rgp2,∗P
(
(0)
) ∼= k.

We apply the results about cohomology and base-change explained in (??). This gives us a

length g complex (with g = dim(X) = dim(A)) of finitely generated free A-modules

K
•

: 0 −→ K0 d0−−→ K1 d1−−→ · · · −→ Kg−1 dg−1

−−−→ Kg −→ 0 (4)CohomLB:Kdot

with the property that for all ideals J ⊂ A and all n we have

Rnp2,∗P(J) ∼= H
n(K

• ⊗A A/J) ,

functorially in A/J . (In fact, a similar statement holds with A/J replaced by an arbitrary A-

algebra, but we will not need this.) In particular H n(K•) ∼= Rnp2,∗P. But as shown in (9.2),

Rnp2,∗P = 0 for n < g; so K• is a resolution of H g := H g(K•). We want to show that

H g ∼= A/m = k.

Consider the “dual” complex

L
•

: 0 −→ L0 δ0−−→ L1 δ1−−→ · · · −→ Lg−1 δg−1

−−−→ Lg −→ 0
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where Lj := HomA(Kg−j , A), and where δj is the map induced by dg−1−j . Set

Q := H
g(L

•
) = Coker(δg−1: Lg−1 → Lg) .

The next lemma (taken from MAV, p. 127) tells us that L• is a free resolution of Q. (Note

that all H n(L•) are artinian A-modules, as easily follows from the corresponding fact for the

complex K•.)

(9.7) Lemma. Let A be a g-dimensional regular local ring. LetCohomLem

C
•

: 0 −→ C0 −→ C1 −→ · · · −→ Cg −→ 0

be a complex of finitely generated free A-modules such that all cohomology groups H j(C•) are

artinian A-modules. Then H j(C•) = 0 for all j < g.

Proof. We use induction on g. For g = 0 there is nothing to prove, so we may assume that g > 0

and that the lemma holds in smaller dimensions. Choose x ∈ m \ m2, so that A/(x) is regular

of dimension g − 1. Put C
•

:= C•/(x), so that we have an exact sequence of complexes

0 −→ C
• ·x−→ C

• −→ C
• −→ 0 .

In cohomology this gives the long exact sequence

· · · −→H
i(C

•
)
·x−→H

i(C
•
) −→H

i(C
•
) −→H

i+1(C
•
)
·x−→H

i+1(C
•
) −→ · · · .

We see from this that the H i(C
•
) are artinian modules, and by induction H i(C

•
) = 0 for all

i < g − 1. Hence multiplication by x is injective on H j(C•) for all j < g. But H j(C•) is

artinian, so it is killed by xN for N ≫ 0. This proves the induction step. �

(9.8) From (7.27) we know the cohomology of the complex K• ⊗A k = [0 → K0/mK0 →CPBStep6

K1/mK1 → · · ·]. In particular we have H 0(K• ⊗A k) = H0(X,OX) = k and H g(K• ⊗A k) =

Hg(X,OX ) = k. This gives us that H g/mH g ∼= k and Q/mQ ∼= k. By Nakayama’s Lemma

it follows that the A-modules H g and Q are both generated by a single element, so there exist

ideals a and b of A with

H
g ∼= A/a and Q ∼= A/b .

(For H g this repeats what was explained in (9.3).)

Let J ⊂ A be an ideal. Put

H0
J := Ker(K0/JK0 → K1/JK1) = H0

(
Y (J),P(J)

)
.

Applying HomA(−, A/J) to the exact sequence Lg−1/JLg−1 → Lg/JLg → Q/JQ → 0 gives

the exact sequence

0 −→ HomA(Q/JQ,A/J) −→ K0/JK0 d̄0−−→ K1/JK1 ,

which shows that

H0
J
∼= HomA(A/b + J,A/J) . (5)CohomPB:H0J
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The isomorphism (5) is functorial in the ideal J , in the sense that for J1 ⊆ J2 the natural

reduction map H0
J1
→ H0

J2
corresponds to the natural map

HomA(A/b + J1, A/J1)→ HomA(A/b + J1, A/J2) = HomA(A/b + J2, A/J2) .

We now use that, by definition of Xt, the closed point 0 ∈ Xt is the maximal closed

subscheme over which P is trivial, in the sense of (2.4). Taking J1 = b and J2 = m in the

above we find that the section 1 ∈ k = H0(X,OX) = H0
(
Y (m),P(m)

)
lifts to a global section

of P(b). With the same arguments as in (9.5) it follows that P(b) ∼= OY (b), and by the universal

property of P this is possible only if b = m.

(9.9) We have shown that L• is a free resolution of the A-module A/m = k. Another way toCPBStep7

obtain such a resolution is to use a Koszul complex. This works as follows. Choose a regular

system of parameters x1, x2, . . . , xg ∈ m, i.e., a sequence of elements which generate m and which

give a k-basis for m/m2. Consider the complex

F
•

: 0 −→ F 0 −→ F 1 −→ · · · −→ F g −→ 0

where F j = ∧jA(Ag) and where, writing x = (x1, . . . , xg) ∈ Ag, the differential

dj : ∧jA(Ag) −→ ∧j+1
A (Ag)

is given by v 7→ x ∧ v. Then F •, the so-called Koszul complex associated to the sequence x, is

also a free resolution of k.

By (??) the complexes L• and F • are homotopy equivalent. “Dualizing back” we then find

that the complex K• is homotopy equivalent to the dual of the Koszul complex F •. The first

terms of F • are given by

0 −→ A
d0−−→ Ag −→ · · · with d0: a 7→ (x1a, x2a, . . . , xga) .

The last non-zero terms of the dual complex are therefore given by

· · · −→ Ag
(d0)∗−−−−→ A −→ 0 with (d0)∗: (a1, a2, . . . , ag) 7→ x1a1 + x2a2 + · · ·+ xgag .

With this we can finally compute:

(Rgp2,∗P)0 ∼= H
g(K

•
) ∼= H

g
(
(F

•
)∗
)

= Coker
(
(d0)∗

)
= A/m = k

and this finishes the (second) proof of Theorem (9.1). �

(9.10) The following result we want to prove is the Riemann-Roch theorem for abelian varieties.EuChProps

Let X be a proper scheme of finite type over a field k. If F is a quasi-coherent OX -module

then its Euler characteristic is defined to be the integer

χ(L) :=
∑

i>0

(−1)i · dimkH
i(X,F ) .

Suppose X is projective and H is a very ample line bundle on X. Then n 7→ χ(F ⊗Hn)

is a polynomial function of n. More precisely, there is a polynomial with rational coefficients
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Φ = ΦF,H ∈ Q[t], called the Hilbert polynomial of F (with respect to H), such that Φ(n) =

χ(F ⊗Hn) for all n ∈ Z. Note that there is a natural number n0 such that Hi(X,F ⊗Hn) = 0

for all i > 0 and all n > n0; hence Φ(n) = dimkH
0(X,F ⊗Hn) for all n > n0.

This “polynomial behaviour” of the Euler characteristic with respect to its entries is a

much more general phenomenon. For instance, suppose X is a smooth proper variety over k

and F1, . . . , Fr are vector bundles on X (or, more generally, coherent OX -modules). Then the

function (n1, . . . , nr) 7→ χ(Fn1
1 ⊗ · · · ⊗Fnr

r ) is polynomial in the r-tuple of integers (n1, . . . , nr).

This is a consequence of the Hirzebruch-Riemann-Roch theorem. When X is an abelian variety

the Riemann-Roch formula takes a particularly simple form and the polynomial dependence of

χ(Fn1
1 ⊗ · · · ⊗ Fnr

r ) on the exponents ni becomes obvious; cf. (9.13).

(9.11) Riemann-Roch Theorem. Let L be a line bundle on a g-dimensional abelian vari-RRAbVar

ety X. Then

χ(L) = c1(L)g/g! and χ(L)2 = deg(ϕL) .

Thus, if L ∼= OX(D) for some divisor D then the first equation says that χ(L) equals

(Dg)/g!, where (Dg) is g-fold self-intersection number of D. Notice that, by slight abuse of

notation, we write c1(L)g for deg
(
c1(L)g

)
=
∫
X
c1(L)g.

We shall prove the theorem together with the following corollary.

(9.12) Corollary. Let f : Y → X be an isogeny. If L is a line bundle on X then χ(f∗L) =isogchi

deg(f) · χ(L).

Proof of (9.11) and (9.12). First we show that χ(L) = c1(L)g/g!. For this we use the Hirzebruch-

Riemann-Roch formula, which says that

χ(L) =

∫

X

ch(L) · td(TX) . (6)
CohomLB;HRR

Here ch(L), the Chern character of L, is the power series

ch(L) = exp
(
c1(L)

)
= 1 + c1(L) + c1(L)2/2 + · · ·

which should be thought of as a formal expression. Similiarly, td(TX), the Todd class of the

tangent bundle TX , is a formal power series in the Chern classes of TX . As TX is trivial we

have ci(TX) = 0 for all i > 1 and td(TX) = 1. This reduces (6) to the desired equality

χ(L) =
∫
X
c1(L)g/g!. Notice that, in particular,

χ(Lm) = mg · χ(L) (7)CohomLB;chiLm

for all m ∈ Z.

To prove (9.12) we may assume that k = k. Let f : Y → X be an isogeny of degree d. Then

c1(f
∗L)g = f∗

(
c1(L)g

)
in the Chow ring of Y . (Alternatively we may use any Weil cohomology,

such as ℓ-adic cohomology for some ℓ 6= char(k), or Betti cohomology in case the ground field

is C.) But c1(L)g is represented by a 0-cycle (a formal sum of points), so all that remains to be

shown is that
∫
Y
f∗[P ] = d for every point P ∈ X. This is clear if f is separable, for then f−1(P )

consists of d distinct points, each with multiplicity 1. It is also clear if f is purely inseparable,

because then f−1(P ) consists of one single point, say Q, and OY,Q is free of rank d over OX,P .

The general result follows by combining these two cases, using (5.8). This proves Cor. (9.12).
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Next we show that χ(L)2 = deg(ϕL). We first do this for non-degenerate line bundles L.

The idea is to compute χ
(
Λ(L)

)
in two different ways.

So, assume that L is non-degenerate. As usual we write Λ(L) for the associated Mumford

bundle on X ×X. We have a cartesian diagram

X ×X idX×ϕL−−−−−−→ X ×Xt

p2

y
yp′2

X −−→
ϕL

Xt .

Further we know that Λ(L) = (idX ×ϕL)∗P, and ϕL is an isogeny with kernel {1}×K(L). By

(9.1) and flat base change,

Rnp2,∗Λ(L) = ϕ∗L
(
Rnp′2,∗P

)
=

{
0 if n 6= g;

i∗OK(L) if n = g,

where i: K(L) →֒ X is the inclusion. Using a Leray spectral sequence, as in (9.2), we find

hn
(
X ×X,Λ(L)

)
=

{
0 if n 6= g;

deg(ϕL) if n = g.
(8)

CohomLB;hnLam

Here, as usual, we write hn(−) := dimHn(−). In particular,

χ
(
Λ(L)

)
= (−1)g · deg(ϕL) . (9)CohomLB;chiLam

(A quicker proof of (9) is to use (9.12), but we shall need (8) later.)

For the second computation of χ
(
Λ(L)

)
, recall that Λ(L) := m∗L ⊗ p∗1L−1 ⊗ p∗2L−1. The

projection formula therefore gives

Rnp2,∗Λ(L) = Rnp2,∗

(
m∗L⊗ p∗1L−1

)
⊗ L−1 .

We know that Rnp2,∗Λ(L) is supported on the finite subscheme K(L) ⊂ X. As L can be

trivialized over K(L) we find that

Rnp2,∗

(
m∗L⊗ p∗1L−1

)
⊗ L−1 = Rnp2,∗

(
m∗L⊗ p∗1L−1

)
.

Once again computing cohomology via a Leray spectral sequence we conclude that

Hn
(
X ×X,Λ(L)

) ∼= Hn(X ×X,m∗L⊗ p∗1L−1) for all n. (10)CohomLB;HnLamb

Now remark that (m×p1): X×X → X×X is an isomorphism with (m×p1)
∗
(
p∗1L⊗p∗2L−1

)
=

m∗L⊗ p∗1L−1. By the Künneth formula it follows that

Hn(X ×X,m∗L⊗ p∗1L−1) ∼= Hn(X ×X, p∗1L⊗ p∗2L−1) ∼=
⊕

p+q=n

Hp(X,L)⊗Hq(X,L−1) . (11)
CohomLB;Kunn

Combining (10) and (11) we find

χ
(
Λ(L)

)
= χ

(
p∗1L⊗ p∗2L−1

)
= χ(L) · χ(L−1) = (−1)g · χ(L)2 , (12)CohomLB;chichi
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where the last equality follows from (7). Comparing the two answers (9) and (12) proves that

χ(L)2 = deg(ϕL) for non-degenerate L.

Now suppose that L is degenerate. Then ϕL is not finite and, by convention, deg(ϕL) = 0.

We want to show that χ(L) = 0 too. It is still true that Λ(L) = (idX ×ϕL)∗P. We rewrite this

as

m∗L⊗ p∗2L−1 = (idX × ϕL)∗
(
P ⊗ p∗1L

)
.

The same argument as above gives that χ
(
m∗L⊗p∗2L−1

)
= (−1)g ·χ(L)2. (Notice that this part

of the above argument works without the assumption that L is non-degenerate.) If H ⊂ K(L) is

a subgroup scheme of order r then idX ×ϕL factors through the projection X×X → X×X/H,

and by (9.12) it follows that χ
(
m∗L ⊗ p∗2L−1

)
is divisible by r. But K(L) contains subgroup

schemes of arbitrarily large order (in fact, K(L)0red is an abelian subvariety of X of positive

dimension), and we conclude that χ(L) = 0. This finishes the proof of the theorem. �

(9.13) Remark. If F is a coherent sheaf on a g-dimensional abelian variety X then Hirzebruch-RRAVRem

Riemann-Roch gives χ(F ) =
∫
X

chg(F ) where chg is a certain polynomial in the Chern classes

of F . See Fulton [1], Example 3.2.3.

Looking at the proof of (9.11) we see that for non-degenerate bundles we can draw one

further conclusion.

(9.14) Vanishing Theorem. If L is a non-degenerate line bundle then there is a uniqueVanishThm

integer i (necessarily with 0 6 i 6 g) such that Hi(X,L) 6= 0.

Proof. Combining (8), (10) and (11) we have shown that

∑

p+q=n

hp(L) · hq(L−1) =

{
0 if n 6= g;

deg(ϕL) if n = g.

As all hi(L) and hj(L−1) are in Z>0 this is possible only if there are unique p and q (with

p+ q = g) such that hp(L) 6= 0 and hq(L−1) 6= 0. �

(9.15) Definition. If L is a non-degenerate line bundle then the unique index i = i(L) suchIndexDef

that hi(L) 6= 0 is called the index of L.

Note that i(L) = 0 just means that L is effective.

(9.16) Example. Let D be a divisor of degree d on an elliptic curve E. Riemann-Roch forDivECInd

curves gives χ
(
OE(D)

)
= d. It follows that

D is degenerate ⇐⇒ d = 0

D is non-degenerate of index 0 ⇐⇒ d > 0

D is non-degenerate of index 1 ⇐⇒ d < 0

(9.17) Corollary. Let X be an abelian variety over an algebraically closed field k. Let L be aThRepCor

non-degenerate line bundle on X with index i = i(L). Then Hi(X,L) is the unique irreducible

weight 1 representation of the theta group G (L).
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Proof. That Hi(X,L) is a G (L)-representation of weight 1 is clear, for instance, using Čech

cohomology. The corollary thus follows from (8.32) by a dimension count. Indeed, we have

(
dimHi(X,L)

)2
= χ(L)2 = deg(ϕL) = rank

(
K(L)

)
,

as required. �

If L is a non-degenerate line bundle with index i then χ(L) = (−1)i · hi(L). In particular,

χ(L) has sign equal to (−1)i(L). We shall later see how the index can be read off from the

Hilbert polynomial of L. As a preparation for this we collect some properties of the index as a

function on the set of non-degenerate bundles.

(9.18) Proposition. (i) Let L be a non-degenerate line bundle on a g-dimensional abelianIndexProp

variety X. Then i(L−1) = g − i(L).

(ii) “The index is (locally) constant in algebraic families”: If T is a locally noetherian k-

scheme and M is a line bundle on X × T such that all Mt := M|X×{t} are non-degenerate then

the function t 7→ i(Mt) is locally constant on T . In particular, if L is as in (i) and L′ is a line

bundle on X with [L′] ∈ Pic0
X/k then i(L) = i(L⊗ L′).

(iii) Let f : X → Y be an isogeny of degree prime to char(k). If M is a non-degenerate line

bundle on Y then f∗M is non-degenerate too and i(f∗M) = i(M).

(iv) If L is non-degenerate and m 6= 0 then Lm is non-degenerate too. Furthermore, if

m > 0 and char(k) ∤ m then i(Lm) = i(L).

(v) If L1, L2 and L1 ⊗ L2 are all non-degenerate then i(L1 ⊗ L2) 6 i(L1) + i(L2).

(vi) If H is ample and L and L⊗H are both non-degenerate then i(L⊗H) 6 i(L).

Notes: In (9.23) below we shall sharpen (iv), showing that i(Lm) = i(L) for all m > 0. In

(9.26) we shall show that (iii) holds without the assumption that deg(f) is prime to char(k). If in

(ii) the scheme T is geometrically connected then it suffices to require that Mt is non-degenerate

for some t ∈ T (as K(Mt) does not jump in such families), and the conclusion is that t 7→ i(Mt)

is constant on T . The requirement that T is locally noetherian is in fact superfluous, as we can

reduce to the “universal” case T = PicX/k.

Proof. Statement (i) was already found in the proof of (9.14). Alternatively, it follows from

Serre duality.

The first statement of (ii) follows from the fact (HAG, III, Thm. 12.8) that for all j the

function t 7→ dimk(t)H
j(X ⊗ k(t),Mt) is upper semi-continuous. The second statement follows

by applying this to the Poincaré bundle over X ×PicX/k. Alternatively, passing to an algebraic

closure of k the bundles L⊗L′ with [L′] ∈ Pic0
X/k are precisely the line bundles of the form t∗xL.

In cohomology the translation tx induces an isomorphism between Hj(X,L) and Hj(X, t∗xL).

(iii) As shown in (7.6), f∗M is again non-degenerate. We have f∗(f
∗M) = M ⊗OY

f∗OX .

We claim that the sheaf OY is a direct summand of f∗OX , hence M is a direct summand of

f∗f
∗M . Indeed, if r = deg(f) then f∗OX is locally free of rank r over OY and by assumption r

is invertible in OY . If trace: f∗OX → OY is the trace map then (1/r) · trace is a section of the

natural map OY → f∗OX , so f∗OX = OY ⊕Ker(trace).

Since f is finite, a Leray spectral sequence shows that Hi(X, f∗M) ∼= Hi(Y, f∗f
∗M) for

all i (see also HAG, III, Exercise 4.1), and we conclude that Hi(Y,M) is isomorphic to a direct

summand of Hi(X, f∗M). This proves (iii).

(iv) We have K(Lm) = m−1
(
K(L)

)
. Hence Lm is non-degenerate for m 6= 0. Now assume

thatm > 0 is relatively prime with char(k). We use the notation and the results of Exercise (7.8).
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Consider the line bundle L⊠4 on X4 given by L⊠4 = L⊠id4 = ⊗4
i=1p

∗
iL. (Here id4 denotes the

identity matrix of size 4 × 4.) It is readily seen that L⊠4 is again non-degenerate (in fact,

K
(
L⊠4

)
= K(L)4), and by the Künneth formula we have i

(
L⊠4

)
= 4 · i(L).

We write m > 0 as a sum of four squares, say m = a2 + b2 + c2 + d2. Consider the matrix

A =




a −b −c −d
b a −d c

c d a −b
d −c b a




which should be thought of as representing the quaternion a+bi+cj+dk. We have At·A = m·id4.

Now consider the homomorphism α = αA: X4 → X4 associated to A, and apply part (i) of

Exercise (7.8). This gives that α∗
(
L⊠4

)
and (Lm)⊠4 differ by something in Pic0

X/k; hence by (ii)

they have the same index. But by (iii) the index of α∗
(
L⊠4

)
equals that of L⊠4. Putting

everything together we find that

i(L) = 1/4 · i
(
L⊠4

)
= 1/4 · i

(
(Lm)⊠4

)
= i(Lm) ,

as claimed.

(v) Let i1, i2 and ι be the indices of L1, L2 and L1⊗L2, respectively. Consider the line bundle

N := p∗1L1⊗ p∗2L2 on X ×X, and let ν: X ×X → X be given by ν(x, y) = x− y. The fibre of ν

over 0 is the diagonal X ∼= ∆(X) ⊂ X×X, over which N restricts to the bundle L1⊗L2. By (ii)

it follows that all fibres of N have index ι, so that Rjν∗N = 0 for all j < ι. By a Leray spectral

sequence this implies that Hj(X×X,N) = 0 for all j < ι. But the Vanishing Theorem together

with the Künneth decomposition show that Hi1(X,L1)⊗k Hi2(X,L2) ∼= Hi1+i2(X ×X,N).

Finally, (vi) follows from (v), as it follows from (iv) that ample bundles have index 0. �

(9.19) Remark. The fact used in the proof of (iii) that OY is a direct summand of f∗OX isFrobSplitRem

not necessarily true if the degree of f is divisible by char(k). For instance, suppose X is an

abelian variety over a field k of characteristic p > 0, such that X is not ordinary, i.e., f(X) < g.

Then the relative Frobenius map FX/k: X → X(p) is an isogeny of abelian varieties, but it

can be shown that OX(p) is in this case not a direct summand of FX/k,∗OX . In the literature

one finds this as the statement that a non-ordinary abelian variety is not Frobenius split; see

Mehta-Srinivas [??].

For the proof of the following proposition we need a somewhat technical, but important

lemma.

(9.20) Lemma. Let Y be a d-dimensional projective scheme over a field. Let L1, · · · , Lr be linehiEstLem

bundles on Y . For a = (a1, . . . , ar) ∈ Zr, set |a| := |a1| + · · · + |ar| and La := La1
1 ⊗ · · · ⊗ Lar

r .

Then there is a constant C > 0, only depending on Y and the bundles Lj , such that

hi(Y,La) 6 C · (1 + |a|r)

for all i and all a ∈ Zr.

Proof. If all Li are trivial then the assertion is clear; this covers the cases d = 0 and r = 0. Next

we reduce to the case when all Lj are very ample. For this, choose a very ample bundle M such

that each of the

Mj := Lj ⊗M (1 6 j 6 r)
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is very ample, too. Suppose we know the lemma for the line bundles M1, . . . ,Mr, Mr+1. If C is

the resulting constant then for all a ∈ Zr, putting σ(a) := a1 + · · · + ar,

hi(Y,La) = hi(Y,Ma1
1 ⊗ · · · ⊗Mar

r ⊗M
−σ(a)
r+1 ) 6 C ·

(
1 + {|a|+ |σ(a)|}r

)

6 C ·
(
1 + {2|a|}r

)
6 (3r+1C) · (1 + |a|r) .

From now on we may therefore assume all Lj to be very ample.

We proceed by induction on the integer d + r. The case d + r = 0 is already dealt with.

Assume the lemma is true whenever d+ r 6 ν. As the lemma is true when r = 0, it suffices to

do the case when we have r + 1 very ample bundles, say L1, . . . , Lr and M , on a d-dimensional

projective scheme Y , such that d+ r + 1 = ν + 1.

Let Z ⊂ Y be a hyperplane section for the projective embedding given by M . For every

a ∈ Zr and b ∈ Z we have an exact sequence

0 −→ La ⊗M b−1 −→ La ⊗M b −→ (La ⊗M b)|Z −→ 0 .

In cohomology this gives an exact sequence

Hi−1(Z,La ⊗M b) −→ Hi(Y,La ⊗M b−1) −→ Hi(Y,La ⊗M b) −→ Hi(Z,La ⊗M b)

which gives

hi(Y,La ⊗M b) 6 hi(Y,La ⊗M b−1) + hi(Z,La ⊗M b) (13)CohomLB;LaMb

and

hi(Y,La ⊗M b−1) 6 hi(Y,La ⊗M b) + hi−1(Z,La ⊗M b) . (14)CohomLB;LaMb-1

By induction hypothesis we have estimates for hi(Y,La ⊗M b) when b = 0 and for the terms

hi(Z,La⊗M b). For b > 0 we get the desired estimates by iterated application of (13); for b < 0

we do the same using (14). �

(9.21) To obtain further results on the index function, we investigate in more detail whatPLH

happens in the situation of (vi) in (9.18). We fix a non-degenerate bundle L and an ample

bundle H. As remarked above, ample bundles have index 0; in other words: they are effective.

Set l = c1(L) and h = c1(H). Consider the homogeneous polynomial of degree g

P (s, t) := (sl + th)g ∈ Z[s, t] ,

whose coefficients are intersection numbers. Notice that P (m,n) = g! · χ(Lm ⊗ Hn) for all

integral m and n. Further note that P is homogeneous of degree g, so P (m,n) = mgP (1, n/m) =

g!mgΦL,H(n/m) where ΦL,H is the Hilbert polynomial of L with respect to H. In other words:

P is “the Hilbert polynomial made homogeneous of degree g”. If we want to indicate which

bundles L and H we are working with then we use the notation PL,H . For later use let us remark

that

PLm,H(s, t) = PL,H(ms, t) = mg · PL,H(s, t/m) (15)CohomLB;PLmH

for all integers m 6= 0.

(9.22) Proposition. Suppose that both L and L ⊗ H are non-degenerate, and that i(L) 6=P(1,t)Prop1

i(L⊗H). Then P (1, t) has a root in the interval [0, 1] ⊂ R.
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Proof. Let M be a square not divisible by char(k). By (iv) of (9.18) we have

i(LM ) = i(L) 6= i(L⊗H) = i(LM ⊗HM ) .

Assume that P (1, t) does not vanish on [0, 1], so that there exists a constant C > 0 with

|P (1, t)| > C for all t ∈ [0, 1]. As degenerate line bundles have zero Euler characteristic this

implies that all line bundles LM ⊗ Hn with 0 6 n 6 M are non-degenerate. Let n be the

smallest positive integer such that i(LM ⊗Hn−1) 6= i(LM ⊗Hn). Set

i1 = i(L) = i(LM ) = · · · = i(LM ⊗Hn−1)

i2 = i(LM ⊗Hn) ,

and observe that i2 < i1 by (vi) of (9.18).

Choose an effective divisor D ∈ |H| and consider the short exact sequence

0 −→ LM ⊗Hn−1 −→ LM ⊗Hn −→ (LM ⊗Hn)|D −→ 0 .

Looking at the associated long exact cohomology sequence and using that i1 > i2 we find that

Hi2(X,LM ⊗Hn) −֒→ Hi2(D,LM ⊗Hn) .

In particular, hi2(D,LM ⊗ Hn) > Mg · |P (1, n/M)|, which by our choice of C is at least

Mg · C. Since this holds with arbitrarily large M , and since D has dimension g − 1, we obtain

a contradiction with (9.20). �

(9.23) Corollary. If L is non-degenerate then i(Lm) = i(L) for all m > 0.i(Lm)Cor

Proof. Write L = H1 ⊗H−1
2 as the difference of two ample bundles. Choose M > 2 big enough

such that both polynomials PL,H1
(1, t) and PL,H2

(1, t) have no zeroes in the interval [0, 1/M ],

which is possible since PL,Hj
(1, 0) = g! · χ(L) 6= 0. By (15) it follows that for m > M both

PLm,H1
(1, t) and PLm,H2

(1, t) have no zeroes in the interval [0, 1]. By the proposition this implies

i(Lm+1) = i(Lm+1 ⊗H2) = i(Hm+1
1 ⊗H−m2 ) = i(Lm ⊗H1) = i(Lm) .

Hence for large enough m the index of Lm is independent of m. Using properties (i) and (iv)

in (9.18) the corollary follows. �

(9.24) Lemma. Let L be non-degenerate, H ample, and let P (s, t) := PL,H(s, t) be the poly-P(1,t)Lem2

nomial defined above. Suppose P (1, t) has a unique root τ ∈ [0, 1], of multiplicity µ and with

τ 6= 1. Then i(L) 6 i(L⊗H) + µ.

Proof. As PLm,Hm(s, t) = m2g · PL,H(s, t) we may assume, using (9.23), that H is very ample.

Also we may assume that i(L) 6= i(L⊗H), so that also i(Lm) 6= i(Lm ⊗Hm) for all m 6= 0.

Let m ∈ Z>0 and n ∈ Z with n < m. In the rest of the proof we shall only consider

integers m which are coprime with all denominators of rational roots of P (1, t). This ensures

that Lm ⊗Hn is non-degenerate; indeed, if Lm ⊗Hn is degenerate then P (1, n/m) = 0.

With m and n as above, suppose that i(Lm ⊗Hn−1) 6= i(Lm ⊗Hn). Note that

PLm⊗Hn−1,H(1, t) = mg · PL,H(1,
n− 1 + t

m
) ,
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so it follows from (9.22) that P (1, t) has a root in the interval [(n − 1)/m,n/m]. By the

assumptions of the lemma we conclude that for given m > 0 there is a unique n with 1 < n 6 m

(depending on m) such that

i(Lm) = · · · = i(Lm ⊗Hn−1) > i(Lm ⊗Hn) = · · · = i(Lm ⊗Hm) . (16)CohomLB;iLm

Let X =: Z0 ⊃ Z1 ⊃ Z2 ⊃ · · · be obtained by taking hyperplane sections for the projective

embedding given by H. So, Z1 ⊂ X is a hyperplane section, Z2 is a hyperplane section of Z1,

etc. We have exact sequences

0 −→ (Lm ⊗Hq−1)|Zr
−→ (Lm ⊗Hq)|Zr

−→ (Lm ⊗Hq)|Zr+1
−→ 0 . (17)CohomLB;exseq

Fix m > 0 and let n = n(m) < m be determined by (16). Set i1 := i(L) = i(Lm) and

i2 := i(L⊗H) = i(Lm ⊗Hm). Note that i1 > i2 and i(Lm ⊗Hq) > i1 for all q 6 n− 1. Similar

to what we did in the proofs of (9.20) and (9.22), we shall use the exact sequences (17) to obtain

dimension estimates for cohomology groups. As a first step, take r = 0 in (17). Since i2 < i1
we find that Hi2(X,Lm ⊗Hn) injects into Hi2(Z1, L

m ⊗Hn) and that Hj(Z1, L
m ⊗Hq) = 0

for all j < i1 − 1 and q 6 (n− 1). Next we want to take r = 1, in which case we have the exact

sequence

Hi2(Z1, L
m ⊗Hn−1) −→ Hi2(Z1, L

m ⊗Hn) −→ Hi2(Z2, L
m ⊗Hn) .

Applying the previous conclusions we see that the first term vanishes if i2 < i1− 1. If this holds

then Hi2(Z1, L
m ⊗Hn) injects into Hi2(Z2, L

m ⊗Hn); further we then find that Hj(Z2, L
m ⊗

Hq) = 0 for all j < i1 − 2 and q 6 (n − 1).

Proceeding by induction we find that if r < i1 − i2 then

Hi2(Zr−1, L
m ⊗Hn) −֒→ Hi2(Zr, L

m ⊗Hn)

and

Hj(Zr, L
m ⊗Hq) = 0 for all j < i1 − r and q 6 (n − 1).

(The induction breaks down for r > i1 − i2.) The conclusion of this (terminating) induction is

that Hi2(X,Lm ⊗Hn) maps injectively to Hi2(Zi1−i2 , L
m ⊗Hn). Comparing dimensions and

using (9.20) we find that there exists a constant C such that

∣∣mg · P (1, n/m)
∣∣ 6 C ·

∣∣mg−(i1−i2)
∣∣ (18)CohomLB;Pest

for all sufficiently large m. Here n = n(m) < m is a function of m.

Next we write P (1, t) = (t − τ)µ · R(t) where R(t) does not have roots in [0, 1]. Choose a

constant C ′ > 0 with |R(t)| > C ′ for all t ∈ [0, 1]. Combined with (18) this gives

∣∣C ′ · (n/m− τ)µ
∣∣ 6

∣∣P
(
1, n/m

)∣∣ 6 C ·
∣∣m−(i1−i2)

∣∣ (19)CohomLB;Pest2

for all sufficiently large m.

To finish the argument we distinguish two cases. First assume that τ ∈ Q. Let f be its

denominator. Recall that we only consider integers m that are coprime with f . For all such m

and all 1 6 n 6 m we have |n/m − τ | > 1/fm. Using this in (19) and letting m get large

we find the desired estimate i1 6 i2 + µ. Similarly, if τ is irrational then it suffices to show

that there is an infinite sequence of values for m, say m1,m2, . . ., and a constant C ′′ such that
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|nj/mj − τ | > C ′′/mj for all j. (Note that the n’s are still a function of the m’s, determined by

the rule that τ lies in the interval [(n−1)/m,n/m].) This is achieved by a theorem of Kronecker

which says that the fractional parts of the numbers m · τ , for m ∈ N, lie dense in the interval

]0, 1[; see Hardy and Wright [1], Chap. 23. �

After all these preparations we are now ready for the main result about the relation between

the index and the Hilbert polynomial of L.

(9.25) Theorem. (Kempf-Mumford-Ramanujam) Let L be a non-degenerate line bundle onIndHilbThm

an abelian variety X. Let H be an ample line bundle on X and write Φ(t) ∈ Z[t] for the Hilbert

polynomial of L with respect to H. (So Φ(n) = χ(L ⊗Hn) for all n.) Then all complex roots

of Φ are real, and the index i(L) equals the number of positive roots, counted with multiplicities.

Proof. Writing P (s, t) = (sl+ th)g for the 2-variable polynomial as introduced before (9.22), we

have Φ(t) = P (1, t)/g!. For the rest of the proof we may therefore work with P (1, t). Notice

that this is a polynomial of degree g.

Let τ1, . . . , τh be the real roots of P (1, t), say with multiplicities µ1, . . . , µh, respectively.

(It will be clear from the arguments below that h > 0.) Choose m ∈ Z>0 and n1, . . . , nh ∈ Z

such that τj lies in the interval [(nj − 1)/m,nj/m]. We can make these choices such that P (1, t)

has no roots of the form n/m, so that all bundles Lm ⊗Hn are non-degenerate.

For n >> 0, say n > N2, the bundle Lm⊗Hn is ample, so that i(Lm⊗Hn) = 0. Similarly,

for n 6 N1 the bundle Lm ⊗Hn is anti-ample, in which case i(Lm ⊗Hn) = g. (That h > 0 is

now clear from (9.22).)

Applying Proposition (9.22) and Lemma (9.24) we find that for every n ∈ Z,

either: P (1, t) has no root in the interval [(n− 1)/m,n/m] and i(Lm ⊗Hn−1) = i(Lm ⊗Hn),

or: n = nj (for some j), and P (1, t) has a unique root in [(n − 1)/m,n/m], of multiplicity

µj ; in this case i(Lm ⊗Hn−1) 6 i(Lm ⊗Hn) + µj .

index increases index stays
i(Lm⊗HN1 )=g by at most µj constant i(Lm⊗HN2)=0

↓ ←− ←− ↓
· · · · · · · · · ·

N1 nj−1 nj↑ ︸ ︷︷ ︸ N2

m·τj no roots

Starting at n = N2 and descending in steps of length 1 we find

g = i(N1)− i(N2) 6
∑

j

µj .

On the other hand, as P (1, t) has degree g we have
∑
j µj 6 g. The conclusion is that we have

equality everywhere: P (1, t) has all its roots real and i(Lm ⊗Hnj−1) = i(Lm ⊗Hnj ) + µj for

all j. This also gives that

i(L) = i(Lm) = i(Lm ⊗H0) =
∑

j;τj>0

µj ,

and the theorem is proven. �
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(9.26) Corollary. Let f : X → Y be an isogeny. If L is a non-degenerate line bundle on YIndHilbCor

then i(L) = i(f∗L).

Proof. Choose and ample line bundle H on Y . By (9.12), the Hilbert polynomial of f∗L with

repsect to the ample bundle f∗H is just deg(f) times the Hilbert polynomial of L with respect

to H. Now apply the theorem. �

The reason that in (9.25) we restrict ourselves to non-degenerate bundles is that only for

such bundles the index is well-defined. Without this restriction we still have a quantative result,

though.

(9.27) Theorem. Let L be a line bundle on an abelian variety X over a field k. Let H be an0Multipl

ample line bundle on X and write Φ(t) ∈ Z[t] for the Hilbert polynomial of L with respect to H.

Then the multiplicity of 0 as a root of Φ equals the dimension of K(L).

Proof. Write Y := K(L)0red, which is an abelian subvariety of X. There exists an abelian

subvariety Z ⊂ X such that the homomorphism ν: Y × Z → X given by (y, z) 7→ y + z is an

isogeny; see Exercise ?? or Theorem (12.2) below. Let M := (ν∗L)|{0}×Z . Note that M is a

non-degenerate bundle on Z. We claim that ν∗L differs from p∗ZM by an element in Pic0
(Y×Z)/k.

Indeed, if we let N := ν∗L ⊗ p∗ZM−1 then K(N) contains both {0} × Z (because N|{0}×Z is

trivial) and Y × {0} (because N|Y×{0} = L|Y and Y ⊂ K(L)); hence K(N) = Y × Z, which

by Cor. (7.22) means that the class of N lies in Pic0
(Y×Z)/k. Writing l = c1(L) and m = c1(M)

we therefore have ν∗l = p∗Zm. Let g = dim(X) and s = dim(Z), and write h = c1(H). Using

Corollary (9.12) we find

deg(ν) · Φ(t) = deg(ν) · (l + t · h)g =
(
ν∗(l + th)

)g
=
(
p∗Zm+ t · ν∗h

)g

=

s∑

j=0

(
g

j

)(
(p∗Zm)j · (ν∗h)g−j

)
· tg−j ,

since mj = 0 if j > s = dim(Z). Moreover, ms 6= 0 because M is non-degenerate; and because

ν∗h is an ample class then also (p∗Zm)s · (ν∗h)g−s 6= 0. This shows that Φ(t) is exactly divisible

by tg−s. �
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Chapter X. Tate modules, p-divisible groups, and the fundamental group.

If X is an abelian variety over the complex numbers, the associated analytic manifold can be

described as a complex torus V/Λ, with V a C-vector space and Λ ⊂ V a lattice. Topologically

this is a product of spheres, and the fundamental group can be identified with Λ ∼= Z2g (with

g = dim(X)). Many properties of X can be expressed in terms of this lattice, and in fact we see

that Λ together with the complex structure on V = Λ⊗Z R completely determines X.

Over an arbitrary ground field, we can no longer naturally associate a lattice of rank 2g

to a g-dimensional abelian variety (see ??), and we have to look for a substitute for Λ. The

starting point is the remark that, over C, the fundamental group is also the group of covering

transformations of the universal covering of X, and its pro-finite completion classifies the finite

coverings of X. Analytically, such finite coverings can be described as V/Λ′ → V/Λ where

Λ′ ⊂ Λ is a subgroup of finite index; the covering group is then Λ/Λ′. In particular, one finds

that any finite covering is dominated by a covering of the form [n]X : X → X (which corresponds

to taking Λ′ = nΛ), which has covering group isomorphic to the n-torsion subgroup X[n] ⊂ X.

This leads to a description of the pro-finite completion of π1(X, 0) as the projective limit of the

finite groups X[n]. (Cf. Cor. (10.37).)

Finite coverings of X, as well as torsion points of X, can be studied over arbitrary ground

fields. Restricting to the ℓ-primary part, for a prime number ℓ, we are led to consider the so-

called Tate-ℓ-module TℓX of X, which is a good ℓ-adic analogue of the fundamental group, and

which can be defined in elementary terms. These Tate modules turn out to be very useful, and

will play an important role in the study of endomorphisms.

If the ground field has positive characteristic p then the Tate-p-module of X has a somewhat

different structure than the TℓX for ℓ 6= p, and there is another object, called the p-divisible

group, that contains finer information. This p-divisble group, denoted X[p∞], will be introduced

in the second paragraph.

In the second half of the chapter we give a brief introduction to Grothendieck’s theory of

the algebraic fundamental group. We then compute the (algebraic) π1 of an abelian variety, and

show that it can indeed be expressed—as already suggested above—in terms of Tate modules.

Throughout this chapter we work over a field k. We let ks denote a separable closure of k and

k an algebraic closure. The letter ℓ is reserved for a prime number different from char(k).

§1. Tate-ℓ-modules.

(10.1) LetX be a g-dimensional abelian variety over a field k. Let ℓ be a prime number differentXln

from char(k). As we have seen in (5.9) the group scheme X[ℓn] has rank ℓ2ng, and since this is

not divisible by char(k), Cor. (4.48) shows that X[ℓn] is étale-étale.

In (3.26) we have seen that a finite étale group scheme is fully described by its group of

ks-valued points equipped with its natural action of Gal(ks/k). In the case of X[ℓn] this means

we have to look at the group X[ℓn]
(
ks
)

of ℓn-torsion points in X(ks), equipped with its natural

Galois action.

TateBT, 8 februari, 2012 (635)

– 141 –



Multiplication by ℓ on X induces a homomorphism of group schemes ℓ: X[ℓn+1] → X[ℓn].

Under the correspondence of (3.26) it corresponds to the homomorphism of abstract groups

ℓ: X[ℓn+1]
(
ks
)
→ X[ℓn]

(
ks
)
, (1)TateBT:lXln

which is Gal(ks/k)-equivariant. For varying n these maps make the collection
{
X[ℓn]

(
ks
)}
n∈Z>0

into a projective system of abelian groups with Gal(ks/k)-action.

(10.2) Definition. Let X be an abelian variety over a field k, and let ℓ be a prime number dif-TlXDef

ferent from char(k). Then we define the Tate-ℓ-module of X, notation TℓX, to be the projective

limit of the system
{
X[ℓn]

(
ks
)}
n∈Z>0

with respect to the transition maps (1). In other words,

TℓX := lim
(
{0} ℓ←− X[ℓ]

(
ks
) ℓ←− X[ℓ2]

(
ks
) ℓ←− X[ℓ3]

(
ks
) ℓ←− · · ·

)
.

If char(k) = p > 0 then we define

Tp,étX := lim
(
{0} p←− X[p]

(
k
) p←− X[p2]

(
k
) p←− X[p3]

(
k
) p←− · · ·

)
.

In concrete terms this means that an element of TℓX is a sequence x = (0, x1, x2, . . .) with

xn ∈ X(ks) an ℓn-torsion point, and with ℓ · xn+1 = xn for all n. The addition on TℓX is

done coordinatewise, and if we have an ℓ-adic number a = (a0, a1, a2, . . .) with ai ∈ Z/ℓiZ and

ai+1 mod ℓi = ai, then a · x = (0, a1x1, a2x2, . . .).

In practice we often simply call TℓX the Tate module of X, especially when the choice of ℓ

plays no particular role.

Note that for ℓ 6= char(k) we get the same module TℓX if in the definition we replace

X[ℓn]
(
ks
)

by X[ℓn]
(
k
)
; see Prop. (5.11). In fact, we prefer to state the definition using the

separable closure ks, as we usually want to consider TℓX with its natural action of Gal(ks/k);

see below. For the definition of Tp,étX, it does make a difference that we work with torsion

points over k (and not ks); see (5.24).

Though the definition of Tp,étX is perfectly analogous to that of TℓX, this “Tate-p-module”

is not really a good analogue of the Tate-ℓ-modules. This is why we use a slightly different

notation for it. See further the discussion in § 2.

(10.3) It follows from (5.11) that TℓX is (non-canonically) isomorphic toTlXBasics

lim
(
{0} ℓ←− (Z/ℓZ)2g

ℓ←− (Z/ℓ2Z)2g
ℓ←− (Z/ℓ3Z)2g

ℓ←− · · ·
)

= Z2g
ℓ .

In other words, TℓX is a free Zℓ-module of rank 2g. We also introduce

VℓX := TℓX ⊗Zℓ
Qℓ ,

a Qℓ-vector space of dimension 2g.

But Tℓ is not just a Zℓ-module. We have a natural action of Gal(ks/k) on the projective

system
{
X[ℓn]

(
ks
)}

, and this gives rise to an integral ℓ-adic representation

ρℓ: Gal(ks/k)→ GL(TℓX) .
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We refer to Appendix ?? for some basic notions on ℓ-adic representations. If there is no risk of

confusion we use the same notation ρℓ for the ℓ-adic representation with values in GL(VℓX).

Note that we can find back the group scheme X[ℓn] from TℓX with its Galois action, since

TℓX/ℓ
nTℓX ∼= X[ℓn]

(
ks
)
. Therefore, knowing the Tate-ℓ-module with its action of Gal(ks/k) is

equivalent to knowing the full projective system of group schemes X[ℓn].

(10.4) The group Qℓ/Zℓ is the union of its subgroups ℓ−nZℓ/Zℓ. Phrased differently, Qℓ/Zℓ isTlAltDef

the inductive limit of the system {Z/ℓnZ}n>0, where the transition maps are the homomorphisms

Z/ℓnZ →֒ Z/ℓn+1Z given by (1 mod ℓn) 7→ (ℓ mod ℓn+1).

The definition of the Tate-ℓ-module may be reformulated by saying that

TℓX = Hom
(
Qℓ/Zℓ,X(ks)

)
,

where we take homomorphisms of abstract groups. Indeed,

Hom
(
Qℓ/Zℓ,X(ks)

)
= lim
←−
n

Hom
(
Z/ℓnZ,X(ks)

)
= lim
←−
n
X[ℓn]

(
ks
)
,

where in the last term the transition maps are given by multiplication by ℓ. Concretely, if

(0, x1, x2, . . .) with xn ∈ X[ℓn](ks) is an element of TℓX then the corresponding homomorphism

Qℓ/Zℓ → X(ks) sends the class of ℓ−n to xn. In this description the Gal(ks/k)-action on TℓX

is induced by the Galois action on X(ks).

(10.5) A homomorphism f : X → Y gives rise to a Zℓ-linear, Gal(ks/k)-equivariant mapTlf

Tℓf : TℓX → TℓY . It sends a point (0, x1, x2, . . .) of TℓX to the point
(
0, f(x1), f(x2), . . .

)

of TℓY .

Suppose f is an isogeny with kernel N ⊂ X. Applying Hom(Qℓ/Zℓ,−) to the exact sequence

0 −→ N(ks) −→ X(ks) −→ Y (ks) −→ 0 we obtain an exact sequence

0 −→ TℓX
Tℓf−−→ TℓY −→ Ext1

(
Qℓ/Zℓ, N(ks)

)

−→ Ext1
(
Qℓ/Zℓ,X(ks)

)
−→ Ext1

(
Qℓ/Zℓ, Y (ks)

)
,

(2)
TateBT:TXTY

where the Ext terms are computed in the category Ab of abelian groups.

Let us first try to understand the term Ext1
(
Qℓ/Zℓ, N(ks)

)
. We use that if A and B are

abelian groups, multiplication by an integer n on Ext1(A,B) equals the map induced by [n]A
(multiplication by n on A), and also equals the map induced by [n]B .

Write N = Nℓ ×N ℓ with N ℓ a group scheme of order prime to ℓ and Nℓ a group scheme of

ℓ-power order. If m is the order of N ℓ then multiplication by m kills N ℓ(ks) but is a bijection

on Qℓ/Zℓ. Hence

Ext1
(
Qℓ/Zℓ, N(ks)

)
= Ext1

(
Qℓ/Zℓ, Nℓ(ks)

)
× Ext1

(
Qℓ/Zℓ, N

ℓ(ks)
)

= Ext1
(
Qℓ/Zℓ, Nℓ(ks)

)
.

Next consider the long exact sequence

· · · −→ Hom
(
Qℓ, Nℓ(ks)

)
−→ Hom

(
Zℓ, Nℓ(ks)

)

−→ Ext1
(
Qℓ/Zℓ, Nℓ(ks)

)
−→ Ext1

(
Qℓ, Nℓ(ks)

)
−→ · · · .

(3)
TateBT:ExtN

For a sufficiently big Nℓ(ks) is killed by ℓa, so multiplication by ℓa induces the zero map on

all terms in (3). On the other hand, multiplication by ℓa is a bijection on Qℓ and therefore
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induces an bijection on the terms Exti
(
Qℓ, Nℓ(ks)

)
. Hence the terms Hom

(
Qℓ, Nℓ(ks)

)
and

Ext1
(
Qℓ, Nℓ(ks)

)
vanish, and the conclusion is that

Ext1
(
Qℓ/Zℓ, N(ks)

) ∼= Hom
(
Zℓ, Nℓ(ks)

) ∼= Nℓ(ks) . (4)TateBT:Ext1N

Write E1(f): Ext1
(
Qℓ/Zℓ,X(ks)

)
→ Ext1

(
Qℓ/Zℓ, Y (ks)

)
for the map induced by f . We

claim it is injective. If the ground field k is perfect, so that ks = k, then we know from

Cor. (5.10) that X(ks) is a divisible group, and is therefore an injective object in the category

of abelian groups. Hence in this case Ext1
(
Qℓ/Zℓ,X(ks)

)
= 0. In the general case, we first

choose an isogeny g: Y → X such that g ◦f = [n]X for some positive integer n. Then E(g ◦f) is

multiplication by n on Ext1
(
Qℓ/Zℓ,X(ks)

)
. Now write n = ℓm · n′ with ℓ ∤ n′. Multiplication

by n′ is a bijection on Qℓ/Zℓ; so it suffices to show that E1(ℓm) is injective. But if we take

f = ℓm then the sequence (2) becomes

0 −→ TℓX
ℓm−−→ TℓX

δ−→ Ext1
(
Qℓ/Zℓ,X[ℓm](ks)

)

−→ Ext1
(
Qℓ/Zℓ,X(ks)

) E1(ℓm)−−−−−→ Ext1
(
Qℓ/Zℓ,X(ks)

)
,

and it follows from (4) that δ is surjective. This proves our claim.

Finally we remark that the maps in (2) are equivariant for the natural Galois actions on all

terms. To summarize, we have the following conclusion.

(10.6) Proposition. Let f : X → Y be an isogeny of abelian varieties over a field k, with ker-TfProp

nel N . If ℓ is a prime number with ℓ 6= char(k) then we have an exact sequence of Zℓ
[
Gal(ks/k)

]
-

modules

0 −→ TℓX
Tℓf−−→ TℓY −→ Nℓ(ks) −→ 0

where Nℓ(ks) is the ℓ-Sylow subgroup of N(ks).

(10.7) Corollary. If f : X → Y is an isogeny then for all ℓ 6= char(k) the induced mapTfCor

Vℓf : VℓX → VℓY is an isomorphism.

(10.8) The construction of the Tate module makes sense for arbitrary group varieties. Thus, ifTlG

G is a group variety over k and ℓ 6= char(k) then we can form

TℓG := lim
(
{0} ℓ←− G[ℓ]

(
ks
) ℓ←− G[ℓ2]

(
ks
) ℓ←− G[ℓ3]

(
ks
) ℓ←− · · ·

)
.

In some cases the result is not very interesting. For instance, TℓGa = 0. But the Tate module of

the multiplicative group Gm is a fundamental object; so much so that it has a special notation:

we write

Zℓ(1) := TℓGm = lim
(
{1} ( )ℓ

←−−− µℓ(ks)
( )ℓ

←−−− µℓ2(ks)
( )ℓ

←−−− µℓ3(ks)
( )ℓ

←−−− · · ·
)
.

(In this case we of course use multiplicative notation.) As a Zℓ-module, Zℓ(1) is free of rank 1.

The action of Gal(ks/k) is therefore given by a character

χℓ: Gal(ks/k)→ Zℓ
∗ = GL

(
Zℓ(1)

)
,

called the ℓ-adic cyclotomic character.
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As discussed in Appendix ??, if T is any ℓ-adic representation of Gal(ks/k) then we de-

fine T (n), called “T twisted by n”, to be

{
T ⊗Zℓ

Zℓ(1)
⊗n if n > 0,

T ⊗Zℓ
Zℓ(−1)⊗−n if n 6 0,

where Zℓ(−1) := Zℓ(1)
∨ and Zℓ(1)

⊗0 is defined to be Zℓ with trivial Galois action. Concretely, if

ρ is the Galois action on T then T (n) is isomorphic to T as a Zℓ-module, but with σ ∈ Gal(ks/k)

acting via χℓ(σ)n · ρ(σ).

(10.9) Proposition. We have a canonical isomorphismTlXt

TℓX
t ∼= (TℓX)∨

(
1
)
.

Proof. By Thm. (7.5) we have Xt[ℓn] ∼= X[ℓn]D, and therefore

Xt[ℓn]
(
ks
) ∼= Hom

(
X[ℓn]

(
ks
)
, k∗s

)
= Hom

(
X[ℓn]

(
ks
)
, µℓn(ks)

)

as groups with Galois action. Now take projective limits. �

§2. The p-divisible group.

If char(k) = p > 0 then the “Tate-p-module” Tp,étX is in many respects not the right object

to consider. For instance, whereas TℓX (for ℓ 6= char(k), as always) has rank 2g over Zℓ,

independent of ℓ, the rank of the module Tp,étX equals the p-rank of X, and as we know this is

an integer with 0 6 f(X) 6 g. In particular, Tp,étX could be zero.

We have seen that the Tate-ℓ-module captures the full system of group schemes X[ℓn]. That

this system can be encoded into a single Zℓ-module with Galois action is due to the fact that

X[ℓn] is étale for every n. So we should really consider the full system of group schemes X[pn].

It turns out that it is most convenient to put these into an inductive system, and in this way

we arrive at the p-divisible group of an abelian variety.

Let us now first give the definition of a p-divisible group in a general setting.

(10.10) Definition. Let S be a base scheme. A p-divisible group over S, also called a Barsotti-BTDefGen

Tate group over S, is an inductive system

{
Gn ; in: Gn → Gn+1

}
n∈N

, in other words: G1
i1−→ G2

i2−→ G3
i3−→ · · · ,

where:

(i) each Gn is a commutative finite locally free S-group scheme, killed by pn, and flat when

viewed as a sheaf of Z/pnZ-modules;

(ii) each in: Gn → Gn+1 is a homomorphism of S-group schemes, inducing an isomorphism

Gn
∼−→ Gn+1[p

n].

Homomorphisms of p-divisible groups are defined to be the homomorphisms of inductive

systems of group schemes.

– 145 –



The flatness condition in (i) of the definition can be rephrased in more elementary terms,

as in the following lemma.

(10.11) Lemma. Let S be a scheme. Let p be a prime number. If H is an fppf sheaf ofBTFlatLem

Z/pnZ-modules on S then the following are equivalent:

(i) H is flat as a sheaf of Z/pnZ-modules;

(ii) Ker(pi) = Im(pn−i) for all i ∈ {0, 1, . . . , n}.
Proof. We closely follow Messing [1], Chap. I, § 1. For (i) ⇒ (ii), start with the exact sequence

Z/pnZ
pn−i

−−−→ Z/pnZ
pi

−→ Z/pnZ .

If H is flat over Z/pnZ then −⊗H gives an exact sequence

H
pn−i

−−−→ H
pi

−→ H (5)TateBT:HHH

and we see that (ii) holds.

For the proof of (ii) ⇒ (i) we use some results of Bourbaki [2]. These results are stated in

the context of modules over rings, but they carry over (with the same proofs) to the setting of

sheaves.

We use the flatness criterion, loc. cit., Chap. III, § 5, Thm. 1 together with ibid., Prop. 1.

This tells us that H is flat over Z/pnZ if and only if the following two conditions hold:

(a) H/pH is flat as a sheaf of Fp-modules;

(b) Tor
Z/pnZ
1 (Z/piZ,H) = 0 for all i > 0.

But (a) is trivially true, as Fp is a field. To see that (b) holds, start with

0 −→ Z/pn−iZ
pi

−→ Z/pnZ −→ Z/piZ −→ 0 .

This gives a long exact sequence

0 −→ Tor
Z/pnZ
1 (Z/piZ,H) −→ H/pn−iH

pi

−→ H −→ H/piH −→ 0 .

But assumption (ii), equivalent to the exactness of (5), says precisely that pi: H/pn−iH → H is

injective. �

(10.12) Let {Gn; in} be a p-divisible group over S. If m and n are natural numbers then theBTGenRem

composition

im,n: Gm
im−−→ Gm+1

im+1−−−→ · · · im+n−1−−−−−→ Gm+n

gives an identification Gm
∼−→ Gm+n[p

m]. Hence we may view Gm as a subgroup scheme

of Gm+n.

On the other hand, since Gm+n is killed by pm+n the map [pm]: Gm+n → Gm+n factors

through Gm+n[p
n] = Gn. If there is no risk of confusion we simply write pm: Gm+n → Gn for

the induced homomorphism. By Lemma (10.11) this last map is an epimorphism. Hence the

sequence

0 −→ Gm
im,n−−−→ Gm+n

pm

−−→ Gn −→ 0 (6)TateBT:ExSeq

is exact.
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(10.13) Given a p-divisible group as in the above definition, we may consider the Gn as fppfBTfppf

sheaves on S and form the limit

G := lim
−→
n

Gn ,

in the category of fppf sheaves of abelian groups. We can recover Gn from G by Gn = G[pn].

If
{
Gn
}

and
{
Hn

}
are two p-divisible groups and we form G := lim

−→
Gn and H := lim

−→
Hn,

then the homomorphisms from
{
Gn
}

to
{
Hn

}
are just the homomorphisms from G to H as

fppf sheaves. In other words, by passing from the inductive system
{
Gn
}

to the limit G we can

identify the category of p-divisible groups over S with a full subcategory of the category of fppf

sheaves in abelian groups over S.

An fppf sheaf G is (or “comes from”) a p-divisible group if and only if it satisfies the

following conditions:

(i) G is p-divisible in the sense that [p]G: G→ G is an epimorphism;

(ii) G is p-torsion, meaning that G = lim
−→n

G[pn];

(iii) the subsheaves G[pn] are representable by finite locally free S-group schemes.

To go back from a sheaf G satisfying these conditions to a p-divisible group as defined

in (10.10), take Gn := G[pn], and let in: Gn → Gn+1 be the natural inclusion. It follows

from (i) that [pn]G is an epimorphism for all n, and this implies that for all m and n we have

an exact sequence as in (6). By Lemma (10.11), we conclude that each Gn is flat as a sheaf of

Z/pnZ-modules; hence the system {Gn; in}n is a p-divisible group. As a further simplification,

it can be shown that it suffices to require (iii) for G[p]; see Messing [1], Chap. I, § 1.

We can go one step further by remarking that, as a consequence of (ii), a p-divisible group G

has a natural structure of a sheaf in Zp-modules. More concretely, suppose we have a p-adic

number a = (a1, a2, . . .) with ai ∈ Z/piZ. Then a acts on Gn as multiplication by an; this gives

a well-defined Zp-module structure on the limit G because the diagrams

Gn
an·−−→ Gn

in

y
yin

Gn+1 −−−−→
an+1·

Gn+1

are commutative. Homomorphisms of p-divisible groups are automatically Zp-linear. In partic-

ular, Hom(G,H) has a natural structure of a Zp-module.

(10.14) Remark. The name “p-divisible group” refers to condition (i) in (10.13). But we seeBTNameRem

that the requirement for an fppf sheaf G to be a p-divisble group in the sense of Def. (10.10) is

stronger than only this condition. Thus, strictly speaking the terminology “p-divisible group” is

not correct. This is one of the reasons that some prefer the terminology “Barsotti-Tate group”,

after two of the pioneers in this area.

(10.15) If G = lim
−→

Gn is a p-divisible group over a connected base scheme S then, by definition,BTheight

the group scheme G1 is locally free and killed by p. It follows that the rank of G1 equals ph for

some integer h. (Use Exercise (4.4).) This integer h = h(G) is called the height of G. It readily

follows from (6) and Lemma (4.46) that Gn, which is again locally free, has rank pnh.

Over an arbitrary basis S, we define the height of a p-divisible group G as the locally

constant function |S| → Z>0 given by s 7→ h
(
G(s)

)
.
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(10.16) Definition. Let X be an abelian variety over a field k. Let p be a prime number.BTAVDef

Then we define the p-divisible group of X, notation X[p∞], to be the inductive system

{
X[pn]

}
n>0

with respect to the natural inclusion homomorphisms X[pn] →֒ X[pn+1].

Note that X[p∞] has height 2g, where g = dim(X).

(10.17) A homomorphism f : X → Y of abelian varieties over k induces a homomorphismfpinftyDef

f [p∞]: X[p∞]→ Y [p∞] of p-divisible groups.

If we take f = [n]X for some integer n then the induced endomorphism of X[p∞] is mul-

tiplication by n, which for n 6= 0 is surjective (as a homomorphism of fppf sheaves). Using

Prop. (5.12) it follows that if f is an isogeny then f [p∞] is an epimorphism of fppf sheaves.

Hence if f is an isogeny with kernel N we find an exact sequence of fppf sheaves

0 −→ Np −→ X[p∞]
f [p∞]−−−−→ Y [p∞] −→ 0 ,

where we write N = Np ×Np with Np of p-power order and Np a group scheme of order prime

to p.

(10.18) Let us return to the general context of a p-divisible group G over a base scheme S.SerreDual

Applying Cartier duality to (6) gives an exact sequence

0 −→ GDn −→ GDm+n −→ GDm −→ 0 .

In particular, taking m = 1 this gives homomorphisms ιn: G
D
n → GDn+1. The inductive system{

GDn ; ιn
}

is again a p-divisible group; it is called the Serre dual of G.

A homomorphism f : G → H induces a dual homomorphism fD: HD → GD; in this way

G 7→ GD gives a contravariant functor from the category of p-divisible groups over S to itself.

The collection of isomorphisms (GDn )D
∼−→ Gn give a canonical isomorphism (GD)D

∼−→ G.

It is immediate from the defnitions that the Serre-dual of G has the same height as G.

(10.19) Proposition. If X/k is an abelian variety then we have a canonical isomorphismBTXt

Xt[p∞] ∼= X[p∞]D .

Proof. Immediate from Thm. (7.5) and the definition of the Serre dual. �

(10.20) Like the construction of a Tate module, the definition of a p-divisible group also makesGmhatDef

sense for certain other commutative group varieties. Beyond abelian varieties, the main example

of interest is the p-divisible group Gm[p∞] associated to Gm. By definition, Gm[p∞] is the

inductive system of group schemes µpn with respect to the natural inclusions µpn →֒ µpn+1 . If

we work over a field k and view Gm[p∞] as an fppf sheaf on Spec(k) then we have

Gm[p∞]
(
R
)

=
{
x ∈ R∗

∣∣ xpn

= 1 for some n > 0
}
,

for any k-algebra R. The height of Gm[p∞] is 1.
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The Serre-dual of Gm[p∞] is the p-divisible group Qp/Zp, i.e., the inductive limit of constant

group schemes Z/pnZ with respect to the inclusion maps Z/pnZ
∼−→ pZ/pn+1Z ⊂ Z/pn+1Z.

(10.21) As we have seen in Prop. (4.45), a finite commutative group scheme over a field k is, inetlocBT

a canonical way, an extension of an étale group scheme by a local group scheme. An immediate

consequence of this is that any p-divisible group G = lim
−→

Gn over k is an extension

1 −→ Gloc −→ G −→ Gét −→ 1 (7)TateBT:GGGseq

of the “ind-étale” p-divisible group Gét = lim
−→

Gn,ét by the “ind-local” p-divisible group Gloc =

lim
−→

Gn,loc. To simplify terminology, the prefix “ind-” is often omitted; e.g., G is called an étale

p-divisible group if G
∼−→ Gét.

If k is perfect then the sequence (7) splits. See Exercise (10.1).

Combining the above with the Serre-duality functor G 7→ GD of (10.18), we can further

decompose Gloc as an extension of a local-local p-divisble group by a local-étale one. Here we

extend the terminology introduced in (4.42) in an obvious way to p-divisible groups. Similarly,

Gét is an extension of an étale-local p-divisible group by an étale-étale one.

(10.22) If G is a p-divisible group over k, viewed as an fppf sheaf, then we define its Tate-p-TpofBT

module by TpG := Hom
(
Qp/Zp, G(k)

)
. Concretely, we take the limit of the projective system

G1(ks)
π1,1←−−− G2(ks)

π1,2←−−− G3(ks)
π1,3←−−− · · · .

As usual, TpG is a Zp-module that comes equipped with a continuous action of Gal(ks/k).

It is clear from the definitions that TpG only sees the étale part of G, i.e., the canonical

map TpG→ TpGét is an isomorphism. It follows that TpG is a free Zp-module of rank h(Gét).

If p 6= char(k) then clearly the Tate module of X[p∞] is the same as the Tate-p-module

of X as defined in (10.2). The Tate module of Gm[p∞] is Zp(1).

(10.23) Thus far we have not made any assumptions on the prime p in relation to the char-BTpchark

acteristic of the ground field k. But if p 6= char(k) then it follows from Prop. (4.47) that any

p-divisible group G over k is étale-étale. More precisely, Gks
is non-canonically isomorphic to

(Qp/Zp)
h(G). In this case it is an easy exercise to show that the functor G 7→ TpG gives an

equivalence from the category of p-divisible groups over k to the category of free Zp-modules

of finite rank equipped with a continuous action of Gal(ks/k). This functor is compatible with

duality, in the sense that Tp(G
D) is canonically isomorphic to (TpG)∨(1).

In sum, for p 6= char(k), a p-divisible group carries the same information as the correspond-

ing Tate module, and we typically work with the latter. (To stress that p 6= char(k) we shall use

the letter ℓ rather than p.) By contrast, if char(k) = p > 0 then a p-divisible group in general

contains finer information than the associated Tate module.

(10.24) To conclude this general section on p-divisible groups, let us discuss the relation withBTFormGp

formal groups. (??TO BE COMPLETED??)

§3. The algebraic fundamental group—generalities.
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In Topology one defines the fundamental group π1(X,x) of a space X with base point x ∈ X
as the group of homotopy classes (rel. {0, 1}) of paths γ: [0, 1] → X with γ(0) = γ(1) = x.

Now suppose we want to define the fundamental group of an algebraic variety over an arbitrary

field. Working with the Zariski topology does not give reasonable answers—for instance, any

two algebraic curves over the same field are homeomorphic as topological spaces! Further, the

above topological definition via paths does not have an obvious “algebraic” analogue that works

well. (In fact, an algebraic analogue of homotopy theory was developed only in the 1990’s; see

Morel and Voevodsky [1].)

Assuming that X is locally connected and locally simply connected, an alternative descrip-

tion of π1(X,x) is that it is the automorphism group of the universal covering X̃ → X. See

for instance Massey [1] or Rotman [1]. In this description the fundamental group becomes the

group which classifies topological coverings of X. This is similar to Galois theory of fields, and it

was one of Grothendieck’s fundamental insights that it is possible to develop an abstract Galois

theory of which both are special instances. Using finite étale morphisms as coverings, this theory

also applies to algebraic schemes and gives rise to a notion of an algebraic fundamental group.

We shall now recall the definition of the algebraic fundamental group π1(X, x̄), and some

basic properties. For further introduction we refer to SGA1. On a more advanced level, but

very readable, is Deligne [4], § 10. We shall write π1 for the algebraic fundamental group and

use the notation πtop
1 for the fundamental group in the classical setting of topological spaces.

(10.25) Definition. Let X be a scheme. By an étale covering of X we mean a finite étaleEtCovDef

morphism Y → X. (Do not confuse this with the notion of a covering for the étale topology.) We

write FEt/X ⊂ Sch/X for the full subcategory of such étale coverings. Note that the morphisms

in FEt/X are automatically again étale coverings. We say that an étale covering f : Y → X

dominates the étale covering g: Z → X if there exists a morphism h: Y → Z with f = g ◦h.

Fix an algebraically closed field Ω and a geometric point x̄: Spec(Ω) → X. We define a

functor

Fx̄: FEt/X → Sets

by Fx̄(f : Y → X) =
{
y ∈ Y (Ω)

∣∣ f(y) = x
}
. In other words, Fx̄ associates to an étale covering

of X the set of geometric points lying over x̄.

(10.26) Definition. (Grothendieck) Assume X to be locally noetherian and connected. ThenPi1Def

the algebraic fundamental group π1(X, x̄) is defined to be the automorphism group of the func-

tor Fx̄.

(10.27) Example. Suppose X = Spec(k) is the spectrum of a field. The geometric point x̄Pi1Field

corresponds to an embedding σ: k →֒ Ω. An étale covering of X is a finite disjoint union

of schemes Spec(L), where k ⊂ L is a finite separable field extension. For such a scheme

Y = Spec(L) we have

Fx̄(Y ) =
{
embeddings τ : L →֒ Ω with τ|k = σ

}
.

Write ks for the separable closure of k inside Ω. Clearly, every element of Gal(ks/k) gives

an automorphism of the functor Fx̄. Conversely, if α ∈ Aut(Fx̄) and ξ ∈ ks then the inclusion

k(ξ) ⊂ Ω gives an Ω-valued point of Spec
(
k(ξ)

)
lying above x̄, in other words, an element

i ∈ Fx̄
(
Spec(k(ξ))

)
. Then α(i) is another embedding of k(ξ) into Ω that extends σ. Sending ξ
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to its image under α(i) defines an element of Gal(ks/k). These two constructions are inverse to

each other, so we find a canonical isomorphism of pro-finite groups

π1

(
Spec(k), x̄

) ∼= Gal(ks/k) .

Notice that the elements of π1

(
Spec(k), x̄

)
do not directly appear as automorphisms of

the field ks. Rather, if α ∈ π1

(
Spec(k), x̄

)
corresponds to β ∈ Gal(ks/k) then α describes

the effect that β has on all embeddings L →֒ ks (= the geometric points lying over x̄ in the

covering Spec(L) → X). So, to phrase it in a more topological way, the point here is that an

automorphism of the “universal covering” of X is completely determined by its effect on the

points in the fibre over the base point x̄.

(10.28) Theorem. (Grothendieck) Assume X to be locally noetherian and connected. ThenPi1Thm

π1 = π1(X, x̄) is a pro-finite group, and Fx̄ induces an equivalence of categories

FEt/X
eq−−→
(

finite

π1-sets

)
,

where the right hand side denotes the category of finite sets with a continuous action of π1(X, x̄).

For the proof of this theorem we refer to SGA1, in particular Exp. V. Note that in case

X = Spec(k) we have already seen this result in (3.25).

From now on, whenever we consider an algebraic fundamental group, it is assumed that the

scheme in question is locally noetherian and connected.

We shall briefly review some basic properties of the fundamental group. Proofs may be

found in SGA1. Note that some of the results discussed below are ingredients of the proof of

Thm. (10.28), rather than being consequences of it.

(10.29) Dependence on the choice of a base point. Suppose we have two geometric pointspi1DepBP

x̄1: Spec(Ω1)→ X and x̄2: Spec(Ω2)→ X; here the (algebraically closed) fields Ω1 and Ω2 may

be different, and may even have different characteristics. The theorem implies that there is an

equivalence of categories
(

finite

π1(X, x̄1)-sets

)
eq−−→
(

finite

π1(X, x̄2)-sets

)
. (8)

TateBT:pi1BP

Notice that this equivalence is not canonical, as it depends on the choice of a quasi-inverse of

the equivalence Fx̄2
. Now it is not difficult to show that the equivalence in (8) is induced by

an isomorphism of topological groups π1(X, x̄1)
∼−→ π1(X, x̄2). Hence up to isomorphism the

fundamental group of the (connected!) scheme X does not depend on the chosen base point.

As in topology, a more elegant way to express that the fundamental group does not depend

on the chosen base point is to work with the fundamental groupoid. See SGA1, Exp. V, sect. 5

or Deligne [4], § 10.

(10.30) Functoriality. Let f : Y → X be a morphism between connected, locally noetherianpi1Funct

schemes. Let ȳ be a geometric point of Y , and write x̄ = f(ȳ). Associating to an étale covering

X ′ → X its pull-back Y ′ := (X ′×X Y )→ Y gives a functor f∗: FEtX → FEtY , and Fx̄ = Fȳ ◦f∗.

In particular, every automorphism of the functor Fȳ induces an automorphism of Fx̄, and this

gives a canonical homomorphism

f∗: π1(Y, ȳ)→ π1(X, x̄) .
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If g: Z → Y is a second morphism then (f ◦g)∗ = f∗ ◦g∗.

If f : Y → X is an étale covering (still with X and Y connected and locally noetherian),

one shows that f∗ gives an isomorphism

π1(Y, ȳ)
∼−→ Stab(ȳ) ⊂ π1(X, x̄) ,

where Stab(ȳ) is the stabilizer of the point ȳ ∈ f−1(x̄) under the natural action of π1(X, x̄)

on f−1(x̄). Indeed, if g: Z → Y is an étale covering of Y , then f ◦g is an étale covering of X

and g−1(ȳ) ⊂ (f ◦g)−1(x̄). If σ ∈ Stab(ȳ) ⊂ π1(X, x̄) then its natural action on (f ◦g)−1(x̄)

preserves the subset g−1(ȳ); hence σ induces an automorphism of the functor Fȳ. This gives a

homomorphism Stab(ȳ)→ π1(Y, ȳ) inverse to f∗.

Conversely, if H ⊂ π := π1(X, x̄) is an open subgroup (equivalently, a subgroup of finite

index) then π/H is a finite set with a natural action of π by left multiplication, so by Thm. (10.28)

there exists an étale covering fH : YH → X such that we have an isomorphism γ: f−1
H (x̄)

∼−→ π/H

as π-sets. Since the π-action on π/H is transitive, YH is connected. If we let ȳ ∈ f−1
H (x̄)

be the geometric point with γ(ȳ) = (1 mod H) then Stab(ȳ) = H as subgroups of π, and

the pair (Y, ȳ) is uniquely determined up to isomorphism over X. In this way we obtain a

bijective correspondence between pairs (Y, ȳ) up to X-isomorphism (with connected Y ) and

open subgroups of π1(X, x̄). As a variant, we may forget the choice of a geometric point ȳ

above x̄; then we get a bijective correspondence between connected étale coverings Y → X up

to isomorphism over X and conjugacy classes of open subgroups of π1(X, x̄).

(10.31) Geometric and arithmetic fundamental group. Let X be a geometrically connectedpi1GeomAr

scheme of finite type over a field k. Let ks be a separable closure of k and write X̄ := X ×k ks.
Choose a geometric point x̄ of X̄ , and write x̄′ for its image in X. Then there is an exact

sequence

1 −→ π1(X̄, x̄)
p∗−−→ π1(X, x̄

′)
s∗−−→ Gal(ks/k) −→ 1 , (9)TateBT:pi1seq

where the homomorphisms are induced by the projection p: X̄ → X and the structural morphism

s: X → Spec(k), and where we use the isomorphism of (10.27). If x̄: Spec(Ω) → X factors

through a k-rational point x: Spec(k)→ X then x∗: Gal(ks/k)→ π1(X, x̄) is a section of s∗.

The group π1(X̄, x̄) is referred to as the geometric fundamental group of X. The “full” fun-

damental group π1(X, x̄) is occasionally called the arithmetic fundamental group. If char(k) = 0

or if X is proper over k then π1(X̄, x̄) does not change under extension of scalars to a bigger

separably closed field. More precisely, if L is a separably closed field containing ks such that x̄

lifts to a geometric point x̃ of X×kL, then the natural map γ: πalg
1 (X×kL, x̃)→ πalg

1 (X×kks, x̄)
is an isomorphism. Note however that for char(k) > 0 and X not proper, γ need not be an

isomorphism; see SGA1, Exp. X, Sect. 1.

Writing Out(π) := Aut(π)/Inn(π) for the group of outer automorphisms of a group π, the

exact sequence (9) gives rise to a homomorphism

Gal(ks/k)→ Out
(
π1(X̄, x̄)

)
.

In the special case that x̄ factors through x: Spec(k)→ X, this naturally lifts (via the section x∗)

to a homomorphism

Gal(ks/k)→ Aut
(
π1(X̄, x̄)

)
.

(10.32) Comparison with the topological fundamental group. Let X be a variety over C.pi1CompTop

Choose a base point x ∈ X(C). Let us write πtop
1 (X,x) for the usual fundamental group
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of X(C) with its analytic topology. If Y → X is an étale covering then the induced map on

points Y (C) → X(C) is a finite topological covering (taking the analytic topology on both

sides). Since πtop
1 (X,x) naturally acts on the fibre of Y (C) over x, we obtain a homomorphism

πtop
1 (X,x)→ π1(X,x). It can be shown that this map induces an isomorphism

[
πtop

1 (X,x)
]∧ ∼−→ πalg

1 (X,x) ,

where the left hand side denotes the pro-finite completion of πtop
1 , that is, the projective limit of

all its finite quotients. The geometric content of this statement is that every finite topological

covering of X can be realised as an algebraic variety which is finite étale over X, and this

algebraic structure is unique up to isomorphism over X.

Note that πtop
1 (X,x) may not be residually finite, i.e., it may happen that the natural

homomorphism πtop
1 → [πtop

1 ]∧ is not injective. (For examples, see Toledo [1].) Geometrically

this means that the natural map from the universal covering X̃ ofX (in the context of topological

spaces) to the “algebraic universal covering” X̃alg, obtained as the projective limit of all finite

étale coverings of X, is not injective.

(10.33) Galois coverings. As before, let X be a connected, locally noetherian scheme. Fix aGalCovs

geometric base point x̄ ∈ X(Ω). If we claim that the theory of the fundamental group can be

viewed as an abstract Galois theory, one may expect that certain étale coverings Y → X play

the role of Galois extensions.

Consider an étale covering f : Y → X with Y connected. Choose a base point ȳ ∈ Y (Ω)

above x̄. For simplicity of notation, write π := π1(X, x̄), and let H ⊂ π be the stabilizer of ȳ. As

discussed in (10.30), we have an isomorphism f∗: π1(Y, ȳ)
∼−→ H, and we get an identification

π/H
∼−→ Fx̄(Y ) of finite sets with π-action. Write N := Nπ(H) ⊂ G for the normaliser of H.

Let G := Aut(Y/X) be the group of automorphisms of Y over X. Note that Y is affine

over X (as Y → X is finite), so any G-equivalence class in |Y | is contained in an affine subset,

and there exists a quotient of Y by G.

By Theorem (10.28), G maps isomorphically to the automorphism group of Fx̄(Y ) as a π-

set. Using the above description we readily find that the latter group is isomorphic to (N/H)opp,

the opposite group of N/H. Indeed, if a ∈ N/H then ϕa: π/H → π/H given by gH 7→ gaH is

a well-defined automorphism of π-sets, any automorphism is of this form, and ϕb ◦ϕa = ϕab.

We conclude that G is finite and that its natural action on Fx̄(Y ) is faithful. As this holds

for any choice of the base point x̄, it follows that G acts freely on Y . Hence the morphism

Y → X factors as a composition of two étale coverings Y → (G\Y ) → X. From the given

description of G we then see that the following conditions are equivalent:

(i) the group G acts transitively on Fx̄(Y );

(ii) the group G acts simply transitively on Fx̄(Y );

(iii) the natural map f̄ : G\Y → X is an isomorphism, i.e., X is the quotient of Y under G;

(iv) the subgroup H = f∗π1(Y, ȳ) ⊂ π1(X, x̄) is normal.

If these conditions are satisfied we say that f : Y → X is a Galois covering with group G, and

we have an exact sequence of groups

1 −→ π1(Y, ȳ) −→ π1(X, x̄) −→ Aut(Y/X)opp −→ 1 .

(Caution: we here only consider étale coverings. The terminology “Galois covering” is also used

in the context of ramified coverings.)
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Using condition (ii), it readily follows from Theorem (10.28) that every étale covering Z →
X with connected Z is dominated by a Galois covering.

Suppose we have étale coverings g: Z → Y and f : Y → X, where all three schemes are

connected and locally noetherian. Suppose h := f ◦g: Z → X is a Galois covering. Then g is

a Galois covering, too. Further, f is Galois if and only if Aut(Z/Y ) ⊂ Aut(Z/X) is a normal

subgroup, and if this holds then we have a short exact sequence

1 −→ Aut(Z/Y ) −→ Aut(Z/X) −→ Aut(Y/X) −→ 1 .

§4. The fundamental group of an abelian variety.

We now specialize to the case of an abelian variety. The key result of this paragraph is a theorem

of Lang and Serre which says that, for an abelian variety X, the finite étale coverings f : Y → X

with a rational point eY ∈ f−1(eX) are precisely the separable isogenies with target X.

(10.34) Proposition. Let X be a complete variety over a field k. Suppose given a pointMAVApp4

e ∈ X(k) and a k-morphism m: X × X → X such that m(x, e) = x = m(e, x) for all x ∈ X.

Then X is an abelian variety with group law m and origin e.

Proof. Let g := dim(X), and write x · y for m(x, y). Consider the morphism τ : X×X → X ×X
given by τ(x, y) =

(
x · y, y

)
. (If the proposition is true then τ is the universal right translation.)

We have τ−1(e, e) = {(e, e)}, so the image of τ has dimension 2g. (We use a standard result

on the dimension of the fibres of a morphism; see HAG, Chap. II, Exercise 3.22.) As X ×X is

complete and irreducible, it follows that τ is surjective.

We reduce the problem to the case that k is algebraically closed. Namely, supposem induces

a group structure on X(k), with origin e. Then for every x ∈ X(k) the translation τx: y 7→ x · y
is an automorphism of Xk as a variety, and by the argument of Prop. (1.5) it follows that X

is non-singular. It also follows that τ induces a bijection on k-valued points. Hence τ gives a

purely inseparable extension on function fields. On the other hand, by looking at the restrictions

of τ to {e} ×X and X ×{e} we see that the tangent map of τ at (e, e) is an isomorphism. The

conclusion is that τ is an isomorphism. Now define i: X → X by i(y) = p1

(
τ−1(e, y)

)
. Using

that X is geometrically reduced and that we know the group axioms to hold on X(k), it follows

that m, i and e define the structure of an abelian variety on X. Hence to complete the proof

of the proposition, we may assume that k = k and it suffices to prove that m gives a group

structure on X(k).

Consider the closed subscheme Γ ⊂ X × X given by Γ :=
{
(x, y)

∣∣ x · y = e
}
. Then

Γ = τ−1
(
{e} × X

)
, so the surjectivity of τ implies that the second projection p2: Γ → X

is surjective. Let Γ1 ⊂ Γ be an irreducible component with p2(Γ1) = X. Notice that Γ1 is

complete, and that dim(Γ1) > g. Further note that p−1
1 (e) ∩ Γ =

{
(e, e)

}
= p−1

2 (e) ∩ Γ; this

implies that (e, e) ∈ Γ1. Again by comparing dimensions it follows that p1: Γ1 → X is surjective,

too.

Define f : Γ1×X×X → X by f
(
(x, y), z, w

)
= x·

(
(y·z)·w

)
. We have f

(
Γ1×{e}×{e}

)
= {e}.

Applying the rigidity lemma we find

x ·
(
(y · z) · w

)
= z · w for all (x, y) ∈ Γ1 and z, w ∈ X. (10)TateBT:xyzw
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As a particular case, taking w = e, we have

x · (y · z) = z for all (x, y) ∈ Γ1 and z ∈ X. (11)TateBT:xyz=z

Now fix y ∈ X(k). Choose any x ∈ X(k) with (x, y) ∈ Γ1, and any z ∈ X(k) with (y, z) ∈ Γ1.

(Such x and z exist, as we have shown the two projections pi: Γ1 → X to be surjective.) Then

(11) gives x = x · (y · z) = z · e = z. The conclusion is that y has a unique left and right inverse

in X(k). Finally, multiplying (10) from the left by y = x−1, and using (11) gives

y · (z · w) = y ·
(
x ·
(
(y · z) · w

))
= (y · z) · w ,

which shows that the group law on X(k) is associative. �

(10.35) Lemma. Let Z be a k-variety, let Y be an integral k-scheme of finite type, and letLSLem

f : Y → Z be a smooth proper morphism of k-schemes. If there exists a section s: Z → Y of f

then all fibres of f are irreducible.

Proof. As the fibres of f are non-singular, it suffices to show that they are connected. Write

Z ′ := Spec(f∗OY ), and consider the Stein factorization

f = g ◦f ′: Y
f ′

−−→ Z ′
g−→ Z .

By Zariski’s connectedness theorem (EGA III, Thm. 4.3.1) the morphism f ′ has connected fibres.

The composition f ′ ◦s is a proper section of g, hence it induces an isomorphism of Z with a closed

subscheme of Z ′. As g is finite and Z ′ is integral, it follows that g is an isomorphism. �

(10.36) Theorem. (Lang-Serre) Let X be an abelian variety over a field k. Let Y be a k-LangSer

variety and eY ∈ Y (k). If f : Y → X is an étale covering with f(eY ) = eX then Y has the

structure of an abelian variety such that f is a separable isogeny.

Proof. With Proposition (10.34) at our disposal, the main point of the proof is to construct

the group law mY : Y × Y → Y . Let ΓX ⊂ X × X × X be the graph of the multiplication

on X, and write Γ′Y ⊂ Y × Y × Y for the pull-back of ΓX via f × f × f . Let ΓY ⊂ Γ′Y be

the connected component containing the point (eY , eY , eY ), and if I ⊆ {1, 2, 3} write qI for

the restriction of the projection pI : Y
3 → Y I to ΓY . We want to show that the projection

q12: ΓY → Y × Y is an isomorphism—if this is true then we can define the desired group law

by taking mY := q3 ◦q−1
12 : Y × Y → Y . Note that q12 has a section s1 over {eY } × Y and a

section s2 over Y × {eY }, given on points by s1(eY , y) = (eY , y, y) and s2(y, eY ) = (y, eY , y).

This readily implies that the proposed group law mY satisfies the conditions of (10.34).

By construction we have a commutative diagram

ΓY −−−→ ΓX

q12

y
yp12

Y × Y f×f−−−→ X ×X ,

in which both the upper arrow ΓY → ΓX and the morphism f × f are étale coverings, and the

right hand arrow p12: ΓX → X × X is an isomorphism. Hence q12: ΓY → Y × Y is an étale

covering, too.

– 155 –



The projection q2: ΓY → Y is a smooth proper morphism, being the composition of q12 and

p2: Y × Y → Y . As s1 gives a section of q2 we conclude from the above lemma that all fibres

of q2 are irreducible. In particular, Z := q−1
2 (eY ) = q−1

12

(
Y × {eY }

)
is irreducible. Further, q12

restricts to an étale covering r: Z → Y = Y × {eY } of the same degree. But s2 gives a section

of r. Hence r is an isomorphism. It follows that the étale covering q12 has degree 1 and is

therefore an isomorphism. �

(10.37) Corollary. Let X be an abelian variety over a field k. Let Ω be an algebraically closedLangSerCor

field containing k, and regard 0 = eX as an Ω-valued point of X. Write ks for the separable

closure of k inside Ω. Then there are canonical isomorphisms

πalg
1 (Xks

, 0) ∼= lim
←−
n
X[n](ks) ∼=

{ ∏
ℓ TℓX if char(k) = 0,

Tp,étX ×
∏
ℓ6=p TℓX if char(k) = p > 0,

where the projective limit runs over all maps X[nm](ks)→ X[n](ks) given by P 7→ m · P , and

where ℓ runs over the prime numbers. In particular, πalg
1 (Xks

, 0) is abelian. Further there is a

canonical isomorphism

πalg
1 (X, 0) ∼= πalg

1 (Xks
, 0) ⋊ Gal(ks/k) ,

where Gal(ks/k) acts on πalg
1 (Xks

, 0) through its natural action on the groups X[n](ks).

Proof. For the proof of the first assertion we may assume that k = ks. Write π := πalg
1 (Xks

, 0).

We have π = lim
←− (π/H) where H runs over the open subgroups of π. By (10.30), each H

corresponds to an étale covering fH : YH → X together with the choice of a point eH ∈ YH(Ω)

above 0, the pair (YH , eH) being unique up to isomorphism over X. By the Lang-Serre theorem,

we have the structure of an abelian variety on YH with origin eH such that fH is a separable

isogeny. Further, it is clear that a separable isogeny f : Y → X is a Galois covering (in the sense

of (10.33)) with group Ker(f)
(
k
)
. (Recall that we assume k = ks.) By what was explained

in (10.33) we find that π/H ∼= Ker(fH)
(
k
)opp

= Ker(fH)
(
k
)
, for any open subgroup H ⊂ π.

Let I be the set of isomorphism classes of separable isogenies f : Y → X, where we call

f : Y → X and f ′: Y ′ → X isomorphic if there is an isomorphism of abelian varieties α: Y
∼−→ Y ′

with f ′ ◦α = f . We partially order I by dominance; so f > f ′ if there is a homomorphism

of abelian varieties α: Y → Y ′ with f ′ ◦α = f . If f > f ′ then we get a homomorphism

Ker(f)→→ Ker(f ′), independent of the choice of α. In this way we have a projective system of

finite groups
{
Ker(f)

(
k
)}
f∈I

, and the conclusion of the above discussion is that

π
∼−→ lim

←−
f∈I

Ker(f)
(
k
)

(12)
TateBT:piKerf

as pro-finite groups.

If n is a positive integer then [n] = [n]X factors as X
f−→ X/X[n]loc

g−→ X where f is

purely inseparable and g is separable. Of course, if char(k) = 0 or char(k) = p > 0 and p ∤ n

then f is the identity and g = [n]. For the purpose of this discussion, write g = [n]sep. The

Galois group of [n]sep is X[n]
(
k
)
. Let I ′ ⊂ I be the subset of all isogenies [n]sep for n ∈ Z>1.

Then I ′ is cofinal in I ; indeed, if f : Y → X is any separable isogeny, say of degree d, then by

Prop. (5.12) there is an isogeny g: X → Y with [d]X = f ◦g, and then it follows from Cor. (5.8)

that [d]sep dominates f . Hence we may restrict the limit in (12) to the terms f ∈ I ′; this gives

the desired isomorphism

π
∼−→ lim

←−
f∈I ′

Ker(f)
(
k
)

= lim
←−
n
X[n]

(
k
)
,
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where n runs over the set Z>1, partially ordered by divisibility.

The last assertion of the theorem (now again over an arbitrary ground field) follows by using

what was explained in (10.31), noting that 0 ∈ X(Ω) factors through a k-rational point. �

(10.38) As an application of this theorem, let us now discuss how the ℓ-adic cohomology of anHetXGen

abelian variety can be described in terms of its Tate-ℓ-module.

First let X be any complete variety over a field k, say with dim(X) = g. Let ks be a

separable closure of k, and let ℓ be a prime number different from char(k). The ℓ-adic cohomology

H•(Xks
,Zℓ) = ⊕2g

i=0H
i(Xks

,Zℓ) is a graded-commutative Zℓ-algebra of finite type that comes

equipped with a continuous action of Gal(ks/k). If x̄ ∈ X(ks) then the first ℓ-adic cohomology

and the fundamental group of Xks
are related by

H1(Xks
,Zℓ) ∼= Homcont

(
π1(Xks

, x̄),Zℓ
)
, (13)TateBT:H1pi1

where the right hand side is the group of continuous homomorphisms π1(Xks
, x̄) → Zℓ. The

homomorphism Gal(ks/k)→ Out
(
π1(Xks

, x̄)
)

of (10.31) induces a homomorphism Gal(ks/k)→
Aut

(
π1(Xks

, x̄)ab
)
, and this gives a continuous Galois action on Homcont

(
π1(Xks

, x̄),Zℓ
)

=

Homcont

(
π1(Xks

, x̄)ab,Zℓ
)
. The isomorphism (13) is equivariant for the Galois actions on the

two sides.

Now we specialize this to the case where X is an abelian variety. As we shall prove later,

H•(Xks
,Zℓ) is then the exterior algebra on H1(Xks

,Zℓ); see Cor. (13.32). Admitting this, we

find the following result.

(10.39) Corollary. Let X be an abelian variety over a field k, let k ⊂ ks be a separableHetXCor

algebraic closure, and let ℓ be a prime number with ℓ 6= char(k). Then we have

H1(Xks
,Zℓ) ∼= (TℓX)∨ := Hom(TℓX,Zℓ)

as Zℓ-modules with continuous action of Gal(ks/k). Further we have an isomorphism of graded-

commutative Zℓ-algebras with continuous Gal(ks/k)-action

H
•
(Xks

,Zℓ) ∼= ∧•
[
(TℓX)∨

]
.

Exercises.

(10.1) Let G be a p-divisible group over a perfect field k. Show that for every n the squareEx:BTSplit

Gn,red −−→ Gn+1,redy
y

Gn
in−−→ Gn+1

is Cartesian. Conclude that the exact sequence (7) splits.

(10.2) Let K be a field, K ⊂ Ks a separable algebraic closure. Let K ⊂ L be a finite extensionEx:WeilResEtGS

inside Ks.
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(i) Let H be a finite étale group scheme over L, and consider G := ResL/K(H), the K-group

scheme obtained by Weil restriction of scalars from L to K. By definition of the Weil

restriction, G represents the functor Sch
opp
/K → Gr given by T 7→ H(TL). Show that G is

again a finite étale group scheme.

(ii) Assume (for simplicity) that H is commutative. Write ΓL := Gal(Ks/L) ⊂ ΓK :=

Gal(Ks/K). Show that G(Ks) ∼= IndΓK

ΓL
H(Ks) as representations of Gal(Ks/K).

(iii) Let X be an abelian variety over L, and write Y := ResL/K(X), which is an abelian variety

over K of dimension dim(X) · [L : K]. If ℓ is a prime number different from char(K), show

that Tℓ(Y ) ∼= IndΓK

ΓL
Tℓ(X) as Zℓ

[
Gal(Ks/K)

]
-modules.
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Chapter XI. Polarizations and Weil pairings.

In the study of higher dimensional varieties and their moduli, one often considers polarized

varieties. Here a polarization is usually defined as the class of an ample line bundle modulo a

suitable equivalence relation, such as algebraic or homological equivalence. If X is an abelian

variety then, as we have seen in (7.24), the class of an ample bundle L modulo algebraic equiv-

alence carries the same information as the associated homomorphism λ = ϕL: X → Xt. And

it is in fact this homomorphism that we shall put in the foreground. One reason for this is

that λ usually has somewhat better arithmetic properties; for instance, it may be defined over a

smaller field than any line bundle representing it. The positivity of an ample bundle shall later

be translated into the positivity of the Rosati involution associated to λ; this is an important

result that shall be given in the next chapter.

The first Chern class of L only depends on L modulo algebraic equivalence, and we therefore

expect that it can be expressed directly in terms of the associated homomorphism λ = ϕL. This

is indeed the case. As we have seen before (cf. ??), the ℓ-adic cohomology of X can be described

in more elementary terms via the Tate-ℓ-module. The class c1(L) then takes the form of an

alternating pairing Eλℓ : TℓX × TℓX → Zℓ(1), usually referred to as the Riemann form of L (or

of λ). It is obtained, by a limit procedure, from pairings eλn: X[n]×X[n]→ µn, called the Weil

pairing.

§1. Polarizations.

(11.1) Proposition. Let X be an abelian variety. Let λ: X → Xt be a homomorphism, andIdlambda*P

consider the line bundle M := (id, λ)∗PX on X. Then ϕM = λ + λt. In particular, if λ is

symmetric then ϕM = 2λ.

Proof. Immediate from Proposition (7.6) together with Exercise (7.5). �

(11.2) Proposition. Let X be an abelian variety over a field k. Let λ: X → Xt be a homo-lambdasymm

morphism. Then the following properties are equivalent:

(a) λ is symmetric;

(b) there exists a field extension k ⊂ K and a line bundle L on XK such that λK = ϕL;

(c) there exists a finite separable field extension k ⊂ K and a line bundle L on XK such that

λK = ϕL.

Proof. Assume (a) holds. Let M := (id, λ)∗PX and N := M2. By the previous proposition

we know that ϕM = 2λ, so ϕN = 4λ. In particular, X[4] ⊂ K(N) = Ker(ϕN ). We claim

that X[2] ⊂ X[4] is totally isotropic with respect to the commutator pairing eN . Indeed, if x,

x′ ∈ X[2]
(
T
)

for some k-scheme T then possibly after passing to an fppf covering of T we can

write x = 2y and x′ = 2y′ for some y, y′ ∈ X[4]
(
T
)
. Our claim now follows by noting that the

restriction of eN to X[4]×X[4] takes values in µ4. By Corollary (8.11) we can find a line bundle

L on Xk such that N ∼= [2]∗L on Xk. But then 4λk = ϕ[2]∗L = 4ϕL, using Corollary (7.25). As

[4]X is an epimorphism, it follows that λk = ϕL. So (b) holds with K = k.

PolWp, 8 februari, 2012 (635)
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To see that the apparently stronger condition (c) holds, view λ as a k-valued point of

HomAV(X,Xt). Let P (λ) ⊂ PicX/k be the inverse image of λ under the homomorphism

ϕ: PicX/k → HomAV(X,Xt). As P (λ) is a closed subscheme of PicX/k, it is locally of finite

type. If T is a k-scheme then the T -valued points of P (λ) are the classes of line bundles M

on XT such that ϕM = λ. Note that P (λ) inherits a natural action of Xt = Pic0
X/k by trans-

lations. The exact sequence of (7.22) tells us that for every k-scheme T the set P (λ)(T ) is

either empty or it is a principal homogeneous space under Xt(T ). Hence if L is a line bundle

on Xk with ϕL = λk then x 7→ [t∗xL] defines an isomorphism of k-schemes (Xt)k
∼−→ P (λ)k. In

particular, P (λ) is a geometrically integral k-scheme, so it has points with values in some finite

separable extension k ⊂ K.

Finally, it is clear that (c) implies both (a) and (b). �

(11.3) Corollary. Let X/k be an abelian variety. Then the homomorphism ψ: NSX/k →NSSymHomCor

Homsym(X,Xt) of (7.26) is an isomorphism.

Proof. Both group schemes are étale and we already know that ψ is injective. Hence it suffices

to show that ψ is surjective on ks-valued points, and this follows from the preceding Proposi-

tion. �

(11.4) Proposition. Let X/k be an abelian variety. Let λ: X → Xt be a symmetric homo-PolPrepare

morphism, and write M := (id, λ)∗PX . Let k ⊂ K be a field extension and let L be a line

bundle on XK with λK = ϕL.

(i) We have: λ is an isogeny ⇔ L is non-degenerate ⇔ M is non-degenerate.

(ii) If λ is an isogeny then L is effective if and only if M is effective.

(iii) We have: L is ample ⇔ M is ample.

Proof. By Proposition (11.1) ϕMK
= 2ϕL = ϕL2 , so MK and L2 are algebraically equivalent.

Now (i) is clear, and (ii) follows from Corollary (9.23) and part (ii) of Proposition (9.18). For

(iii), recall that a line bundle N on X is ample if and only if N is non-degenerate and effective;

this is just Proposition (2.22). �

Putting Propositions (2.22), (11.2) and (11.4) together we obtain the following corollary.

(11.5) Corollary. Let X/k be an abelian variety. Let λ: X → Xt be a homomorphism. ThenPolConditions

the following properties are equivalent:

(a1) λ is a symmetric isogeny and the line bundle (id, λ)∗P on X is ample;

(a2) λ is a symmetric isogeny and the line bundle (id, λ)∗P on X is effective;

(b1) there exists a field extension k ⊂ K and an ample line bundle L on XK such that

λK = ϕL;

(b2) there exists a finite separable field extension k ⊂ K and an ample line bundle L on XK

such that λK = ϕL.

(11.6) Definition. Let X be an abelian variety over a field k. A polarization of X is an isogenyPolDef

λ: X → Xt that satisfies the equivalent conditions in (11.5).

By the Riemann-Roch Theorem (9.11) the degree of a polarization is always a square:

deg(λ) = d2 with d = χ(L) if λk = ϕL. If λ is an isomorphism (equivalent: λ has degree 1) then

we call it a principal polarization.
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It is clear that the sum of two polarizations is again a polarization. But of course the

polarizations do not form a subgroup of HomAV(X,Xt).

We also remark that if λ is a polarization, then for any line bundle L on XK with λK = ϕL
we have that L is ample. In fact, ampleness of a line bundle N on an abelian variety only

depends on the associated homomorphism ϕN , as is clear for instance from Proposition (11.4).

(11.7) Let X be an abelian variety over a field k. We have an exact sequence of fppf sheavesphiLObstr

0 −→ Xt −→ PicX/k −→ Homsym(X,Xt) −→ 0

which gives a long exact sequence in fppf cohomology

0 −→ Xt(k) −→ Pic(X) −→ Homsym(X,Xt)
∂−→ H1

fppf(k,X
t) −→ · · · .

For λ: X → Xt a symmetric homomorphism, ∂(λ) is the obstruction for finding a line bundle L

on X (over k) with ϕL = λ. Now we know from Proposition (11.2) that ∂(2λ) = 0; hence ∂(λ)

lies in the image of

H1
fppf

(
k,Xt[2]

)
→ H1

fppf(k,X
t) .

(NOG VERDERE OPM OVER MAKEN, BV VGL MET GALOIS COHOM?)

(11.8) Proposition. Let f : X → Y be an isogeny. If µ: Y → Y t is a polarization of Y , thenPolPullback

f∗µ := f t ◦µ◦f is a polarization of X of degree deg(f∗µ) = deg(f)2 · deg(µ).

Proof. It is clear that f∗µ is an isogeny of the given degree. By assumption there is a field

extension k ⊂ K and an ample line bundle M on YK such that µK = ϕM . Then f∗µK = ϕf∗M

and because f is finite f∗M is an ample line bundle on XK . �

See Exercise (11.1) for a generalization.

(11.9) Definition. Let X and Y be abelian varieties over k. A (divisorial) correspondenceCorDef

between X and Y is a line bundle L on X × Y together with rigidifications α: L|{0}×Y
∼−→ OY

and β: L|X×{0}
∼−→ OX that coincide on the fibre over (0, 0).

Correspondences between X and Y form a group Corrk(X,Y ), with group structure ob-

tained by taking tensor products of line bundles. (Cf. the definition of PX/S,ε in Section (6.2).)

Note that the multiplicative groep Gm acts (transitively) on the choices of the rigidifications

(α, β). Moreover, if Y = X we can speak of symmetric correspondences.

The Poincaré bundle P = PX on X × Xt comes equipped with a rigidification along

{0} ×Xt. There is a unique rigidification along X × {0} such that the two rigidifications agree

at the origin (0, 0). We thus obtain an element

[PX ] = (PX , αP , βP) ∈ Corrk(X,X
t) .

The following proposition makes an alternative definition of the notion of polarization pos-

sible.

(11.10) Proposition. Let X/k be an abelian variety. Then we have a bijectionalternativedefpol

{polarizations λ: X → Xt} ∼−→
{

symmetric divisorial correspondences

(L,α, β) on X ×X such that ∆∗XL is ample

}
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by associating to a polarization λ the divisorial correspondence (L,α, β) with L = (idX×λ)∗PX

and α and β the pull-backs under idX × λ of the rigidifications αP and βP .

Proof. This is essentially contained in Corollary (11.5). The inverse map is obtained by associat-

ing to (L,α, β) the unique homomorphism λ: X → Xt such that (L,α) = (idX×λ)∗(PX , αP) as

rigidified line bundles on X ×X. The assumption that (L,α, β) is symmetric implies that λX is

symmetric, and because (idX , λ)∗PX = ∆∗X(idX ×λ)∗PX = ∆∗XL is ample, λ is a polarization.

This establishes the correspondence. �

The alternative definition of a polarization suggested by Proposition (11.10) as “a sym-

metric self-correspondence such that restriction to the diagonal is ample” is evidently similar

in appearance to the definition of a positive definite symmetric bilinear form in linear algebra.

But, whereas in linear algebra one dominantly views a bilinear form b as a map V × V → k

rather than as a map V → V ∗ given by v 7→
(
w 7→ b(v,w)

)
, in the theory of abelian varieties the

latter point of view dominates. Note further that the role of the evaluation map V × V ∗ → k

with (v,w) 7→ w(v) is played in our context by the Poincaré bundle P.

§2. Pairings.

We now turn to the study of some bilinear forms attached to isogenies. In its most general form,

any isogeny f gives a pairing ef between Ker(f) and Ker(f t); this is an application of the duality

result Theorem (7.5). Of particular interest is the case f = [n]X . If we choose a polarization λ

we can map X[n] to Xt[n], and we obtain a bilinear form eλn on X[n], called the Weil pairing.

The pairings that we consider satisfy a number of compatibilities, which, for instance, allow us

to take the limit of the pairings eλℓm , obtaining a bilinear form Eλ with values in Zℓ(1) on the

Tate module TℓX. In cohomological terms this pairing is the first Chern class of λ (or rather, of

any line bundle representing it). It is the ℓ-adic analogue of what over C is called the Riemann

form associated to a polarization. (See also ???)

(11.11) Definition. Let f : X → Y be an isogeny of abelian varieties over a field k. WriteWeilpDef

β: Ker(f t)
∼−→ Ker(f)D for the isomorphism of Theorem (7.5).

(i) Define

ef : Ker(f)×Ker(f t) −→ Gm,k

to be the perfect bilinear pairing given (on points) by ef (x, y) = β(y)(x). Note that if Ker(f) is

killed by n ∈ Z>1 then ef takes values in µn ⊂ Gm. In the particular case that f = nX : X → X

we obtain a pairing

en: X[n]×Xt[n]→ µn

which we call the Weil pairing.

(ii) Let λ: X → Xt be a homomorphism. We write

eλn: X[n]×X[n]→ µn

for the bilinear pairing given by eλn(x1, x2) = en
(
x1, λ(x2)

)
. If λ = ϕL for some line bundle L

then we also write eLn instead of eλn.

Recall that if A and B are finite commutative group schemes (written additively), a pairing

e: A×B → Gm is said to be bilinear if e(a+a′, b) = e(a, b)·e(a′ , b) and e(a, b+b′) = e(a, b)·e(a, b′)
for all points a and a′ of A and b and b′ of B. (Points with values in an arbitrary k-scheme.) The
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pairing e is said to be perfect if sending a to e(a,−): B → Gm gives an isomorphism A
∼−→ BD.

This is equivalent to the condition that b 7→ e(−, b) gives an isomorphism B
∼−→ AD. It is

clear from the construction that the pairings ef , in particular also the Weil pairings, are perfect

bilinear pairings. If n is relatively prime to the degree of λ then the pairing eλn is perfect, too.

There are various ways in which we can make the pairings defined above more explicit. We

shall give a couple of different points of view.

(11.12) Let us first try to unravel the definition of ef by going back to the proof of (7.5). ThisWpExpl1

leads to the following description. Let T be a k-scheme. Let L be a rigidified line bundle on YT
that represents a class η ∈ Ker(f t)(T ). Then f∗L ∼= OXT

. Hence the geometric line bundle L

corresponding to L can be described as a quotient of XT ×T A1
T by an action of Ker(f)T . More

precisely, by what was explained in (7.3) there exists a character χ: Ker(f)T → Gm,T such that

the action of a point x of Ker(f) on XT ×T A1
T is given (on points) by

(z, a) 7→
(
z + x, χ(x) · a

)
.

The isomorphism Ker(f t)
∼−→ Ker(f)D of Theorem (7.5) sends η to χ. Hence the pairing ef is

given by ef (x, η) = χ(x).

(11.13) Next let us give a more geometric description of the Weil pairings en. Suppose D isWpExpl2

a divisor on X such that nD is linearly equivalent to zero. Write L = OX(D). As n∗L ∼= OX
(cf. Exercise (7.2)), there exists a rational function g on X with divisor (g) = n∗D. But also

Ln ∼= OX , so there exists a rational function f with divisor (f) = nD. Then n∗f and gn both

have divisor n · n∗D = n∗(nD), so there is a constant c ∈ k∗ with gn = c · (n∗f).

Let x ∈ X[n](k) be a k-rational n-torsion point. We find that

g(ξ)n = c · f(nξ) = c · f
(
n(ξ + x)

)
= g(ξ + x)n =

(
(t∗xg)(ξ)

)n

for all ξ ∈ X(k). So g/t∗x(g) is an n-th root of unity. We claim that in fact en
(
x, [D]

)
= g/t∗x(g).

To see this, note that we have an isomorphism of line bundles n∗L
∼−→ OX given by

g 7→ 1. As described in (11.12), there is a character χ: X[n] → Gm such that the natural

action of X[n] on n∗L becomes the action of X[n] on OX given by the character χ. Note that

x ∈ X[n](k) acts on the identity section 1 ∈ Γ(X,OX) as multiplication by χ(x)−1. Hence

g/t∗x(g) = χ(x) = en
(
x, [D]

)
, as claimed.

(11.14) Example. We calculate the Weil pairing e3 on the elliptic curve E over F2 given byWpExaE/F2

the affine equation y2 + y = x3. This curve has 9 points over F4 which realise an isomorphism

E[3]
(
F4

) ∼= Z/3Z × Z/3Z. Let O = P∞ be the point at ∞, which we take as the identity

element on E. The bundle L = OE(P∞) is ample. The associated principal polarization

λ: E
∼−→ Et = Pic0

E/F2
is given on points by R 7→ OE(O − R). (Note that this is minus

the map given by R 7→ OE(R−O); see Remark (2.11).)

Let us calculate eλ3 (Q,P ) for P = (0, 0) and Q = (1, α), where α is an element of F4 not

in F2. First we note that the function y has divisor (y) = 3 · (P − O). Next we compute

a function g with divisor [3]∗(O − P ). For this we compute the “triplication formula” on E

which expresses for a point R = (ξ, η) on E the coordinates of 3R in those of R. As we

have seen in Example (5.26), E is supersingular. The relative Frobenius π = FE/F2
: E → E

is an endomorphism of E. One can show that it satisfies π2 = −2, for example by verifying
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that for T ∈ E the point π2(T ) lies on the tangent line to E in T . As −1 on E is given by

(x, y) 7→ (x, y + 1) we find that 2R has coordinates (ξ4, η4 + 1). Next one calculates that the

coordinates of 3R are
(
(ξ9 + ξ3 + 1)/(ξ + ξ4)2, (ηξ3 + 1)3/(ξ + ξ4)3

)
. Hence the function

g =
x4 + x

yx3 + 1

has divisor (g) = [3]∗(O − P ). (Use that 3 · (g) = [3]∗(y) = 3 · [3]∗(O − P ).)

Now we know that g/t∗Qg is constant and this constant can be computed by evaluating g

and t∗Qg at a suitable point T ; so

g/t∗Qg = g(T )/g(T +Q) .

For T we take a point rational over F64. Let γ be a generator of F∗64 with γ21 = α and such

that δ := γ9 ∈ F∗8 satisfies δ3 + δ = 1. Then the point T = (γ3, γ18) is in E(F64). One easily

verifies that (γ24, γ18 + 1) is again a point of E, and that it lies on the line through T and Q;

hence T + Q = (γ24, γ18). By (11.13) we conclude that eλ3 (Q,P ) = e3
(
Q, (O − P )

)
equals

(γ12 + γ3)/(γ33 + γ24) = 1/γ21 = 1/α = α2.

The value of eλ3 (P ′, Q′) for any pair (P ′, Q′) ∈ E[3]×E[3] can be computed from this using

the fact that e3 is bilinear and alternating; see Cor. (11.22) below.

(11.15) Let f : X → Y be an isogeny of abelian varieties over a field k. By definition, f t: Y t →KerKerAction

Xt is the unique map such that (f × idY t)∗PY
∼= (idX × f t)∗PX as line bundles on X × Y t

with rigidification along {0} × Y t. Note that this isomorphism is unique, so without ambiguity

we can define Q := (f × idY t)∗PY = (idX × f t)∗PX . The diagram to keep in mind is

PX Q PY

X ×Xt id×ft

←−−−− X × Y t f×id−−−→ Y × Y t
(1)

PolWp:Bundles

On the line bundle Q we have an action of Ker(f) × {0}, lifting the action on X × Y t by

translations. This action is given by isomorphisms σx: QT
∼−→ t∗(x,0)QT , for any k-scheme T

and x ∈ Ker(f)
(
T
)
. Likewise, we have an action of {0} × Ker(f t), given by isomorphisms

τq: QT
∼−→ t∗(0,q)QT for q ∈ Ker(f t)

(
T
)
. Unless f is an isomorphism, these two group scheme

actions on Q do not commute, for if they did it would give us an action of Ker(f) × Ker(f t)

and Q would descend to a line bundle L on (X × Y t)/Ker(f) × Ker(f t) = Y ×Xt. But then

we had (−1)g = χ(PX) = deg(f) · χ(L), which is possible only if deg(f) = 1. We shall prove

that the extent to which the two actions fail to commute is measured by the pairing ef .

Let Q′ be the restriction of Q to X × Ker(f t). We have Q′ = (idX × f t)∗
(
(PX)|X×{0}

)
,

so the natural rigidification of PX along X × {0} (see (7.7)) gives us a trivialisation Q′
∼−→

OX×Ker(ft). The action of {0} × Ker(f t) on Q restricts to the trivial action on Q′. It will be

useful to think of Q′ as being the sheaf of sections of A1 over X×Ker(f t). Writing A1
X×Ker(ft) =

X ×Ker(f t)× A1, the action of a point (0, q) ∈ {0} ×Ker(f t) on Q′ corresponds to the action

on X ×Ker(f t)× A1 given by τq: (t, u, a) 7→ (t, u+ q, a).

Note that also the action of Ker(f) × {0} restricts to an action on Q′. To describe this

action we apply what was explained in (11.12) in the “universal case”, i.e., with T = Ker(f t)

and η = idT . The corresponding line bundle L on YT = Y × Ker(f t) is just the restriction

of PY to Y × Ker(f t), so f∗L is precisely our bundle Q′. If we write a point of Ker(f)T =
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Ker(f)×kKer(f t) as a pair (x, u) then the conclusion of (11.12) is that the character χ: Ker(f)×k
Ker(f t) → Gm,k ×k Ker(f t) is given by (x, u) 7→

(
ef (x, u), u

)
. Hence the action of a point

(x, 0) ∈ Ker(f)×{0} on Q′ corresponds to the action on X×Ker(f t)×A1 given by σx: (t, u, a) 7→(
t+ x, u, ef (x, u) · a

)
.

Now we can start drawing some conclusions. The first result is an interpretation of the

pairing ef as a measure for the extent to which the two group scheme actions on Q fail to

commute.

(11.16) Proposition. Let f : X → Y be an isogeny of abelian varieties over a field k, andef2Actions

consider the line bundle Q := (f × idY t)∗PY = (idX × f t)∗PX on X × Y t. Let T be a k-

scheme, x ∈ Ker(f)
(
T
)

and q ∈ Ker(f t)
(
T
)
. Let σx: QT

∼−→ t∗(x,0)QT be the isomorphism that

gives the action of (x, 0) ∈ Ker(f)×{0} on QT , and let τq: QT
∼−→ t∗(0,q)QT be the isomorphism

that gives the action of (0, q) ∈ {0} ×Ker(f t). Then we have a commutative diagram

QT
σx−−→ t∗(x,0)QT

t∗(x,0)τq−−−−−→ t∗(x,q)QT∥∥∥
ymultiplication by ef (x, q)

QT
τq−−→ t∗(0,q)QT

t∗(0,q)σx−−−−−→ t∗(x,q)QT

Proof. A priori it is clear that there exists a constant c ∈ Gm(T ) such that (t∗(0,q)σx)◦τq =

c · (t∗(x,0)τq)◦σx, so all we need to show is that c = ef (x, q). For this we may restrict everything

to X × Ker(f t). As in the above discussion, we think of Q′ as the sheaf of sections of A1

over X × Ker(f t). We have seen that (t∗(x,0)τq)◦σx is given on points by (t, u, a) 7→
(
t+ x, u +

q, ef (x, u) ·a
)
, whereas (t∗(0,q)σx)◦τq is given by (t, u, a) 7→

(
t+x, u+ q, ef(x, u+ q) ·a

)
. Because

ef is bilinear, the result follows. �

Next we prove a compatibility result among the two main duality theorems that we have

proved in Chapter 7.

(11.17) Proposition. Let f : X → Y be an isogeny of abelian varieties. Let κX : X → Xtt beDualDualProp

the canonical isomorphism.

(i) For any k-scheme T and points x ∈ Ker(f)
(
T
)

and η ∈ Ker(f t)
(
T
)

we have the relation

eft

(
η, κX (x)

)
= ef (x, η)

−1.

(ii) Let β1: Ker(f t)
∼−→ Ker(f)D and β2: Ker(f tt)

∼−→ Ker(f t)D be the canonical isomor-

phisms as in Theorem (7.5), and let γ: Ker(f)DD
∼−→ Ker(f) be the isomophism of Theo-

rem (3.22). Then the isomorphism Ker(f)
∼−→ Ker(f tt) induced by κX equals −β−1

2
◦βD1 ◦γ−1.

Proof. (i) Consider the commutative diagram

X ×Xt id×ft

←−−−− X × Y t f×id−−−→ Y × Y t

κX×id

y κX×id

y
yκY×id

Xtt ×Xt id×ft

←−−−− Xtt × Y t ftt×id−−−−→ Y tt × Y t .

(2)

PolWp:fftftt

If we read the lower row from right to left (term by term!), we get the row

Y t × Y tt id×ftt

←−−−− Y t ×Xtt ft×id−−−−→ Xt ×Xtt
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which is precisely (1) for the morphism f t: Y t → Xt. Now the result follows from the previous

proposition, with the −1 in the exponent coming from the fact that we are reading the lower

row in (2) from right to left, thereby switching factors.

(ii) This follows from (i) using the relations ef (x, η) = β1(η)
(
x
)

= (βD1 ◦γ−1)(x)
(
η
)

and

eft

(
η, κX (x)

)
= β2

(
κX(x)

)(
η
)
. �

(11.18) Example. Let X be an abelian variety over k. Let P = PX be its Poincaré bundle.PXonSlices

Let n be a positive integer, and let en: X[n]×Xt[n]→ µn be the Weil pairing.

The geometric line bundle on X ×Xt[n] that corresponds to P|X×Xt[n] is the quotient of

A1
X×Xt[n] = X×Xt[n]×A1 under the action ofX[n]×{0}, with x ∈ X[n] acting onX×Xt[n]×A1

by σx: (t, u, a) 7→
(
t+ x, u, en(x, u) · a

)
.

To make this completely explicit, suppose k = k and char(k) ∤ n, so that X[n] and Xt[n]

are constant group schemes, each consisting of n2g distinct points. Then for ξ ∈ Xt[n](k), the

restriction of the Poincaré bundle to X × {ξ} is given by

P|X×{ξ}

(
U
)

=
{
f ∈ OX(n−1U)

∣∣ f(v + x) = en(x, ξ) · f(v) for all v ∈ n−1U and x ∈ X[n]
}
.

For the restriction of PX to X[n] × Xt we have an analogous description; namely, the

corresponding geometric line bundle is the quotient of A1
X[n]×Xt = X[n] ×Xt × A1 under the

action of {0} × Xt[n], with ξ ∈ Xt[n] acting on X[n] × Xt × A1 by τξ: (t, u, a) 7→
(
t, u +

ξ, en(t, ξ)−1 · a
)
. Note, however, that whereas our description of P|X×Xt[n] is essentially a

reformulation of the definition of the Weil pairing, to arrive at our description of P|X[n]×Xt we

use (i) of Proposition (11.17).

(11.19) Let L be a non-degenerate line bundle on an abelian variety X. As the associatedeLeGLIntr

isogeny ϕL: X → Xt is symmetric, we have K(L) = Ker(ϕL) = Ker(ϕtL), and we obtain a

pairing

eϕL
: K(L)×K(L)→ Gm .

On the other hand we have the theta group 1 −→ Gm −→ G (L) −→ K(L) −→ 0, and this, too,

gives a pairing

eL: K(L)×K(L)→ Gm .

(11.20) Proposition. We have eϕL
= eL.eLeGLProp

Proof. We apply what was explained in (11.15) to the isogeny ϕL: X → Xt. We identify

X × Xtt with X × X via the isomorphism id × κX : X × X
∼−→ X × Xtt. The line bundle

Q := (ϕL×κX)∗PXt = (id×ϕL)∗PX is none other than the Mumford bundle Λ(L) associated

to L. Let Q′ := Q|X×K(L) = Λ(L)|X×K(L) which, as we already knew from Lemma (2.17), is

trivial.

Let T be a k-scheme, and consider T -valued points x, y ∈ K(L)
(
T
)
. Possibly after replac-

ing T by a covering we can choose isomorphisms ϕ: LT
∼−→ t∗xLT and ψ: LT

∼−→ t∗yLT . Then

(x, ϕ) and (y, ψ) are T -valued points of G (L), and by definition of the pairing eL we have the

relation

(t∗yϕ)◦ψ = eL(x, y) · (t∗xψ)◦ϕ . (3)PolWp:eLformula

We can also view ψ as the trivialisation

ψ: OXT×{y}
∼−→ Λ(LT )XT×{y} = t∗yLT ⊗ L−1

T
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that sends 1 ∈ Γ(XT , OXT×{y}) to the global section ψ of t∗yLT ⊗ L−1
T . If σx: QT → t∗(x,0)QT

is the isomorphism that gives the action of (x, 0) ∈ K(L)× {0} on Q then it follows from what

we have seen in (11.15) that we have a commutative diagram

Λ(L)XT×{y}

(σx)|XT ×{y}−−−−−−−−→ t∗(x,0)Λ(L)|XT×{y}

ψ

x
xeϕL

(x,y)·
(
t∗(x,0)ψ

)

OXT×{y}
can−−−−−−−−→ t∗(x,0)OXT×{y} .

We have t∗(x,0)Λ(LT ) = m∗(t∗xLT ⊗ L−1
T ) ⊗ p∗1(t∗xLT ⊗ L−1

T )−1 ⊗ Λ(LT ). Taking this as an

identification, σx is given on sections by s 7→ m∗ϕ⊗ p∗2ϕ−1⊗ s. (Note that this does not depend

on the choice of ϕ.) Now restrict to XT × {y} and use the natural identification

t∗(x,0)Λ(LT )|XT×{y} = t∗x+yLT ⊗ t∗xL−1
T = Hom(t∗xLT , t

∗
x+yLT ) .

we find that σx ◦ψ maps 1 ∈ Γ(XT , OXT×{y}) to the homomorphism t∗yϕ◦ψ ◦ϕ−1: t∗xLT →
t∗x+yLT . On the other hand, the composition (t∗(x,0)ψ)◦can sends 1 to t∗xψ. Hence we have

t∗yϕ◦ψ ◦ϕ−1 = eϕL
(x, y) · t∗xψ

and comparison with (3) now gives the result. �

(11.21) Proposition. (i) Let f : X → Y be a homomorphism of abelian varieties over k. ThenefRulesProp

for any integer n > 1 the diagram

X[n]× Y t[n]
1×ft

−−−→ X[n]×Xt[n]

f×1

y
yen

Y [n]× Y t[n]
en−−−→ µn

is commutative. In other words: if T is a k-scheme, x ∈ X[n]
(
T
)

and η ∈ Y t[n]
(
T
)

then

en
(
f(x), η

)
= en

(
x, f t(η)

)
.

(ii) Let f : X → Y and g: Y → Z be isogenies, and write h := g ◦f : X → Z. Then we have

“commutative diagrams”

Ker(f)×Ker(f t)
ef−−→ Gm

i

y
xgt

∥∥∥

Ker(h)×Ker(ht)
eh−−→ Gm

and

Ker(g) ×Ker(gt)
eg−−→ Gm

f

x
yi

∥∥∥

Ker(h)×Ker(ht)
eh−−→ Gm

where the maps labelled “i” are the natural inclusion homomorphisms. By our assertion that the

first diagram is commutative we mean that if T is a k-scheme, x ∈ Ker(f)
(
T
)

and η ∈ Ker(ht)
(
T
)

then ef
(
x, gt(η)

)
= eh

(
i(x), η

)
; similarly for the second diagram.

Proof. (i) Let χ: Y [n]T → Gm,T be the character corresponding to η, as in (11.12). Then the

character corresponding to ht(η) is χ◦h: X[n]T → Gm,T . By (11.12) we find

en
(
h(x), η

)
= χ

(
h(x)

)
= χ◦h(x) = en

(
x, ht(η)

)
.

(ii) Let χ: Ker(h)T → Gm,T be the character corresponding to η. Then the character

Ker(f)T → Gm,T corresponding to gt(η) is simply χ◦ i. Hence by what was explained in (11.12),

– 167 –



eh
(
i(x), η

)
= χ

(
i(x)

)
= χ◦ i(x) = ef

(
x, gt(η)

)
. This gives the first commutative diagram. For

the second, apply the first diagram to the composition f t ◦gt: Zt → Y t → Xt; then apply (i) of

Proposition (11.17). �

(11.22) Corollary. Let λ: X → Xt be a polarization, and let n be a positive integer. ThenelambdanAlt

the pairing eλn: X[n] × X[n] → µn is alternating: for any x ∈ X[n]
(
T
)

with T a k-scheme we

have eλn(x, x) = 1.

Proof. Without loss of generality we may assume that k = k and write λ = ϕL for some

ample L. Consider the composition nλ = λ◦ [n]X . Applying (ii) of Proposition (11.21) we find

a commutative diagram
X[n]×Xt[n]

en−−→ Gm

i

y
xλ

∥∥∥

Ker(nλ)×Ker(nλ)
enλ−−→ Gm

This gives eλn(x, x) = en
(
x, λ◦ i(x)

)
= enλ

(
i(x), i(x)

)
= 1, where in the last step we use Propo-

sition (11.20) together with the remark that nλ = ϕLn . �

In particular, we find that the pairing eλn is skew-symmetric: eλn(x, y) = eλn(y, x)−1. Note,

however, that skew-symmetry is weaker in general than the property of being alternating.

(11.23) Let X be an abelian variety over a field k. Fix a separable closure k ⊂ ks. As usual,ElambdaDef

ℓ denotes a prime number different from char(k). Let x = (0, x1, x2, . . .) be an element of TℓX

and ξ = (0, ξ1, ξ2, . . .) and element of TℓX
t. Applying (ii) of Proposition (11.21) we find that

eℓm(xm, ξm) = eℓm+1(ℓ · xm+1, ξm+1) = eℓm+1(xm+1, ξm+1)
ℓ .

This means precisely that

E(x, ξ) =
(
1, eℓ(x1, ξ1), eℓ2 (x2, ξ2), . . .

)

is a well-defined element of Zℓ(1) = TℓGm. The map (x, ξ) 7→ E(x, ξ) defines a perfect bilinear

pairing

E: TℓX × TℓXt → Zℓ(1) .

If β: TℓX
t ∼−→ (TℓX)∨(1) is the canonical isomorphism as in Proposition (10.9) then the pair-

ing E is nothing else but the composition

TℓX × TℓXt id×β−−−→ TℓX × (TℓX)∨(1)
ev−−→ Zℓ(1)

where the map “ev” is the canonical pairing, or “evaluation pairing”. Note that the pairing E

is equivariant with respect to the natural action of Gal(ks/k) on all the terms involved.

If λ: X → Xt is a polarization, we obtain a pairing

Eλ: TℓX × TℓX → Zℓ(1) by Eλ(x, x′) := E
(
x, Tℓλ(x′)

)
.

If λ = ϕL we also write EL for Eλ. It readily follows from Corollary (11.22) that the pairing Eλ

is alternating.

Putting everything together, Eλ is a Gal(ks/k)-invariant element in
(
∧2(TℓX)∨

)
(1). The

cohomological interpretation is that Eλ is the first Chern class of λ, or rather of any line bundle

representing λ. Note that
(
∧2(TℓX)∨

)
(1) = H2

(
Xks

,Zℓ(1)
)
, see Corollary (10.39).
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§3. Existence of polarizations, and Zarhin’s trick.

(11.24) Suppose we have an abelian variety X of dimension g over a field k. If g = 1 thenAVnoPP

X is an elliptic curve, and the origin O (as a divisor on X) gives a principal polarization (via

Q 7→ O −Q). If g > 2 then in general X does not carry a principal polarization, not even if we

allow an extension of the base field. Let us explain why this is so.

Fix g > 2. We shall use the fact that there exists an algebraically closed field k and an

abelian variety Y of dimension g over k such that End(Y ) = Z. A proof of this shall be given

later; see ??. Note that this does not work for arbitrary k; for instance, every abelian variety

over Fp has Z ( End(Y ), as we shall see in ??.

If Y carries no principal polarization then we have the desired example. Hence we may

assume there is a principal polarization λ: Y → Y t. As k = k there is a line bundle L with

λ = ϕL. Because λ is principal and End(X) = Z the only polarizations of Y are those of the

form ϕLn = n · λ, of degree n2g.

On the other hand, if ℓ is any prime number different from char(k) then Y [ℓ] ∼= (Z/ℓZ)2g

as group schemes. Hence Y has a subgroup scheme H of order ℓ. Let q: Y → X := Y/H be

the quotient. If µ: X → Xt is a polarization then q∗µ is a polarization of Y , with deg(q∗µ) =

ℓ2 ·deg(µ). But as just explained, any polarization of Y has degree equal to n2g for some n ∈ N.

Hence µ cannot be principal.

With a similar construction we shall see later that an abelian variety of dimension g > 2

over a field of characteristic p in general does not even carry a separable polarization; see ??.

To arrive at some positive results, we shall now first give a very useful criterion for when a

polarization λ: X → Xt descends over an isogeny f : X → Y . If L is a line bundle on X then

by Theorem (8.10) there exists a line bundle M on Y with L ∼= f∗M if and only if the following

conditions are satisfied:

(a) Ker(f) is contained in K(L) and is totally isotropic with respect to the pairing eG (L) = eϕL
;

(b) the inclusion map Ker(f) →֒ K(L) can be lifted to a homomorphism Ker(f) →֒ G (L).

(The second condition in (a) is in fact implied by (b).) As we shall prove now, in order for a

polarization to descend, it suffices that the analogue of condition (a) holds.

(11.25) Proposition. Let λ: X → Xt be a symmetric isogeny, and let f : X → Y be an isogeny.PolDesc

(i) There exists a symmetric isogeny µ: Y → Y t such that λ = f∗µ := f t ◦µ◦f if and only

if Ker(f) is contained in Ker(λ) and is totally isotropic with respect to the pairing eλ: Ker(λ)×
Ker(λ)→ Gm. If such an isogeny µ exists then it is unique.

(ii) Assume that an isogeny µ as in (i) exists. Then µ is a polarization if and only if λ is a

polarization.

Note that the “only if” in (ii) was already proven in Proposition (11.8). For this implication

the assumption that f is an isogeny can be weakened; see Exercise (11.1).

Proof. (i) If λ = f t ◦µ◦f then Ker(f) ⊂ Ker(λ) and it follows from (ii) of Proposition (11.21),

applied with g = (f t ◦µ) and h = λ, that Ker(f) is totally isotropic for the pairing eλ.

For the converse, assume Ker(f) is contained in Ker(λ) and is totally isotropic with respect

to eλ. Consider the line bundle M := (1× λ)∗PX on X ×X. Recall from Example (8.26) that

the theta group G (M) is naturally isomorphic to the Heisenberg group associated to the group

scheme Ker(λ). We have natural actions of Ker(λ) × {0} and {0} × Ker(λ) on M ; for the first

action note that M can also be written as (λ× 1)∗PXt . The assumption that Ker(f) ⊂ Ker(λ)

– 169 –



is totally isotropic for eλ means precisely that the actions of Ker(f)× {0} and of {0} ×Ker(f)

commute, and therefore define an action of Ker(f)×Ker(f) on M . This gives us a line bundle N

on Y × Y such that M ∼= (f × f)∗N . If µ: Y → Y t is the (unique) homomorphism such that

N = (1×µ)∗PY then we get the desired relation λ = f t ◦µ◦f . The uniqueness of µ is immediate

from Lemma (5.4). But we also have λ = λt = (f t ◦µ◦f)t = f t ◦µt ◦f . Hence µ = µt.

(ii) By Proposition (11.2) there exists a field extension k ⊂ K and a line bundle L on YK
with µK = ϕL, and then λK = ϕf∗L. Because f is finite, L is effective if and only if f∗L is

effective. �

(11.26) Corollary. Let X be an abelian variety over an algebraically closed field. Then X isIsogtoPPAV

isogenous to an abelian variety that admits a principal polarization.

Proof. Start with any polarization λ: X → Xt. By Lemma (8.22) there exists a Lagrangian

subgroup H ⊂ Ker(λ). (There clearly exists a subgroup H ⊂ Ker(λ) satisfying condition (i) of

that Lemma.) By the previous Proposition, λ descends to a principal polarization on X/H. �

The conclusion of the Corollary no longer holds in general if we drop the assumption that the

ground field is algebraically closed. For examples, see e.g. Howe [1], [2] and Silverberg-Zarhin [1].

(11.27) Before we turn to Zarhin’s trick, we recall from Exercise (7.8) some notation.[alpha]XDef

Suppose X is an abelian variety and α = (aij) is an r × s matrix with integral coefficients.

Then we denote by [α]X : Xs → Xr the homomorphism given by

[α]X
(
x1, . . . , xs) =

(
a11x1 + a12x2 + · · ·+ a1sxs, . . . ,

s∑

j=1

aijxj , . . . , ar1x1 + ar2x2 + · · ·+ arsxs
)
.

For r = s = 1 this just gives our usual notation [n]X for the “multiplication by n” maps. As

another example, the 1× 2 matrix (1 1) gives the group law on X while the 2× 1 matrix

(
1

1

)

gives the diagonal.

If β is a q × r matrix with integral coefficients then [β · α]X = [β]X ◦ [α]X : Xs → Xq. It

follows that if α is an invertible r × r matrix then [α]X is an automorphism of Xr. Further, if

f : X → Y is a homomorphism of abelian varieties then for any integral r × s matrix α,

[α]Y ◦ (f, . . . , f)︸ ︷︷ ︸
s

= (f, . . . , f)︸ ︷︷ ︸
r

◦ [α]X : Xs → Y r .

(11.28) Proposition. Let X be an abelian variety of dimension g.[alpha]XProp

(i) If α ∈Mr(Z) then [α]X : Xr → Xr has degree det(α)2g .

(ii) Let β be an r× s matrix with integral coefficients. Then
(
[β]X

)t
=
[
tβ
]
Xt , where tβ is

the transposed matrix.

Proof. (i) If det(α) = 0 then it is readily seen that [α]X has infinite kernel, so by convention

we have deg
(
[αX ]

)
= 0. Now assume det(α) 6= 0, and let {e1, . . . , er} be the standard ordered

basis of Zr. By the theory of elementary divisors, there is an ordered basis {f1, . . . , fr} for Zr

and a sequence of nonzero integers (n1, . . . , nr) such that α(ei) = ni · fi. Let β ∈ GLr(Z) be the

matrix with β(ei) = fi, and let γ = diag(n1, . . . , nr) be the diagonal matrix with coefficients ni.

Then [β]X is an automorphism of Xr and it is clear that [γ]X : Xr → Xr, which is given by
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(x1, . . . , xr) 7→ (n1x1, . . . , nrxr), has degree (n1 · · ·nr)2g = det(α)2g . As [α]X = [γ]X ◦ [β]X the

claim follows.

(ii) Write β = (bij). Any line bundle L on Xr with class in Pic0 can be written as L =

p∗1L1⊗· · ·⊗p∗rLr, where the pi: X
r → X are the projection maps and the Li are line bundles onX

with class in Pic0. Because (Xs)t ∼= (Xt)s (cf. Exercise (6.2)) it suffices to know the restriction

of [β]∗XL to each of the coordinate axes {0}× · · ·×{0}×X×{0}× · · ·×{0}. But the restriction

of [β]X to the j-th coordinate axis is the map X → Xr given by x 7→ (b1jx, b2jx, . . . , brjx) and

the pull-back of L under this map is

b∗1jL1 ⊗ · · · ⊗ b∗rjLr = L
⊗b1j

1 ⊗ · · · ⊗ L⊗brj
r .

This means precisely that [β]tX : (Xr)t = (Xt)r → (Xs)t = (Xt)s is the map given by the matrix




b11 · · · bi1 · · · br1
...

...
...

b1j · · · bij · · · brj
...

...
...

b1s · · · bis · · · brs




= tβ ,

as claimed. �

(11.29) Theorem. (Zarhin’s trick) Let X be an abelian variety over a field k. Then X4×(Xt)4ZarTrick

carries a principal polarization.

Proof. Suppose we have an abelian variety Y , a polarization µ: Y → Y t, and an endomorphism

α: Y → Y . Consider the isogeny f : Y × Y → Y × Y t given by (y1, y2) 7→
(
y1 − α(y2), µ(y2)

)
.

The kernel is given by Ker(f) =
{
(α(y), y)

∣∣ y ∈ Ker(µ)
}
. In particular, deg(f) = deg(µ).

Proposition (11.25) tells us under what conditions the polarization µ×µ: (Y ×Y )→ (Y t× Y t)
descends to a polarization on Y × Y t via the isogeny f . Namely: there exists a polarization ν

on Y × Y t with f∗ν = (µ× µ) if and only if

(a) α
(
Ker(µ)

)
⊆ Ker(µ), and

(b) eµ
(
α(y1), α(y2)

)
· eµ(y1, y2) = 1 for all (scheme valued) points y1, y2 of Ker(µ).

Note that if such a descended polarization ν exists then it is principal.

Condition (a) means that there exists an endomorphism β: Y t → Y t such that β ◦µ = µ◦α.

By (ii) of Proposition (11.21),

eµ
(
α(y1), α(y2)

)
= eµ◦α

(
y1, α(y2)

)
= eβ ◦µ

(
y1, α(y2)

)
= eµ

(
y1, β

tα(y2)
)
,

so (b) is equivalent to the condition that eµ
(
y1, (1 + βtα)(y2)

)
= 1 for all y1, y2 in Ker(µ). As

eµ is a pefect pairing on Ker(µ), this is equivalent to the condition that (1 + βtα) ∈ End(Y )

kills Ker(µ).

We now apply this with Y = X4. Choose any polarization λ on X, and take µ = λ4 (so

µ = λ × λ × λ × λ). For α we take the endomorphism [α]X given by a 4 × 4 matrix α with

integral coefficients. As λ4
◦ [α]X = [α]Xt ◦λ4, condition (a) is automatically satisfied, and we

have β = [α]Xt in the above. Using (ii) of Proposition (11.28) we find that the only condition

that remains is that [id4 + tαα]X kills Ker(µ) = Ker(λ)4, where id4 is the 4× 4 identity matrix.

Choose an integer m such that Ker(λ) ⊂ X[m]. We are done if we can find an integral 4×4

matrix α such that id4 + tαα ≡ 0 mod m. To see that such a matrix can be found we use the
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fact that every integer can be written as a sum of four squares. In particular there exist integers

a, b, c, d with a2 + b2 + c2 + d2 = m− 1. Now take

α =




a −b −c −d
b a −d c

c d a −b
d −c b a


 , (4)

PolWp:ZarTrMat

for which we have id4 + tαα = m · id4. �

(11.30) Remarks. (i) The choice of the matrix α can be explained as follows. Consider theZarTrickRem

Hamiltonian quaternion algebra H = R · 1+ R · i+ R · j+ R · k, which is a central simple algebra

over R. For x = a ·1+b ·i+c ·j+d ·k we define its complex conjugate by x̄ = a ·1−b ·i−c ·j−d ·k.
The reduced trace and norm of H over R are given by

TrdH/R(x) = x+ x̄ = 2a and NrdH/R(x) = xx̄ = a2 + b2 + c2 + d2 .

Further, taking {1, i, j, k} as a basis of H, left multiplication by x is given precisely by the

matrix (4). The map h: H→M4(R) sending x to this matrix is an injective homomorphism of

R-algebras, and we have h(x̄) = th(x) and NrdH/R(x) = det
(
h(x)

)
. Further it is clear that h

maps the subring Z · 1 + Z · i + Z · j + Z · k into M4(Z). In sum, we can think of α as being

the (left) multiplication by a · 1 + b · i + c · j + d · k, where a, b, c, d are chosen such that

a2 + b2 + c2 + d2 = m− 1.

(ii) In general there is no positive n such that for any abelian variety X the nth power Xn

admits a principal polarization. To see this we go back to the example in (11.24). We start

with an abelian variety Y of dimension g > 2 over a field k = k such that End(Y ) = Z and

such that Y does admit a principal polarization; see ?? for the existence. Any homomorphism

Y n → (Y t)n is of the form λn ◦ [α]Y = [α]Y t ◦λn for some α ∈ Mn(Z), and it easily follows

from (ii) of Proposition (11.28) that this homomorphism is symmetric if and only if α = tα.

Now choose a prime number ℓ different from char(k), and choose a subgroup H ⊂ Y of order ℓ,

generated by a point of order ℓ. Let π: Y → X := Y/H be the quotient.

Let µ be any polarization on Xn. By what was just explained we have (πn)∗µ = λn ◦ [α]Y
for some α ∈ Mn(Z). Moreover, H × · · · × H ⊂ Ker

(
[α]Y

)
, which readily implies that α is

divisible by ℓ, say α = ℓ · β. Further we have deg(µ) · ℓ2n = deg
(
[α]Y

)
= ℓ2ng · det(β)2g , so

deg(µ) = ℓ2n(g−1) · det(β)2g . In particular, Xn does not carry a principal polarization.

Exercises.

(11.1) Let f : X → Y be a homomorphism of abelian varieties with finite kernel. If µ: Y → Y tEx:f*Pol

is a polarization, show that f∗µ := f t ◦µ◦f is a polarization of X.

(11.2) LetX be an abelian variety over a field k. Suppose there exists a polarization λ: X → XtEx:ZarhOdd

with deg(λ) = m odd.

(i) Show that there exist integers a and b with 1 + a2 + b2 ≡ 0 mod m. [Hint: Use the Chinese

remainder theorem. First find a solution modulo p for any prime p dividing m. Then use

the fact that the curve C ⊂ A2 given by 1 + x2 + y2 = 0 is smooth over Zp (p 6= 2 !) to see

that the solutions can be lifted to solutions modulo arbitrarily high powers of p.]
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(ii) Adapting the proof of Zarhin’s trick, show that X2× (Xt)2 admits a principal polarization.

(11.3) Let L be a line bundle on an abelian variety X over a perfect field k. Write Y := K(L)0red,Ex:q*MmodPic0

which is an abelian subvariety of X, and let q: X → Z := X/Y be the quotient.

(i) Show that ϕL: X → Xt factors as ϕL = qt ◦ψ ◦q for some homomorphism ψ: Z → Zt.

(ii) Show that there is a finite separable field extension k ⊂ K and a line bundle M on ZK such

that ψK = ϕM .

(iii) With K and M as in (ii), conclude that the class of L⊗ q∗M−1 lies in Pic0
X/k(K).
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torsor

G-torsor@

§4. Polarizations associated to line bundles on torsors.

We begin this section by extending the definition of an action of a group scheme G on

a scheme P to the situation where G and P are only assumed to be fppf sheaves. This is a

straightforward generalization of the definitions given in Chapter ?? and mainly serves to recall

the notation. Unless indicated otherwise, “fppf sheaf” in this section means “fppf sheaf of sets”,

and group actions are actions from the left.

(11.31) Let S be a scheme. We recall from ?? that an S-scheme defines an fppf sheaf on Sch/S ,fppfGrActSetup

and that this gives an embedding of the category Sch/S as a full subcategory of the category

FPPF(S). If an fppf sheaf X is isomorphic to the sheaf defined by a scheme then we shall simply

say that X is a scheme.

If X and Y are fppf sheaves on S then we have a product sheaf X ×S Y , whose set of

sections over an S-scheme T is the product set X(T ) × Y (T ). If X and Y are both S-schemes

then the sheaf X ×S Y is of course just the sheaf defined by the scheme X ×S Y . Note that

the category FPPF(S) has (the sheaf defined by) S as a final object, so X ×S Y is the ordinary

product of X and Y in the category FPPF(S).

(11.32) Definition. Let G be a sheaf of groups for the fppf topology, and suppose given anfppfGrActDef

fppf sheaf P .

(i) An action of G on P is a morphism of fppf sheaves

ρ: G×S P → P

such that for every S-scheme T the map ρ(T ): (G×S P )
(
T
)

= G(T )×P (T )→ P (T ) defines an

action of the group G(T ) on the set P (T ). If there is no risk of confusion, we simply write g · p
for ρ(T )

(
(g, p)

)

(ii) If we have actions of G on sheaves P1 and P2 then a sheaf morphism f : P1 → P2 is

said to be G-equivariant (with respect to the given actions), if f(T ): P1(T ) → P2(T ) is G(T )-

equivariant for all S-schemes T .

(iii) Given an action ρ as in (i), we define the graph morphism

Ψ = Ψρ: G×S P → P ×S P

to be the morphism of sheaves with Ψ(T ): G(T )×P (T )→ P (T )×P (T ) given by (g, p) 7→ (g·p, p).

(11.33) Definition. Let S be a scheme. Let G be an fppf sheaf of groups over S.TorsorDef

(i) Consider an fppf sheaf P : Sch
opp
/S → Sets with a left action ρ: G×SP → P of G. Then P ,

or more precisely the pair (P, ρ), is called a G-torsor if the following two conditions are satisfied:

(a) the unique morphism of fppf sheaves P → S is an epimorphism;

(b) the graph morphism Ψ: G×S P → P ×S P is an isomorphism.

(ii) If P1 and P2 are G-torsors then a morphism of torsors P1 → P2 is a G-equivariant

morphism of sheaves.

(11.34) Remarks. (i) Condition (a) is satisfied, in particular, when P is an S-scheme such thatTorsorDefRem

the structural morphism P → S is faithfully flat and of finite presentation. This will usually be

the case in the examples that we want to consider later. On the other hand, as we shall see in

(11.37) below, if we want to set up the general theory there is some advantage in allowing P to

be a sheaf.
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torsor!trivial(ii) We have chosen here to work with sheaves on the fppf site of S. The same definition

of a G-torsor can be made for other topologies. For a comprehensive treatment we refer to

Giraud [1].

(iii) In practise, when we refer to a torsor we often do not specify the G-action, leaving it

implicit or assuming it is clear which action is meant.

(11.35) Assume G→ S is an epimorphism of fppf sheaves. The simplest example of a G-torsorTrivTorsor

is to take P = G, with G acting on itself by left translations. In this case ρ: G×S G→ G is just

the group law. The graph morphism Ψ is indeed an isomorphism; its inverse is the morphism

G ×S G → G ×S G given on points by (g1, g2) 7→ (g1g
−1
2 , g2). We refer to this G-torsor as

the trivial G-torsor. More generally, we say that a G-torsor is trivial is if it isomorphic, as a

G-torsor, to the trivial G-torsor.

If T → S is a morphism of schemes then we can pull-back torsors. Namely, if P is a G-

torsor, write PT for the restriction of P to SchT . (See ??) The T -group scheme GT acts on PT
and one easily checks that this makes PT into a GT -torsor. We shall usually refer to PT as the

restriction of P to T .

Condition (b) in the definition of a torsor can be interpreted by saying that locally for the

fppf topology, P is trivial. Namely,.... As we shall see in Prop. (11.39) below, if G is smooth

over S (which is usually the case in the situations we want to consider) then P is trivial even

étale locally on S.

(11.36) Proposition. (i) Let P1 and P2 be G-torsors over S. If f : P1 → P2 is a morphism ofTorsorHomProp

G-torsors, it is an isomorphism.

(ii) A G-torsor P is trivial if and only if P has a global section, i.e., if P (S) 6= ∅.
Proof.(To be written) �

Part (i) of the proposition shows that the category G-Tors of G-torsors over S is a groupoid,

i.e., all morphisms in this category are isomorphisms.

(11.37) Twisting .... (to be written)Twisting

(11.38) Proposition. (i) line bundles and Gm-torsorsTorsorExa

(ii) vector bundles and GL-torsors

(iii) Jacn is a torsor under J = Pic0.

(11.39) Proposition. Suppose G → S is a smooth S-group scheme. If P is a G-torsor thenTorsorEtTriv

there exists an étale covering {Sα}α∈A of S such that that the restrictions of P to Sα are trivial

for all α ∈ A.

Proof.(To be written) �

(11.40) Let X be an abelian variety over a field k. If P is an X-torsor then P is automaticallyTorsorAV

a scheme; for a proof of this we refer to Raynaud [3], Chap. XIII, Prop. 2.6. It follows from

Prop. (11.39) that Pk
∼= Xk. The general results mentioned in ?? therefore imply that PicP/k

exists as a k-scheme.

We define a morphism of schemes

α̃: PicX/k × P → PicP/k
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as follows. Let T be a k-scheme, and suppose we have a line bundle L on XT and a T -valued

point p ∈ P (T ). As we have seen in ??, the point p gives rise to an isomorphism τp: XT
∼−→ PT ,

and τ−1,∗
p (L) is a line bundle on PT . The map given by (L, p) 7→ τ−1,∗

p (L) defines a morphism of

presheaves PX/k × P → PP/k, and we define α̃ as the induced morphism on associated sheaves.

Let X act on PicX/k by sending (x,L) to t∗x(L). We claim that α̃ induces a morphism

α: PicX/k ×X P → PicP/k .

To see this, suppose we have p ∈ P (T ), a line bundle L on XT and a point x ∈ X(T ). (To

be written).

(11.41) Proposition. Let X be an abelian variety over a field k, and let P be an X-torsor.PicPicIsom

Then the morphism α: PicX/k ×X P → PicP/k defined above is an isomorphism, and it induces

isomorphisms

α0: Pic0
X/k

∼−→ Pic0
P/k and αNS: NSX/k

∼−→ NSP/k .

Proof.(To be written) �

(11.42) In the earlier chapters we have made heavy use of the homomorphism ϕL: X → XtphiLTorsor

associated to a line bundle L on X. Prop. (11.41) allows us to generalize the construction of

this homomorphism, where now as input we no longer need a line bundle on X itself but we can

associate a homomorphism ϕL to any line bundle on an X-torsor.

To explain the idea of the construction, suppose P is an X-torsor and L is a line bundle

on P . If x ∈ X(k) then we have the action ρx: P → P of x on P . Then the line bundle

ρ∗x(L) ⊗ L−1 defines a class in Pic0
P/k, and we can define ϕL: X → Xt = Pic0

X/k by composing

the map x 7→ [ρ∗x(L)⊗ L−1] with the inverse of the canonical isomorphism α0.

The quickest way to give a formal definition is to consider the homomorphism

ψP := ψ ◦α−1
NS: NSP/k → Homsym(X,Xt) ⊂ Hom(X,Xt)

obtained by composing the inverse of αNS with the homomorphism ψ of ??.

(11.43) Definition. Let X be an abelian variety over a field k. Let P be an X-torsor. If L isphiLDefTorsor

a line bundle on PT for some k-scheme T we define

ϕL: XT → Xt
T

to be the symmetric homomorphism corresponding to the image of [L] ∈ NSP/k(T ) under the

homomorphism ψP of ??.

Of course, we may also describe ϕL by elaborating on the pointwise construction given

above. For this, we again start with a line bundle L on XT , and we associate to this the line

bundle M := ρ∗(L) ⊗ pr∗2(L)−1 on XT ×T PT . Viewing M as a family of line bundles on PT
parametrized by XT , it defines a morphism XT → PicPT /T =

(
PicP/k ×k T

)
. Because it sends

the zero section of XT to the identity section of PicPT /T , we in fact have a homomorphism

XT → Pic0
P/k × T , and ϕL is now obtained by composing with the inverse of α0.

In view of the isomorphism αNS in Prop. (11.41), it may seem that we have gained nothing.

However, in practise the easiest way to define a point of a Néron-Severi group scheme, is to
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give a line bundle. But in general, not all points of NSX/k(k) can be obtained by giving a line

bundle on X over the given ground field. So it may be that a given point of NSX/k(k) cannot

be represented by a line bundle on X, while it can be defined by a line bundle on an X-torsor.

Better still, we claim that for every point ξ ∈ NSX/k(k) we can find an X-torsor P and a line

bundle L on P such that αNS(ξ) = [L]. ??????
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symmetric

line

normalized

totally

line

Kummer

§5. Symmetric line bundles.

(11.44) Let L be a line bundle on an abelian variety X. Recall that L is called a symmetricSymmLBDef

line bundle if [−1]∗L ∼= L. If L is symmetric then, by definition, there exists an isomorphism

r: L
∼−→ [−1]∗L. The set of all such isomorphisms is then a torsor under the group Aut(L) =

Γ(X,OX)∗ = k∗, and this allows us to rescale r in a unique way such that on the fibres over 0

it is the identity. (Here, of course, we use the canonical identification 0∗[−1]∗L = 0∗L.) So we

find that there is a unique isomorphism s: L
∼−→ [−1]∗L such that s is the identity on the fibres

over the origin 0 ∈ X(k); we call this s the normalized symmetry of L.

Let L again be a symmetric line. As [−1]X is the identity on the 2-torsion subscheme

X[2] ⊂ X, the normalized symmetry s: L
∼−→ [−1]∗L restricts to an automorphism of the

line bundle L|X[2] over X[2]. Such an automorphism is the multiplication by a global section

εL ∈ Γ
(
X[2], O∗X[2]

)
. In concrete terms, if x ∈ X[2]

(
k
)

is a k-rational 2-torsion point then on

the fibre over x the normalized symmetry s is multiplication by εL(x). (More generally, this

holds for scheme-valued points.)

We know that X[2] is a finite (and hence affine) group scheme; if A = Γ
(
X[2], OX[2]

)
is the

corresponding k-algebra then εL is an element of A∗. If char(k) 6= 2 then X[2] is an étale group

scheme, so over k = ks we can view εL as a function X[2]
(
k
)
→ k∗. Note that this function will

not, in general, be a homomorphism.

(11.45) Lemma. Let X be an abelian variety over a field k.SymmLBLem

(i) If L is a symmetric line bundle on X with normalized symmetry s: L
∼−→ [−1]∗L then

[−1]∗(s)◦s is the identity on L. (Here we identify [−1]∗[−1]∗L = L.)

(ii) The section εL ∈ Γ
(
X[2], O∗X[2]

)
defined above satisfies ε2L = 1, and εL(0) = 1.

(iii) If L and M are symmetric line bundles on X then so is L⊗M , and εL⊗M = εL · εM .

(iv) If f : X → Y is a homomorphism of abelian varieties and M is a symmetric line bundle

on Y then f∗M is a symetric line bundle on X and εf∗M = f#(εM ).

(v) Suppose L⊗2 ∼= OX , so that L defines a 2-torsion point [L] ∈ Xt[2]
(
k
)
. Consider the

corresponding character e2(−, L): X[2]→ Gm. Then εL is the image of 1 ∈ Γ
(
Gm, O

∗
Gm

)
under

e2(−, L)#: Γ
(
Gm, O

∗
Gm

)
→ Γ

(
X[2], O∗X[2]

)
.

In order to make some of the statements a little more concrete, it is useful to consider the

case where k = ks and char(k) 6= 2. As explained, εL can in that case be viewed as a function

X[2]
(
k
)
→ k∗. Point (ii) of the lemma says that εL(x) ∈ {±1} for all 2-torsion points x, and

(v) says that if L⊗2 ∼= OX then εL(x) = e2(x,L).

Proof. To be written. �

(11.46) Definition. A line bundle L on an abelian variety X is said to be totally symmetric ifTotSymmLBDef

it is symmetric and if moreover εL = 1.

In other words, total symmetry is defined by the requirement that the normalized symmetry

s: L
∼−→ [−1]∗L restricts to the identity on the line bundle L|X[2] over X[2].

It is in fact easy to write down examples of totally symmetric line bundles. Namely, if M

is any line bundle on X then M ⊗ [−1]∗M is totally symmetric.

(11.47) Definition. Let X be an abelian variety over a field k. The Kummer variety of X isKummerVarDef

the quotient KumX := X/〈±1〉 of X modulo the action of the group
{
idX , [−1]X

}
.
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If there is no risk of confusion we shall usually simply write 〈±1〉 for the group
{
idX , [−1]X

}
.

The action of this group is not free (unless X = 0); the fixed point subscheme is the 2-torsion

subscheme X[2] ⊂ X. If X is an elliptic curve then KumX
∼= P1. If g = dim(X) > 1 then

KumX is singular.

(11.48) Proposition. Let L be a line bundle on an abelian variety X. Let q: X → Kum−XTotSymmLBKummer

be the quotient morphism of X to its Kummer variety. Then L is totally symmetric if and only

if there exists a line bundle M on KumX such that L ∼= q∗M .

Proof. To be written. �
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Poincar´Chapter XII. The endomorphism ring.

§1. First basic results about the endomorphism algebra.

Let X and Y be abelian varieties over a field k. If f and g are homomorphisms from X to Y

then we have a homomorphism (f + g): X → Y given on points by x 7→ f(x) + g(x). More

formally,

(f + g) = mY ◦(f, g): X
(f,g)−−−→ Y ×k Y mY−−−→ Y .

This gives the set Hom(X,Y ) of homomorphisms X → Y the structure of an abelian group. For

Y = X we find that End(X) has a natural ring structure, with composition of endomorphisms

as the ring multiplication.

Note that Hom(X,Y ) and End(X) always refer to the homomorphisms and endomorphisms,

respectively, over the given ground field. If the context requires it, we shall use the notation

Homk(X,Y ) and Endk(X). Let us also recall (see (1.17)) that for the larger set of all morphisms

of schemes X → Y , which is just Hom(X,Y )×Y (k), the notation HomS
h/k(X,Y ) is used. (This

larger set rarely ever plays a role in our discussions, though.)

If n ∈ Z and f ∈ Hom(X,Y ) then we have n · f = f ◦ [n]X = [n]Y ◦f . But for n 6= 0 we

know that [n]X is an isogeny, in particular it is surjective; so we find that the group Hom(X,Y )

is torsion-free. We write

Hom0(X,Y ) := Hom(X,Y )⊗Z Q and End0(X) := End(X)⊗Z Q .

By definition, End0(X) is a Q-algebra. If there is no risk of confusion one simply refers to

End0(X) as the endomorphism algebra of X. (The term algebra is supposed to distinguish it

from the endomorphism ring End(X).)

(12.1) Remark. If k ⊂ K is a field extension, we have a natural inclusion Homk(X,Y ) ⊂EndkRem

HomK(XK , YK), which in general is strict. The K-homomorphisms HomK(XK , YK) are the

K-valued points of the k-group scheme Hom(X,Y ), which, as shown in Proposition (7.14), is

étale. Hence if k = ks we have Homk(X,Y ) = HomK(XK , YK) for any field extension k ⊂ K.

We shall further sharpen this in Corollary (12.13) below.

(12.2) Theorem. (Poincaré Splitting Theorem) Let X be an abelian variety over a field k.PoincSpl

If Y ⊂ X is an abelian subvariety, there exists an abelian subvariety Z ⊂ X such that the

homomorphism f : Y ×Z → X given by (y, z) 7→ y+ z is an isogeny. (So, Y +Z = X and Y ∩Z
is finite.)

Proof. Write i: Y →֒ X for the inclusion. Choose a polarization λ: X → Xt, and let

W := Ker
(
X

λ−→ Xt it−→ Y t
)
.

We know from Exercise (11.1) that λY := it ◦λ◦ i: Y → Y t is again a polarization. In particular,

Y ∩W is finite.

Endoms, 8 februari, 2012 (635)
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quotient!abelian

simple

abelian

abelian

Suppose we can find an abelian subvariety Z ⊂ X of dimension dim(X) − dim(Y ) with

Z ⊆ W . Then (Y ∩ Z) is finite, and because the kernel of f : Y × Z → X is contained in

(Y ∩ Z)× (Y ∩ Z) this implies that f is an isogeny, as desired.

Now take Z := W 0
red. By Prop. (5.31) we know that Z is indeed an abelian subvariety of X,

and Z has dimension dim(X) − dim(Y ). Further, (Y ∩ Z) is finite, and because the kernel of

the natural homomorphism f : Y × Z → X is contained in (Y ∩ Z)× (Y ∩ Z) this implies that

f is an isogeny, as desired. �

(12.3) Remark. In the proof of the theorem we use the fact, proven in Prop. (5.31), that W 0
redPoincSplRem

is an abelian subvariety of X. The main difficulty is that a priori (i.e., without knowing this

result) W 0
red might not even be a subgroup scheme of X; see Exercise (3.2). Instead of using

Prop. (5.31) we can also prove the theorem by the following argument that uses the existence

of the quotient abelian variety X/Y .

Let Y ⊂ X be an abelian subvariety. By Thm. (4.38) there exists an fppf quotient group

scheme q: X →→ Q := X/Y . Since Q is also a geometric quotient of X by Y , it is in fact an

abelian variety, of dimension dim(X) − dim(Y ). The homomorphism qt: Qt → Xt is injective

(see Exercise 7.7), and we use it to identify Qt with an abelian subvariety of Xt. Choose an

isogeny µ: Xt → X such that λ◦µ = [n]Xt for some positive integer n. Let Z ⊂ X be the image

of Qt under µ; so Z ∼= Qt/
(
Qt∩Ker(µ)

)
is an abelian subvariety of X, with dim(Z) = dim(Q) =

dim(X)− dim(Y ). Now note that λ(Z) ⊆ Qt ⊆ Ker(it); hence Z ⊆ W . In particular, Z ∩ Y is

finite, and as in the above proof it follows that the natural homomorphism Y × Z → X is an

isogeny. �

(12.4) Definition. A non-zero abelian variety X over a field k is said to be simple if X has noSimpleDef

abelian subvarieties other than 0 and X. We say that X is elementary if X is isogenous (over k)

to a power of a simple abelian variety, i.e., X ∼k Y m for some m > 1 and Y simple.

Note that an abelian variety that is simple over the ground field k need not be simple over

an extension of k. To avoid confusion we sometimes uses the terminology “k-simple”. If X is

simple over a separably closed field k then it follows from Remark (12.1) that XL is simple for

every extension k ⊂ L.

(12.5) Corollary. A non-zero abelian variety over k is isogenous to a product of k-simplePoincCor

abelian varieties. More precisely, there exists k-simple abelian varieties Y1, . . . , Yn, no two of

which are k-isogenous, and positive integers m1, . . . ,mn such that

X ∼k Y m1
1 × · · · × Y mn

n . (1)Endos:dec

Up to a permutation of the factors, the abelian varieties Yi that appear in this decomposition

are unique up to k-isogeny, and the corresponding multiplicities mi are uniquely determined.

Proof. The existence of a decomposition (1) is immediate from the Poincaré Splitting Theorem.

The uniqueness statement is an easy exercise—note that a homomorphism between two simple

abelian varieties is either zero or an isogeny. �

(12.6) Definition. Let k be a field. We define the category of abelian varieties over k up toQAV/k

isogeny , notation QAV/k, to be the category with as objects abelian varieties over k and with

HomQAV/k
(X,Y ) = Hom0(X,Y ) := HomAV/k

(X,Y )⊗Z Q .
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quasi-isogeny

isogeny!quasi-

If X and Y are abelian varieties over k then an element f ∈ Hom0(X,Y ) is called a quasi-

isogeny if f is an isomorphism in the category QAV/k.

To explain the terminology, notice that an element f ∈ Hom0(X,Y ) is a quasi-isogeny if

and only if there is a non-zero integer n such that nf is an isogeny from X to Y . In particular,

two abelian varieties give isomorphic objects of QAV/k if and only if they are k-isogenous.

(12.7) Corollary. If X is k-simple then End0
k(X) is a division algebra. For X as in (1) weQAVCor

have, writing Di := End0
k(Yi),

End0
k(X) ∼= Mm1

(D1)× · · · ×Mmn
(Dn) .

(Recall that Mm(R) denotes the ring of m×m matrices with coefficients in the ring R.)

Proof. Let us (again) remark that a homomorphism between two k-simple abelian varieties

is either zero or an isogeny. But the isogenies from X to itself are invertible elements of

End0
k(X). So if X is k-simple End0

k(X) is a division algebra. For the second statement, note that

Hom(Yi, Yj) = 0 if i 6= j, as it was assumed that Yi and Yj are simple and non-isogenous. �

In categorical language, we have shown that QAV/k is a semi-simple category.

To obtain further results, we shall investigate homomorphisms f : X → Y via the induced

maps Tℓf on Tate-ℓ-modules, or the maps f [p∞] on p-divisible groups. We shall usually state

results in both settings. If p 6= char(k) then statements about f [p∞] can also be phrased in

terms of Tate modules, and it is this formulation that is most often used. (This is based on

the sentiment that ordinary groups with Galois action are conceptually easier than étale group

schemes.) Hence our main interest in results about f [p∞] is in the case that char(k) = p > 0,

even though this is often irrelevant in the proofs.

(12.8) Lemma. Let X and Y be abelian varieties over a field k, and let f ∈ Hom(X,Y ).lmDivLem

(i) Let ℓ be a prime number, ℓ 6= char(k). If Tℓ(f) is divisible by ℓm in HomZℓ
(TℓX,TℓY )

then f is divisible by ℓm in Hom(X,Y ).

(ii) Let p be a prime number. If f [p∞] is divisible by pm in Hom
(
X[p∞], Y [p∞]

)
then f is

divisible by pm in Hom(X,Y ).

Proof. The divisibility of Tℓ(f) means that f vanishes on X[ℓm](ks). But X[ℓm] is an étale group

scheme (ℓ 6= char(k)), hence f is zero on X[ℓm]. This means that f factors through [ℓm]X .

The argument for (ii) is essentially the same: if f [p∞] is divisible by pm then f vanishes

on X[pm]; hence it factors through [pm]X . �

If Tℓ(f) = ℓm · ϕ for some ϕ ∈ HomZℓ
(TℓX,TℓY ) then the element g ∈ Hom(X,Y ) such

that ℓm · g = f is unique (as Hom(X,Y ) is torsion-free), and it follows from Theorem (12.10)

below that Tℓ(g) = ϕ. Similarly, if f [p∞] = pm · ϕ then there is a unique g ∈ Hom(X,Y ) with

pm · g = f , and g[p∞] = ϕ.

(12.9) Lemma. Let X be an abelian variety, and let L be an ample line bundle on X. ThenBilFormLem

the form BL: End(X) × End(X)→ Z given by

BL(f, g) = c1(L)g−1 · c1
(
(f + g)∗L⊗ f∗L−1 ⊗ g∗L−1

)

is bilinear and positive definite.
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Note that by slight abuse of notation we write c1(L)g−1 ·c1(M) for deg
(
c1(L)g−1 ·c1(M)

)
=∫

X
c1(L)g−1 · c1(M); cf. the remark following Thm. (9.11).

Proof. Consider the map q: End(X) → CH1(X) given by f 7→ c1(f
∗L). It follows from the

Theorem of the Cube, Cor. (2.8), together with Exercise (2.5) that the map bL: End(X) ×
End(X)→ CH1(X) given by

bL(f, g) = q(f + g) − q(f)− q(g) = c1
(
(f + g)∗L⊗ f∗L−1 ⊗ g∗L−1

)

is bilinear. But if h: CH1(X)→ Z is the linear map given by ξ 7→ c1(L)g−1 · ξ then BL = h◦bL;

hence BL is bilinear too.

It remains to be shown that BL(f, f) > 0 for all non-zero f ∈ End(X). Note that (2f)∗L⊗
(f∗L)−2 = f∗

(
[2]∗L

)
⊗ f∗L−2 is algebraically equivalent to f∗L4 ⊗ f∗L−2 = f∗L2. Hence

BL(f, f) = 2 · c1(L)g−1 · c1(f∗L). Because L is ample, it suffices to show that c1(f
∗L) is an

effective class if f 6= 0. Further, as BLn(f, f) = ng · BL(f, f) we may assume that L is very

ample. If f 6= 0 then Y := f(X) ⊂ X is an abelian subvariety of X of positive dimension,

and there is an effective divisor D =
∑
niDi on Y such that L|Y = OY (D). But f : X → Y is

flat (see Exercise (5.1)), so f∗L is represented by the divisor
∑
ni[f

−1Di], where [f−1Di] is the

divisor class associated to the scheme-theoretic inverse image of Di. In particular, c1(f
∗L) is an

effective class, and the positivity of BL follows. �

(12.10) Theorem. Let X and Y be abelian varieties over a field k.TlInjThm

(i) If ℓ is a prime number, ℓ 6= char(k) then the Zℓ-linear map

Tℓ: Hom(X,Y )⊗ Zℓ −→ HomZℓ
(TℓX,TℓY )

given by f ⊗ c 7→ c · Tℓ(f) is injective and has a torsion-free cokernel.

(ii) If p is a prime number, the Zp-linear map

Φ: Hom(X,Y )⊗ Zp −→ Hom
(
X[p∞], Y [p∞]

)

given by f ⊗ c 7→ c · f [p∞] is injective and has a torsion-free cokernel.

Proof. (i) We first prove that Tℓ has a torsion-free cokernel. Notice that Coker(Tℓ) is a Zℓ-module,

so it can only have ℓ-power torsion. Suppose we have ϕ ∈ HomZℓ
(TℓX,TℓY ) and

∑
fi ⊗ ci ∈

Hom(X,Y ) ⊗ Zℓ such that ℓm · ϕ =
∑
ci · Tℓ(fi). Choose integers ni with ni ≡ ci mod ℓm,

and write ci = ni + ℓm · di with di ∈ Zℓ. Then f :=
∑
nifi is an element of Hom(X,Y ), and

Tℓ(f) = ℓm ·
(
ϕ −∑ diTℓ(fi)

)
is divisible by ℓm. By Lemma (12.8) there exists an element

g ∈ Hom(X,Y ) with Tℓ(g) = ϕ −∑ diTℓ(fi). Hence ϕ is in the image of the map Tℓ, which is

what we had to prove.

Now we prove that Tℓ is injective. We first reduce to the case that Y = X. For this, put

Z := X × Y . Then we have a commutative diagram

Hom(X,Y )
Tℓ−−→ HomZℓ

(TℓX,TℓY )
y

y

End(Z)
Tℓ−−→ EndZℓ

(TℓZ)

where the left vertical map sends f : X → Y to the endomorphism (x, y) 7→
(
0, f(x)

)
of Z, and

where the right vertical map is defined similarly. As the left vertical map is clearly injective,

this reduces the problem to the case X = Y .
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Suppose there exist linearly independent elements f1, . . . , fr ∈ End(X) and non-zero ℓ-adic

integers c1, . . . , cr such that

c1Tℓ(f1) + · · ·+ crTℓ(fr) = 0 . (2)Endoms:ciTlfi

We may assume that r is minimal, i.e., there is no such relation with fewer terms. Choose an am-

ple bundle L and let B = BL: End(X)×End(X)→ Z be the form considered in Lemma (12.9).

In (2) we may assume that B(f1, fj) = 0 for all j ∈ {2, . . . , r}; to achieve this, replace c1 by∑r
k=1B(fk, f1) · ck, and for j > 2 replace fj by B(f1, f1) · fj −B(fj, f1) · f1. (Note that the new

elements fj are again linearly independent.)

Let m be a positive integer. Choose integers ni with ni ≡ ci mod ℓm. Then g := n1f1 +

· · ·+nrfr is an endomorphism of X such that Tℓ(g) divisible by ℓn. By Lemma (12.8) there is an

h ∈ End(X) such that g = ℓn · h. Hence n1 · B(f1, f1) = B(g, f1) is divisible by ℓm, and by our

choice of n1 it follows that c1 · B(f1, f1) is divisible by ℓm. But m was arbitrary, and B(f1, f1)

is a fixed positive integer. Hence c1 = 0, contradicting the minimality assumption on r.

The proof of (ii) is essentially the same; we leave it to the reader. �

(12.11) Corollary. If X and Y are abelian varieties over k then Hom(X,Y ) is a free Z-moduleTlInjCor

of rank at most 4 dim(X) dim(Y ). In particular, End0(X) is a finite dimensional semi-simple

Q-algebra, of dimension at most 4 dim(X)2.

Proof. We already know that Hom(X,Y ) is torsion-free. The upper bound for the rank is imme-

diate from the theorem, as HomZℓ
(TℓX,TℓY ) is a free Zℓ-module of rank 4 dim(X) dim(Y ). �

(12.12) Corollary. If X is a g-dimensional abelian variety over a field k then its Néron-SeveriNSfinite

group NS(X) is a free Z-module of rank at most 4g2.

Proof. By Corollary (7.26) we have NS(X)
∼−→ Homsym(X,Xt). �

(12.13) Corollary. Let X and Y be abelian varieties over a field k. Fix a separable algebraicHomDefField

closure k ⊂ ks. Then there is a finite field extension k ⊂ K inside ks which is the smallest field

extension over which all homomorphisms from X to Y are defined, by which we mean that K

has the following two properties:

(a) for any field extension K ⊂ L we have HomK(XK , YK)
∼−→ HomL(XL, YL);

(b) if Ω is a field containing ks and F ⊂ Ω is a subfield with k ⊆ F and HomF (XF , YF )
∼−→

HomΩ(XΩ, YΩ), then K ⊆ F .

Proof. As Hom(X,Y ) is an étale group scheme, this assertion is just a matter of Galois theory.

Choose generators f1, . . . , fr of Homks
(Xks

, Yks
) as an additive group. Let Γi ⊂ Gal(ks/k) be

the stabilizer of fi under the natural continuous action of Gal(ks/k) on Homks
(Xks

, Yks
). Each

Γi is an open subgroup of Gal(ks/k). Now let K ⊂ ks be the fixed field of Γ1 ∩ · · · ∩Γr; it is the

smallest subfield of ks over which the fi are all defined. Because the fi generate Homks
(Xks

, Yks
)

the group scheme Hom(X,Y ) becomes constant over K; hence (a) holds. If F is as in (b) then

the fi are all defined over K ∩ F (intersection inside Ω), and by definition of K it follows that

K ⊆ (K ∩ F ), i.e., K ⊆ F . �

§2. The characteristic polynomial of an endomorphism.
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(12.14) Let X be an abelian variety of dimension g over a field k. If W is a Q-vector spaceDegQDef

then a map γ: End(X) → W is said to be homogeneous of degree m if γ(n · f) = nm · γ(f)

for all f ∈ End(X) and all n ∈ Z. Any homogeneous map γ naturally extends to a map

γ: End0(X) → W : write g ∈ End0(X) as g = q · f for some q ∈ Q and f ∈ End(X), and then

set γ(g) = qm · γ(f).

We appply this to the map deg: End(X) → Q, which is homogeneous of degree 2g. Note

that, by convention, deg(f) = 0 if f ∈ End(X) is not finite. By the procedure that we have just

explained, this degree map extends to a map deg: End0(X)→ Q, with deg(q · f) = q2g · deg(f)

for q ∈ Q and f ∈ End(X).

(12.15) Proposition. The map deg: End0(X) → Q is a homogeneous polynomial map ofDegisPol

degree 2g. This means that if e1, . . . , eu is a basis for End0(X) as a Q-vector space, then there

is a homogeneous polynomial D ∈ Q[t1, . . . , tu] of degree 2g such that

deg(c1e1 + · · · + cueu) = D(c1, . . . , cu)

for all ci ∈ Q.

Proof. Let L be a symmetric ample bundle on X. Then the map γ: End(X) → CH1
Q(X) given

by f 7→ c1(f
∗L) is homogeneous of degree 2, so by what was explained in (12.14) it naturally

extends to a map γ: End0(X) → CH1
Q(X). By Cor. (9.12), deg(f) = c1(f

∗L)g/c1(L)g for all

f ∈ End(X); note that this also holds if f : X → X is not an isogeny, for in that case the

Riemann-Roch Theorem (9.11) gives χ(f∗L)2 = deg(ϕf∗L) = 0. Hence it suffices to show that

the map γ is a homogeneous polynomial map of degree 2.

As we have seen in the proof of Lemma (12.9), the map b: End(X) × End(X) → CH1(X)

given by b(f, g) = c1
(
(f + g)∗L⊗ f∗L−1⊗ g∗L−1

)
is bilinear. Also, b is clearly symmetric. But,

again using the assumption that L is symmetric, γ(f) = (1/2) · b(f, f). From this it readily

follows that γ is polynomial of degree 2. �

(12.16) Definition. Let X be an abelian variety over k. If f ∈ End0(X) then by the proposi-CharPolDef

tion there is a monic polynomial P = Pf ∈ Q[t] of degree 2g such that P (n) = deg
(
[n]X − f

)

for all n ∈ Z. We call P , which is uniquely determined, the characteristic polynomial of f . If

P =
∑2g
i=0 ait

i then we define the trace of f by trace(f) := −a2g−1.

In this context, the degree of an endomorphism f is also sometimes referred to as the norm

of f ; so, with the previous notation, Norm(f) := deg(f) = a0.

(12.17) Lemma. Let Q be a field of characteristic zero. Let A be a semisimple Q-algebra ofNormsLemma

finite Q-dimension, and let A = A1 × · · · × Ah be the decomposition of A into a product of

simple factors. Let NrdAj/Q: Aj → Q be the reduced norm of Aj over Q. Suppose δ: A→ Q is

a nonzero map that has the following two properties:

(a) δ is a homogeneous polynomial map;

(b) δ is multiplicative, meaning that δ(ab) = δ(a)δ(b) for all a, b ∈ A.

Then there exist integers n1, . . . , nh such that

δ(a1, . . . , ah) = NrdA1/Q(a1)
n1 · · ·NrdAh/Q(ah)

nh

for all (a1, . . . , ah) ∈ A = A1 × · · · ×Ah.
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Proof. By (b) we have δ(a1, . . . , ah) = δ(a1, 1, . . . , 1) · δ(1, a2, 1, . . . , 1) · · · δ(1, . . . , 1, ah). Since

the function that sends aj ∈ Aj to δ(1, . . . , 1, aj , 1, . . . , 1) is again homogeneous polynomial and

multiplicative, it suffices to treat the case h = 1. So from now on we assume that A is a simple

Q-algebra. Let K be its centre, which is a finite field extension of Q. Choose an algebraic closure

Q of Q, and let Σ be the set of embeddings σ: K → Q that extend the given embedding Q →֒ Q.

Let e1, . . . , eu be an ordered basis for A as a vector space over Q. Assumption (a) just means

that there exists a homogeneous polynomial D ∈ Q[t1, . . . , tu] such that δ(c1e1 + · · · + cueu) =

D(c1, . . . , cu) for all c1, . . . , cu ∈ Q. Because Q is infinite, D is uniquely determined. For any

field extension Q ⊂ L the map δ therefore uniquely extends to a homogeneous polynomial map

δL: AL := L ⊗Q A → L. Moreover, because A is Zariski dense in AL, the extended map δL is

again multiplicative.

We have

AQ =
∏

σ∈Σ

Aσ with Aσ = Q⊗σ,K A .

If m is the degree of A as a central simple K-algebra, each factor Aσ is (non-canonically)

isomorphic to Mm(Q). Write δσ: Aσ → Q for the map given by aσ 7→ δQ(1, . . . , 1, aσ , 1, . . . , 1).

Because δσ is multiplicative and δ is not the zero map, δσ(a) ∈ Q
∗

for every a ∈ A∗σ. Choosing

an isomorphism ισ: Aσ
∼−→Mm(Q) we conclude that δσ gives a character of GLm over Q, that

is, a homomorphism of algebraic groups δσ: GLm,Q → Gm,Q. But any such character is of the

form detν for some integer ν; see ??. Note that the integer ν does not depend on the choice of ισ,

as by the Skolem-Noether theorem all automorphisms of Mm(Q) are inner automorphisms.

We conclude that there exist integers ν(σ) such that δQ is given by

δQ
(
(aσ)σ∈Σ

)
=
∏

σ∈Σ

δσ(aσ) =
∏

σ∈Σ

det
(
ισ(aσ)

)ν(σ)
.

Let us also note that the reduced norm map NrdA/Q: A → Q after extension of scalars Q ⊂ Q

gives the map AQ → Q that sends (aσ)σ∈Σ to
∏
σ∈Σ det

(
ισ(aσ)

)
. So all that is left to prove is

that the exponents ν(σ) are all equal. To see this, note that for any c ∈ K we have

δ(c) = δQ
(
(σ(c))σ∈Σ

)
=
∏

σ∈Σ

det
(
σ(c)

)ν(σ)
=
∏

σ∈Σ

σ(c)mν(σ) . (3)
Endoms:deltac

Now it is an easy exercise in Galois theory to see that the RHS of (3) defines a function on K

that takes values in Q only if all exponents mν(σ) are equal. �

(12.18) Theorem. Let X be an abelian variety over a field k. Let ℓ be a prime numberPlf=Pf

different from char(k). For f ∈ End0(X), let Pℓ,f ∈ Qℓ[t] be the characteristic polynomial

of Vℓf ∈ EndQℓ
(VℓX), i.e., Pℓ,f (t) = det(t · id − Vℓf). Then Pℓ,f = Pf . In particular, the

characteristic polynomial of Vℓf has coefficients in Q and is independent of ℓ.

Proof. We know that A := Qℓ ⊗Z End(X) is a semisimple Qℓ-algebra of finite dimension. Let

A = A1 × · · · × Ah be its decomposition into a product of simple factors. As explained in the

proof of (12.17) the degree map f 7→ deg(f) extends uniquely to a homogeneous polynomial

map δ1: A→ Qℓ of degree 2g.

The function δ2: A → Qℓ given by f 7→ det(Vℓf) is also a homogeneous polynomial map

of degree 2g. As δ1 and δ2 are both multiplicative, we can apply Lemma (12.17) to each. We

conclude that there exist integers ni and νi such that for any f = (f1, . . . , fh) ∈ A,

δ1(f) = NrdA1/Qℓ
(f1)

n1 · · ·NrdAh/Qℓ
(fh)

nh
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and

δ2(f) = NrdA1/Qℓ
(f1)

ν1 · · ·NrdAh/Qℓ
(fh)

νh .

To get further information, we consider the ℓ-adic valuation v: Qℓ → Z ∪ {∞}. Let E :=

End(X) ∩ End0(X)∗ be the monoid of isogenies X → X. If f ∈ E we can write N := Ker(f)

as N = Nℓ × N ℓ, with N ℓ a group scheme of order prime to ℓ and Nℓ of ℓ-power order, say

#Nℓ = ℓa. We have v
(
deg(f)

)
= a. On the other hand, we have seen in Proposition (10.6)

that Tℓf : TℓX → TℓX is injective with cokernel Nℓ(ks). Because ℓ is relatively prime to char(k)

the group scheme Nℓ is étale, so Nℓ(ks) is just an ordinary abelian group of order ℓa. From the

theory of elementary divisors it then follows that v
(
det(Vℓf)

)
= a as well.

Any ϕ ∈ End0(X)∗ can be written as ϕ = q · f for some q ∈ Q∗ and f ∈ E . As δ1 and δ2
are both homogeneous of degree 2g, it follows that v

(
deg(ϕ)

)
= v
(
det(Vℓ)

)
. Now the set

{
f ∈ A

∣∣∣ v
(
δ1(f)

)
= v
(
δ2(f)

)}

is closed in A for the ℓ-adic topology, and we have just shown that it contains End0(X)∗. But

End0(X)∗ is ℓ-adically dense in A, so we conclude that v
(
δ1(f)

)
= v

(
δ2(f)

)
for all f ∈ A.

Applying this to all elements of the form (1, . . . , 1, ℓ, 1, . . . , 1) ∈ A = A1× · · · ×Ah, we find that

ni = νi for all i. �

(12.19) Corollary. For any f ∈ End0(X) we have Pf (f) = 0.PlfPfCor1

(12.20) Corollary. If f ∈ End(X) then Pf has integral coefficients.PfIntegral

Proof. Let f ∈ End(X). Because End(X) is finitely generated as an additive group, there is a

monic Q ∈ Z[t] with Q(f) = 0. But then also Q(Vℓf) = 0, which implies that all eigenvalues of

Vℓf are algebraic integers. So the coefficients of Pℓ,f = Pf are rational numbers which are at

the same time algebraic integers; hence they are integers. �

(12.21) Corollary. For f , g ∈ End0(X) we have the relationsPlfPfCor2

deg(fg) = deg(f) · deg(g) , trace(f + g) = trace(f) + trace(g) , and trace(fg) = trace(gf) .

If p is a prime number and f ∈ End0(X) then it follows from Cor. (12.19) that Pf
(
f [p∞]

)
=

0. One naturally wonders if Pf can also be interpreted as the characteristic polynomial of f [p∞]

as an endomorphism of the p-divisible group X[p∞]. (??Nog verder uitwerken. Later bewijzen

dat Pf ook het char pol is van f op de kristallijne cohom??)

(12.22) Remark. Let X be a simple abelian variety over a field k, so that End0(X) is a divisionVlXfreeQlf

algebra. If f ∈ End0(X) then Q[f ] ⊂ End0(X) is a number field, and Qℓ[f ] := Qℓ ⊗Q Q[f ] is

a product of finite field extensions of Qℓ, say Qℓ[f ] = L1 × · · · × Lt. Correspondingly we have

a decomposition VℓX = V1 ⊕ · · · ⊕ Vt. The fact that Pℓ,f has coefficients in Q means precisely

that VℓX is free as a module over Qℓ[f ], or, equivalently, that di := dimLi
(Vi) is independent

of i. To see this, let h be the minimum polynomial of f over Q. Let h = h1 · · ·ht be the prime

factorisation of h in Qℓ[t], so that Li ∼= Qℓ[t]/(hi). Then Pℓ,f equals hd11 · · ·hdt
t . Now it is an easy

exercise in Galois theory to see that
∏
hdi

i has coefficients in Q if and only if all exponents di
are equal.

It is not true, in general, that VℓX, as a module over End0(X), is “defined over Q”. That

is, in general there is no End0(X)-module W such that VℓX ∼= Qℓ ⊗Q W as modules over
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Qℓ ⊗Q End0(X). The easiest counterexample is provided by a supersingular elliptic curve X

over an algebraically closed field of characteristic p. In this case D := End0(X) is a quaternion

algebra with center Q, and if W is any left D-module of finite type then the Q-dimension of W is

divisible by 4, whereas VℓX is 2-dimensional. Such examples only occur in positive characteristic,

and this has interesting consequences for the types of endomorphism algebras that can occur.

We shall come back to this in ?? below.

§3. The Rosati involution.

(12.23) Let λ: X → Xt be a polarization. If f ∈ End0(X) then we have f t ∈ End0(Xt), andRosatiDef

in End0(X) we can form the element f † := λ−1
◦f t ◦λ:

X
λ−−−→ Xt

ft

y

X
λ−1

←−−− Xt

Note that in general the arrow λ−1 only exists in the category of abelian varieties up to isogeny;

unless λ is a principal polarization it does not exist as a true homomorphismXt → X. If we want

to stay in the usual category of abelian varieties, consider a homomorphism µ: Xt → X such that

µ◦λ = [n]X for some n > 0, and write f = (1/m) · g for some g ∈ End(X) and m ∈ Z>0. Then

h := µ◦gt ◦λ is a true endomorphism ofX, and by definition we have f † := (1/mn)·h ∈ End0(X).

It is readily checked that the map †: End0(X) → End0(X) given by f 7→ f † is additive,

that (f ◦g)† = g† ◦f †, and that (f †)† = f . Hence † is an involution of the algebra End0(X). It

is called the Rosati involution associated with λ.

Note that † does not necessarily preserve the subring End(X) ⊂ End0(X), but if λ is a

principal polarization then of course it does.

The Rosati involution depends on the chosen polarization. If µ: X → Xt is another polar-

ization then α := λ−1
◦µ is a well-defined element of End0(X), and we can write µ = λ◦α. If

f 7→ f ‡ is the Rosati involution associated to µ then f ‡ = α−1
◦f † ◦α.

Note that deg(f †) = deg(f) for all f . As [n]†X = [n]X , it follows that in fact Pf† = Pf ; in

particular also trace(f †) = trace(f).

(12.24) Lemma. Let X be an abelian variety over a field k. Let ℓ be a prime number withdagEladjLem

ℓ 6= char(k). Let λ: X → Xt be a homomorphism, f 7→ f † the associated Rosati involution, and

let Eλ: VℓX × VℓX → Qℓ(1) be the Riemann form of λ. Then for all f ∈ End(X) and all x,

y ∈ VℓX we have

Eλ
(
Vℓf(x), y

)
= Eλ

(
x, Vℓf

†(y)
)
.

In other words, if ϕ 7→ ϕ∗ is the adjoint involution on EndQℓ
(VℓX) associated with the pair-

ing Eλ, the map Vℓ: End0(X)→ EndQℓ
(VℓX) is a ∗-homomorphism of algebras with involution.

Proof. Let E: VℓX × VℓXt → Qℓ be the Qℓ-linear extension of the pairing defined in (11.23), so

that Eλ(x, y) = E
(
x, Vℓλ(y)

)
.

By definition of the Rosati involution we have Vℓλ◦Vℓf
† = Vℓ(λ◦f †) = Vℓf

t
◦Vℓλ. Hence

Eλ
(
x, Vℓf

†(y)
)

= E(x, Vℓf
t
◦Vℓλ(y)

)
.
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By (i) of Prop. (11.21) this equals E(Vℓf(x), Vℓλ(y)
)

= Eλ
(
Vℓf(x), y

)
. �

(12.25) Proposition. Let X be an abelian variety over a field k. Let λ be a polarization of X,dagSymmElts

and let f 7→ f † be the associated Rosati involution on End0(X). Then the map NS(X) →
End0(X) given by [M ] 7→ λ−1

◦ϕM induces an isomorphism of Q-vector spaces

i: NS(X)⊗Q
∼−→
{
f ∈ End0(X)

∣∣ f = f †
}
.

In particular, the Picard number of X equals the Q-dimension of the space of †-symmetric

elements in End0(X).

Proof. By Cor. (11.3) the map [M ] 7→ ϕM gives an isomorphism NS(X)
∼−→ Homsym(X,Xt);

hence also NS(X) ⊗ Q
∼−→ Hom0,sym(X,Xt). Now consider the isomorphism End0(X)

∼−→
Hom0(X,Xt) given by f 7→ λ◦f . Using that λ = λt one easily checks that under this iso-

morphism the †-symmetric elements of End0(X) correspond with the symmetric elements in

Hom0(X,Xt). �

(12.26) Theorem. (Positivity of the Rosati involution) Let X be an abelian variety of dimen-TracePos

sion g over a field k. Let † be the Rosati involution associated with a polarization λ.

(i) If λ = ϕL for some ample bundle L then for f ∈ End(X) we have

trace(ff †) = 2g · c1(L)g−1 · c1(f∗L)

c1(L)g
.

(ii) The bilinear form End0(X) × End0(X) → Q given by (f, g) 7→ trace(f · g†) is symmetric

and positive definite.

Part (ii) of the theorem can be reformulated by saying that the Rosati involution is a

positive involution; see Appendix A, (A.11).

Proof. (i) By Prop. (7.6) we have ϕf∗L = f t ◦ϕL ◦f . Hence for all n ∈ Z we get

deg(ϕf∗L−1⊗Ln) = deg(nϕL − ϕf∗L)

= deg(nϕL − f tϕLf)

= deg(ϕLn− ϕLf †f)

= deg(ϕL) · deg(n− f †f) = χ(L)2 · Pf†f (n) .

(4)

Endoms:degcomp

Let Q ∈ Q[t] be the polynomial (of degree g) such that Q(n) =
(
n c1(L) − c1(f∗L)

)g
for

all n. Concretely, Q =
∑g
j=0 bjt

j with bj =
(
g
j

)
(−1)g−j ·

(
c1(L)j · c1(f∗L)g−1

)
. By Riemann-

Roch (9.11), deg
(
ϕf∗L−1⊗Ln

)
= χ(f∗L−1 ⊗ Ln)2 = Q(n)2. Comparing with (4) we find that

Pf†f =
(
χ(L)−1 ·Q

)2

as polynomials. Comparing coefficients in degree 2g − 1 this gives

trace(ff †) = trace(f †f) = −2χ(L)−1 · bg · bg−1

= 2χ(L)−1 · c1(L)g · g ·
(
c1(L)g−1 · c1(f∗L)

)

= 2g ·
(
c1(L)g−1 · c1(f∗L)

)
.
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(ii) Symmetry of the form follows from the fact, noted in (12.23), that trace(h†) = trace(h).

To see that trace(ff †) > 0 for all f 6= 0 we may assume that k = k and write λ = ϕL for some

ample bundle L. As f 7→ trace(ff †) is homogeneous of degree 2, we may further assume that f

is a true endomorphism. Now use (i) and apply Lemma (12.9). �

§4. The Albert classification.

(12.27) Let X be a simple abelian variety over a field k, and choose a polarization λ. To theAlbertTypes

pair (X,λ) we associate the pair (D, †) with D = End0(X) the endomorphism algebra and †
the Rosati involution. We know that D is a simple Q-algebra of finite dimension and that † is

a positive involution.

Let K be the center of D (so that D is a central simple K-algebra), and let K0 := {x ∈ K |
x† = x} be the subfield of symmetric elements in K. We know that either K0 = K, in which

case † is said to be of the first kind, or that K0 ⊂ K is a quadratic extension, in which case † is

said to be of the second kind.

By a theorem of Albert (see Appendix???) the pair (D, †) is of one of four types. For

convenience we again describe the possibilities. Recall that if A is a quaternion algebra over a

field L, its canonical involution is the involution given by a 7→ TrdA/L(a) − a. We write H for

the Hamiltonian quaternion algebra over R.

Type I: K0 = K = D is a totally real field.

† = idD.

Type II: K0 = K is a totally real field, and D is a quaternion algebra over K with D⊗K,σ R ∼=
M2(R) for every embedding σ: K → R.

Let d 7→ d∗ be the canonical involution on D. Then there exists an element a ∈ D
such that a2 ∈ K is totally negative, and such that d† = ad∗a−1 for all d ∈ D.

We have an isomorphism D ⊗Q R ∼=
∏
σ:K→R M2(R) such that the involution † on

D ⊗Q R corresponds to the involution (A1, . . . , Ae) 7→ (At1, . . . , A
t
e).

Type III: K0 = K is a totally real field, andD is a quaternion algebra over K withD⊗K,σR ∼= H

for every embedding σ: K → R.

† is the canonical involution on D.

We have an isomorphism D⊗Q R ∼=
∏
σ:K→R H such that the involution † on D⊗Q R

corresponds to the involution (α1, . . . , αe) 7→ (ᾱ1, . . . , ᾱe).

Type IV: K0 is a totally real field, K is a totally imaginary quadratic field extension of K. Write

a 7→ ā for the unique non-trivial automorphism of K over K0; this automorphism is

usually referred to as complex conjugation. If v is a finite place of K, write v̄ for its

complex conjugate. The algebra D is a central simple algebra over K such that: (a) If

v is a finite place of K with v = v̄ then invv(D) = 0; (b) For any place v of K we

have invv(D) + invv̄(D) = 0 in Q/Z.

If m is the degree of D as a central simple K-algebra, we have an isomorphism

D⊗Q R ∼=
∏
σ:K0→R Mm(C) such that the involution † on D⊗Q R corresponds to the

involution (A1, . . . , Ae0) 7→ (A
t

1, . . . , A
t

e0
).
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(12.28) Retaining the notation and assumptions of (12.27), writeAlbertRestr

e0 := [K0 : Q] , e := [K : Q] , and m := [D : K]1/2 . (5)Endos:ee0m

(So m is just the degree of D as a central simple K-algebra.)

Write Dsym := {d ∈ D | d† = d}. By Prop. (12.25), the Picard number ρ(X) := rankNS(X)

can be calculated as ρ(X) = η · dimQ(D) = η · em2, where

η :=
dimQ(Dsym)

dimQ(D)
.

For each of the types the factor η is easily calculated from the given description of D⊗Q R. We

find that η = 1 for Type I, η = 3/4 for Type II, η = 1/4 for Type III, and η = 1/2 for Type IV.

The invariants involved can be summarized as follows.

D

‖
K

‖
K0

|e0=e

Q

ρ = e

Type I

D

|4
K

‖
K0

|e0=e

Q

ρ = 3e

Type II

D

|4
K

‖
K0

|e0=e

Q

ρ = e

Type III

D

|m2

K

|2
K0

|e0
Q

ρ = e0m
2

Type IV

As we shall prove next, there are some numerical restrictions on e0, e and d in relation to

g = dim(X). In case char(k) = 0 the restrictions are a little stronger than when char(k) = p > 0.

(12.29) Proposition. Let (X,λ) be a simple polarized abelian variety of dimension g over aAlbertNumRestr

field k. Let D = End0(X) be the endomorphism algebra and let † be the Rosati involution

associated with λ. Let K be the center of D, let K0 := {x ∈ K | x† = x}, and define e0, e

and m as in (5) above.

(i) We have em|2g.
(ii) If char(k) = 0 then dimQ(D) = em2 divides 2g.

(iii) If L ⊂ D is a Q-subalgebra such that L ⊂ Dsym then L is a field and [L : Q] divides g.

Proof. (i) We know that the norm map Norm: D → Q is multiplicative and is a homogeneous

polynomial map of degree 2g. By Lemma (12.17) it follows that Norm = NrdnD/Q for some

natural number n. But NrdD/Q is polynomial of degree em; hence em divides 2g.

(ii) For the proof of (ii) we first reduce to the case k = C. Let {f1, . . . , fd} be a Q-basis of D.

By EGA IV, Prop. (8.9.1), there exists a subfield k0 ⊂ k such that k0 is finitey generated (as a

field) over the prime field Q, and such that X and the endomorphisms fi are defined over k0.

Concretely, this means we have an abelian variety X0 over k0 together with endomorphisms

fi,0 such that there exists an isomorphism X0 ⊗k0
k
∼−→ X via which fi,0 corresponds to fi.

As the fi form a basis of D and the natural map End0(X0) → End0(X) is injective, we have

End0(X0) ∼= D.
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Because k0 is finitely generated over Q, there exists an embedding ι: k0 → C. Then

End0(X0,C) is a finitely generated module over D = End0(X0), and because D is a divison

algebra it follows that dimQ(D) divides dimQ

(
End0(X0,C)

)
. Hence it suffices to prove (ii) over

k = C.

Assume then that k = C. In this case the first homology H := H1

(
X(C),Q

)
is a Q-vector

space of dimension 2g that has the structure of a D-module. Because D is a division algebra,

H is a free D-module; hence dimQ(D) divides dimQ(H) = 2g.

(iii) For f , g ∈ L we have fg = f †g† = (gf)† = gf , so L is a field.

We have a well-defined function χ: NS(X)Q → Q that sends the class of a line bundle M

to χ(M). By the Riemann-Roch Theorem (9.11), this function χ is multiplicative and is a

homogeneous polynomial function of degree g. (Note that we usually write NS(X) additively,

so the assertion that χ is multiplicative then means that χ(y1 + y2) = χ(y1) · χ(y2) for all y1,

y2 ∈ NS(X)Q.) Because L ⊂ Dsym, we can use the isomorphism i of Prop. (12.25) to define

χ◦ i−1: L → Q, which is a multiplicative and homogeneous polynomial function of degree g

on L. By Lemma (12.17) it follows that χ◦ i−1 = NrdnL/Q for some n, and because NrdL/Q is

polynomial of degree [L : Q] we find that [L : Q] divides g. �

(12.30) As a corollary of the Proposition, we obtain that the following divisibility relations areAlbertRestrTable

satisfied.

char(k) = 0 char(k) = p

Type I e|g e|g
Type II 2e|g 2e|g
Type III 2e|g e|g
Type IV e0m

2|g e0m|g

Table (12.30.1): numerical restrictions on the endomorphism algebra

Note that if X is of Type II, there exists a subfield L ⊂ D with L ⊂ Dsym and [L : K] = 2.

Indeed, as discussed in (12.28) we have dimK(Dsym) = 3, and for any α ∈ Dsym \K we can take

L = K[α]. Now we apply (iii) of the Proposition with this L.

(12.31) Still with the assumptions and notation of (12.29), the Albert type of (D, †) doesXlambdaDdagger

not depend on the choice of a polarization λ, and we often say that X is of Type N , with

N ∈ {I, II, III, IV}, when (D, †) is. If X is of Type I or III then the isomorphism class of the

pair (D, †) is independent of the choice of λ, simply because † is the canonical involution on D.

In general, however, ????

The question arises if the conditions on the pair (D, †) that we have obtained are exhaustive.

In other words, suppose we are given a characteristic p > 0, an integer g > 0, and a finite

dimensional simple Q-algebra D with a positive involution †. Assume the condition given in

Table (12.30.1) is satisfied. Then one may wonder if there exists a g-dimensional polarized

abelian variety (X,λ) over a field k of the given characteristic such that the pair
(
End0(X), †

)

is isomorphic to the given pair (D, †). Though no complete answer is known in this generality,

several further results are known, and in characteristic zero the picture is fairly complete. In

particular, it is known that in characteristic 0 there always exists a polarized abelian variety
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(X,λ) with the given (D, †), except possibly when X has Type III and g/2e ∈ {1, 2} or when

X has Type IV and (g/e0m
2) ∈ {1, 2}.

We refer to Oort [4] for a detailed overview. Over C the main results on this question are

obtained in Shimura [1].

Let us here, by way of example, only show that an abelian surface X cannot be of Type III.

(12.32) Remark. If k ⊂ K is a field extension, XK may be of a different type than X.ChangeofAlbertType

For instance, the elliptic curve E over Q given by the Weierstrass equation y2 = x3 − x has

End0(E) = Q, whereas over K = Q[i] we have End0(EK) ∼= Q[i]. So in this example, the type

of E changes from I to IV. In general, if we start with a simple abelian variety X over k then XK

may no longer be simple. When XK is again simple, it is clear that only certain changes of type

are possible; e.g., if X is of Type II, III or IV then XK cannot be of Type I. See Exercise 12.3.

Exercises.

(12.1) Let X and Y be abelian varieties over a field k.Ex:Vlqisog

(i) If ℓ is a prime number with ℓ 6= char(k), show that an element f ∈ Hom0(X,Y ) is a

quasi-isogeny if and only if Vℓ(f): VℓX → VℓY is an isomorphism.

(ii) If char(k) = p, show that an element f ∈ Hom(X,Y ) is an isogeny if and only if the induced

homomorphism f [p∞]: X[p∞]→ Y [p∞] is an isogeny.

(12.2) Let X and Y be abelian varieties over a field k. Let k ⊂ K be a field extension.Ex:HomK/Homk

(i) Show that the natural map Homk(X,Y ) →֒ HomK(XK , YK) has a torsion-free cokernel.

(ii) If End0
k(X) = End0

K(XK), show that also Endk(X) = EndK(XK).

(12.3) Let X be a simple abelian variety over a field k. Let k ⊂ K be a field extension, andEx:TypekTypeK

suppose XK is again simple. If X has Type M in the Albert clasification and XK has Type N

(with M , N ∈ {I, II, III, IV}) then we say we have the change of type M → N .

(i) Show that a change of type M → I is possible only if M = I.

(i) Show that a change of type M → II or M → III is possible only if either M = I or M = IV

and m = 1.

Notes. In the proof of Thm. (12.2) one has to pay attention in the case of a non-perfect ground field, as it is
not a priori clear that (in the notation of our proof) W 0

red
is an abelian subvariety of X. In some papers this

point is overlooked; cf. Milne [1], proof of 12.1, for instance.
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Chapter XIII. The Fourier transform and the Chow ring.

In this chapter we study the Chow ring of an abelian variety. For a nonsingular variety over a

field the classes of cycles modulo rational equivalence form a ring with respect to the intersection

product of cycles. For an abelian variety the Chow ring carries a second product, called the

Pontryagin or convolution product. Here the product cycle is obtained, loosely speaking, by

adding the points on the two cycles. These two aspects of the Chow ring are related by duality.

The transition is provided by the Fourier transform, a transformation from the Chow ring of

an abelian variety to the Chow ring of the dual abelian variety, under which the intersection

product on the abelian variety corresponds to the convolution product on the dual. This Fourier

transform is a wonderful tool for investigating the structure of the Chow ring of an abelian

variety X. Using the Fourier transform one can decompose the diagonal correspondence in

X ×X as a sum of orthogonal idempotents. In the motivic language this gives a decomposition

of the Chow motive of an abelian variety as R(X) = ⊕2g
i=0R

i(X), analogous to the decomposition

H∗(X) = ⊕2g
i=0H

i(X) in cohomology. We close the chapter with a theorem of Künnemann which

says that R(X) ∼= ∧∗R1(X).

Along the way we need some properties of the Chern classes of the Hodge bundle. These

properties, like the so-called Key Formula and the vanishing of the top Chern class are of

independent interest and are proved in section 2.

§1. The Chow ring.

We review some properties of the Chow ring and correspondences. An excellent reference book

is Fulton [1]. Note that we are mainly interested in intersection theory on non-singular varieties,

hence we do not need the theory developed in Fulton’s book in its full strength.

(13.1) Let X be a variety over a field k. The group Zr(X) of r-cycles on X is defined as theCHdef

free abelian group on the r-dimensional closed subvarieties of X. We usually write [V ] ∈ Zr(X)

for the element corresponding to a subvariety V ⊂ X. Thus, an r-cycle on X is a finite formal

sum
∑
ni · [Vi] where the Vi ⊂ X are closed subvarieties of dimension r and ni ∈ Z. For

r = dim(X) − 1 an r-cycle is the same as a Weil divisor.

In general, Zr(X) is a very big group. We arrive at a much more manageable group by

taking the quotient modulo rational equivalence. This is done as follows. (Further details and

proofs of some properties can be found in Fulton [1], Chap. 1.)

Let W be an (r+ 1)-dimensional subvariety of X. Let V ⊂W be a subvariety of codimen-

sion 1. The local ring OW,V of W along V is a 1-dimensional local domain with fraction field

k(W ), the field of rational functions on W . (Note: V corresponds to a single point x ∈ |W |,
and OW,V is just the stalk OW,x of OW at x.) For 0 6= a ∈ OW,V , define the order of vanishing

of a along V to be the integer

ordV (a) := lengthOW,V

(
OW,V /(a)

)
.

FourChow, 8 februari, 2012 (635)
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We can extend this to a homomorphism ordV : k(W )∗ → Z by writing f ∈ k(W )∗ as f = a/b

with a, b ∈ OW,V ; then let ordV (f) := ordV (a) − ordV (b). Note that if V is not contained in

the singular locus of W then OW,V is a discrete valuation ring, and ordV is just the valuation

homomorphism.

Given f ∈ k(W )∗, there are only finitely many codimension 1 subvarieties V ⊂ W such

that ordV (f) 6= 0. This allows us to define an r-cycle on X, called the divisor of f on W ⊂ X,

by

div(f) :=
∑

V

ordV (f) · [V ] ,

where the sum runs over the subvarieties V ⊂W of codimension 1.

An r-cycle α ∈ Zr(X) is said to be rationally equivalent to zero, notation α ∼ 0 or α ∼rat 0,

if there exist (r+1)-dimensional subvarieties W1, . . . ,Wn ofX and rational functions fi ∈ k(Wi)
∗

such that α =
∑n
i=1 div(fi). The cycles rationally equivalent to zero form a subgroup Ratr(X)

of Zr(X) and one defines the Chow group of r-cycles to be the factor group

CHr(X) := Zr(X)/Ratr(X) .

We set CHr(X) := CHdim(X)−r(X); this is called the Chow group of codimension r cycles.

Let

CH∗(X) := ⊕rCHr(X) , and CH∗Q(X) := CH∗(X)⊗Z Q .

It is a fundamental fact that for X a non-singular variety, there exists an intersection pairing

CHr(X)× CHs(X)→ CHr+s(X) , (α, β) 7→ α · β

which makes CH∗(X) into a commutative graded ring with identity. This ring is called the

Chow ring of X. The identity element is 1X = [X] ∈ CH0(X). (If X is singular, there is still a

good intersection theory, but this may not give a ring structure on CH∗(X). See Fulton [1].)

(13.2) Let f : X → Y be a morphism of k-varieties. Then we have a pull-back homomorphismf*f*CH

f∗: CH∗(Y )→ CH∗(X). If f is flat then f∗ is given by f∗[V ] = [f−1(V )]. The definition in the

general case requires a little more care; we refer to Fulton [1], Chap. 8 for details. If X and Y

are non-singular then f∗ is a homomorphism of graded rings.

Now assume that f is proper. Let V be a closed subvariety of X. Then W = f(V ) is

a closed subvariety of Y . If dim(W ) = dim(V ), let deg(V/W ) be the degree of the function

field extension
[
k(V ) : k(W )

]
defined by f ; if dim(W ) < dim(V ) let deg(V/W ) := 0. We set

f∗[V ] = deg(V/W )·[W ]. By extending this linearly, we get a homomorphism f∗: Zr(X)→ Zr(Y )

which induces a homomorphism f∗: CHr(X)→ CHr(Y ).

For a proper morphism f : X → Y we have the projection formula

f∗(f
∗η · ξ) = η · f∗ξ for all ξ ∈ CH∗(X) and η ∈ CH∗(Y ).

Furthermore, if
X ′

g−→ X

f ′

y
yf

Y ′
h−→ Y
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is a Cartesian square with h flat and f proper (“flat base change of a proper morphism”), then

g is flat and f ′ is proper, and for all α ∈ CH∗(X) we have

f ′∗g
∗α = h∗f∗α. (1)Chow:h*f*

(13.3) Let X be a variety. Let K0(X) be the Grothendieck group of vector bundles on X.Chernchar

Then K0(X) has a natural structure of a commutative ring, with product [E1] · [E2] = [E1⊗E2].

Let K0(X) be the Grothendieck group of coherent sheaves on X. Then K0(X) has a natural

structure of a K0(X)-module, by [E] · [F ] = [E ⊗OX
F ]. If f : X → Y is a morphism of varieties

then we have a natural ring homomorphism f∗: K0(Y )→ K0(X). If f is proper then we have

a homomorphism f∗: K0(X)→ K0(Y ) given by f∗[F ] =
∑
i>0(−1)i

[
Rif∗F

]
.

Now assume X is non-singular. The natural homomorphism K0(X) → K0(X), sending

a vector bundle to the corresponding OX -module, is in this case an isomorphism. If there is

no risk of confusion we simply write K(X) for K0(X). Just as for the Chow ring, we have

pull-backs f∗ for arbitrary morphisms f between non-singular varieties, and push-forwards f∗
for proper morphisms. We write KQ(X) := K(X)⊗Z Q.

There is a ring homomorphism

ch: K(X)→ CH∗Q(X),

called the Chern character. For a line bundle L with associated divisor class ℓ = c1(L) ∈
CH1

Q(X), it is given by

[L] 7→ eℓ := 1 + ℓ+
1

2
ℓ2 +

1

3!
ℓ3 + · · · .

(Note that eℓ only involves a finite sum, as CHi(X) = 0 for i > dim(X).) For further details

about the definition of the Chern character, see Fulton [1], sections 3.2 and 15.1.

Still assuming that X is non-singular, the homomorphism KQ(X) → CH∗Q(X) induced by

the Chern character is an isomorphism. See Fulton [1], Example 15.2.16.

If f : X → Y is a morphism between non-singular varieties then the Chern character com-

mutes with f∗, in the sense that f∗
(
ch(α)

)
= ch

(
f∗(α)

)
for all α ∈ K(Y ). But if f is proper

then “ch” does not, in general, commute with f∗. The difference between f∗ ◦ch and ch ◦f∗ is

made precise by the Grothendieck-Riemann-Roch theorem; see Fulton [1], Thm. 15.2.

(13.4) Let X and Y be non-singular varieties. Elements in CH∗Q(X × Y ) are called correspon-Corresp

dences from X to Y . For a correspondence ξ ∈ CH∗Q(X × Y ) the transpose correspondence tξ

from Y to X is defined as tξ := s∗(ξ), where s: X × Y → Y ×X is the morphism reversing the

factors.

Assume Y is complete. If Z is a third non-singular variety then we can compose correspon-

dences: Given ϕ ∈ CH∗Q(X × Y ) and ψ ∈ CH∗Q(Y × Z) we define their composition, which is a

correspondence from X to Z, by

ψ ◦ϕ = pXZ,∗
(
p∗XY (ϕ) · p∗Y Z(ψ)

)
∈ CH∗Q(X × Z) .

Here pXZ denotes the projection X × Y × Z → X × Z, and similarly for the other projections.

We have t(ψ ◦ϕ) = tϕ◦
tψ.

If f : X → Y is a morphism with graph map γf : X → X × Y , then the correspondence

Γf =
[
γf (X)

]
in CH∗Q(X × Y ) is called the graph correspondence of f . Note that Γf = γf,∗[X].

If f : X → Y and g: Y → Z then Γg ◦Γf = Γgf .
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Assume X is complete. A correspondence Γ from X to Y gives rise to a homomorphism of

groups γ: CH∗(X)→ CH∗(Y ) by

γ(α) = pY,∗
(
p∗X(α) · Γ

)
, (2)Chow:gammaDef

where pX and pY are the projections from X × Y to X and Y , respectively. If Γ = Γf for some

morphism f then γ = f∗. (Note that f is automatically proper, as we have assumed that X is

complete.) If Γ = tΓf then γ = f∗. If Γ = Γ′ ◦Γ′′ then for the associated homomorphisms we

have γ = γ′ ◦γ′′.

We have a similar construction with Chow rings replaced by K-groups. So, if X is complete

then an element Γ ∈ K(X × Y ) gives rise to a homomorphism γK : K(X)→ K(Y ) by the same

formula as in (2). Further we write γCH: CH∗(X)→ CH∗(Y ) for the homomorphism associated

to the correspondence ch(Γ) from X to Y .

(13.5) We shall need a variant of the above relative to a given base variety. For this, let k be aCHoverS

field and let S be a smooth quasi-projective k-scheme. Consider the category V (S) of smooth

projective S-schemes. Note that if X → S and Y → S are in V (S) then so is the fibre product

X ×S Y → S. Note further that if X → S is in V (S) then X itself is again a smooth quasi-

projective k-scheme. In particular this implies that X is geometrically regular. If X = ∐Xi is

the decomposition of X as a union of its connected components then the Xi are k-varieties in

the sense of Fulton [1] (but not in our sense, as they may not be geometrically irreducible) and

we set CH∗(X) := ⊕CH∗(Xi).

Let X and Y be two smooth projective S-schemes. Elements in CH∗Q(X ×S Y ) are called

relative correspondences between X and Y . As before we can compose correspondences.

We shall make repeated use of the following lemma.

(13.6) Lemma. Suppose given morphisms f : X → Y and g: Y → Z in V (S) and classesCorrIds

α ∈ CH∗Q(X ×S Y ) and β ∈ CH∗Q(Y ×S Z). Then we have the identities of correspondences

[Γg]◦α = (idX × g)∗(α) , and β ◦ [Γf ] = (f × idZ)∗(β) .

Similarly, if f ′: Y → X and g′: Z → Y are also morphisms in V (S) then

[tΓg′ ]◦α = (idX × g′)∗(α) , and β ◦ [tΓf ′ ] = (f ′ × idZ)∗(β) .

Proof. The first identities are proven as in Fulton [1], Prop. 16.1.1(c); the last two follow by

transposition. �

The Grothendieck-Riemann-Roch theorem has a variant for correspondences. As usual we

write Td(E) for the Todd class of a vector bundle E; see Fulton [1], Example 3.2.4.

(13.7) Proposition. (GRR) LetX and Y be in V (S), withX → S proper. For Γ ∈ K(X×SY )GRRCorr

with associated homomorphisms γK and γCH, we have

ch
(
γK(α)

)
= pY,∗

[
p∗X
(
ch(α)

)
· ch(Γ) · Td

(
p∗XTX/S

)]
.
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Proof. This follows from the usual GRR theorem (see Fulton [1], 15.2.8) applied to the morphism

pY : X × Y → Y and the element p∗X(α) · Γ of K(X ×S Y ). One gets

ch
[
pY,∗

(
p∗X(α) · Γ

)]
= pY,∗

[
ch
(
p∗X(α) · Γ

)
· Td(TX×Y/Y )

]
.

Now use the definition of γK(α), the fact that ch is a ring homomorphism, and that TX×Y/Y =

p∗XTX/S . �

For an abelian scheme π : X → S the cotangent bundle Ω1
X/S is a pull-back from a bundle

E of rank g from the base S as it is trivial on the fibres. This is the Hodge bundle which we will

consider more thoroughly in the next section.

(13.8) Corollary. With S as in (13.5), let ξ: X → S and η: Y → S be abelian schemesGRRCorrAV

over S. Let E be the Hodge bundle of X/S. Let Γ be an element of K(X ×S Y ) with associated

homomorphisms γK and γCH. Then for α ∈ CH∗Q(X) we have

ch
(
γK(α)

)
= γCH

(
ch(α)

)
· η∗Td(E∨

)
.

In particular, if S = Spec(k) then the diagram

K(X)
ch−−→ CH∗Q(X)

γK

y
yγCH

K(Y )
ch−−→ CH∗Q(Y )

is commutative.

Proof. We have TX/S = ξ∗E∨, so p∗XTX/S = p∗Y η
∗E∨. The corollary now follows from (13.7)

using the projection formula. �

§2. The Hodge bundle.

In this section we consider the Hodge bundle of an abelian scheme and prove several basic

properties of its Chern classes.

(13.9) Definition. Let S be a quasi-projective non-singular variety over a field k. Let π: X → SHodgeBun

be an abelian scheme over S of relative dimension g and with zero section s. The Hodge bundle

E = EX of X is the vector bundle (locally free sheaf) π∗(Ω
1
X/S) of rank g on S. By Et we mean

the Hodge bundle of the dual abelian scheme Xt. For i = 1, . . . , g we denote by λi ∈ CHi(S)

the i-th Chern class of E and by λti the i-th Chern class of Et.

Alternatively, the Hodge bundle E may be defined as E = s∗ωX/S and we can view it as

the cotangent bundle to the zero section s. It satisfies π∗(E) ∼= Ω1
X/S. Note that we have

(Et)∨ = Lie(Xt) ∼= R1π∗OX .

(13.9) Lemma. We have det(E) ∼= det(Et), i.e. λt1 = λ1.

Proof. Note that Rgπ∗OX ∼= ∧gR1π∗OX , and by Grothendieck duality (see [1], Thm. ?? or ??)

we have Rgπ∗OX ∼= R0π∗(Ω
g
X/S)∨, i.e., we get det(E) ∼= det(Et). �
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If X carries a separable polarization then the corresponding map X → Xt induces an

isomorphism E ∼= Et. (Is there always an isomorphism??)

The Grothendieck-Riemann-Roch theorem allows us to obtain relations in the Chow ring

of the base space. We apply this to an ample line bundle on an abelian variety.

(13.10) Theorem. Let S be a smooth quasi-projective scheme over k and π : X → S be anBasicRel

abelian scheme over S with zero section s. Furthermore, let L be a symmetric line bundle on

X/S such that s∗L is trivial and giving a polarization on each fibre. If Θ is the divisor class in

CH1
Q(X) representing L then we have the identity

π∗(

∞∑

k=0

Θg+k

(g + k)!
) = d · 1 in CH∗Q(S),

where d = deg(Θg/g!).

Proof. The idea is to apply the Grothendieck-Riemann-Roch theorem to L. Actually, before

doing that we first replace X by Y = X4, g by g′ = 4g and L by M = L⊗4 (in shorthand using

the exterior tensor product, i.e., M = p∗1L⊗ p∗2L⊗ p∗3L⊗ p∗4L). Then by the Zarhin Trick there

exists for any n ∈ Z>1 an isogeny of α: Y → Y over S such that α∗(M) ∼= M⊗n. Moreover, if H

is the kernel of α (a finite flat group scheme of rank n4g over S) then we claim that det(OH) is

a trivial OS-module. To see this, note that α is given by an integral 4× 4 matrix corresponding

to a quaternion z = a+ bi+ cj + dk. Since z lies in a quadratic subfield of the quaternions, the

kernel of α is a direct sum of an even number of copies of group schemes X[m] for divisors m of

n. Now X[m] is self-dual, hence the square of the determinant of OX[m] is trivial. This implies

that det(OH) is trivial, cf. [Faltings-Chai, p. 25?]

Now we take an integer n prime to the degree of L. Then we have a direct sum decomposition

K(M⊗n) ∼= K(M)⊕Y [n] and a similar decomposition G(M⊗n) ∼= G(M)⊕Y [n]. Theorem (8.14)

tells us that we can lift H to a level subgroup (again denoted by H) of G(M⊗n) (the theory

works over base schemes as well). Let Hc be the commutator of H in G(M⊗n) so that Hc/H

is isomorphic to G(M) by (8.16). By the representation theory of the theta group we find

π∗(M
⊗n) ∼= Ind

G(M⊗n)
Hc π∗(M).

Restrict the representation to the inverse image of Y [n] in G(M⊗n). Then it decomposes as

π∗(M) tensor a representation of G(M⊗n) induced from a rank 1 representation of Hc with the

property that its n-th power extends to a representation of G(M⊗n). If we ignore elements of

finite order (and we do because we work in CH∗Q(S)) then we may conclude that the determinant

of this representation is equal to det(OH), hence trivial. We thus get

ch(π∗(M
⊗n)) = ng

′

ch(π∗(M)) in CH∗Q(S). (1)

The Grothendieck-Riemann-Roch theorem applied to π : Y → S and M says

ch(π!M
⊗n) = π∗(ch(M⊗n) · Td(Ω∨Y/S)

= π∗(ch(M⊗n) · Td(π∗(E∨Y )))

= π∗(ch(M⊗n)) · Td(E∨Y )

by the projection formula. Here EY is the Hodge bundle of Y/S. Since Riπ∗(M) = 0 for i > 0

it follows that π!(M) = π∗(M) is a vector bundle.
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The relation (1) now gives writing enΘ′

for ch(M⊗n):

π∗

(
∞∑

k=0

ng
′+kΘ′

g′+k

(g′ + k)!

)
Td(E∨Y ) = ng

′

π∗

(
∞∑

k=0

Θ′
g′+k

(g′ + k)!

)
Td(E∨Y ).

Comparing coefficients of nm and using that Td(EY ) = 1 + . . . gives the result immediately for

Y , M and Θ′. It is easy to derive it then for X, L and Θ. �.

(13.10) Corollary. With L as in the Theorem we have ch(π!(L)) = dTd(E∨).

By comparing codimension 1 classes in the Grothendieck-Riemann-Roch formula applied

to π and L as in 13.10

ch(π!L) = π∗(e
Θ)Td(E∨ = dTd(E∨) (2)

and using Td1(E
∨) = −λ1/2 we find the following Corollary.

(13.11) Corollary. (Key Formula) For L as in the theorem we have the formula in CH1
Q(S)KeyFormula

c1(π!L) = −rank(π∗(L))λ1/2.

By Zarhin’s trick we know that for any abelian variety X/S the abelian variety Y = (X ×S
Xt)4 carries a principal polarization L. This implies that π!L lives in degree 0 and is given by

a line bundle π∗(L), so

ch(π∗(L)) = e−λ1(EY )/2.

On the other hand, equation (2) implies ch(π∗(L)) = Td(E∨Y ). By comparing these we get the

following corollary.

(13.12) Corollary. Let X/S be an abelian scheme over a smooth quasi-projective basis S.ToddRel

Then if λi = ci(E) we have in CH∗Q(S) the relation

Td(E∨)Td((Et)∨) = e−λ1 .

If X carries a separable polarization then we have Td(E∨) = e−λ1/2.

Proof. Note that Td(E∨Y ) = Td(E∨)4Td((Et)∨)4 and λ1(EY ) = 4λ1 + 4λt1 = 8λ1 by (10.9).

If X/S carries a separable polarization then we get a separable isogeny X → Xt inducing an

isomorphism between E and Et. �

As a consequence of the basic relation deduced in 13.10 we get the following fundamental

relation for the Chern classes of the Hodge bundle.

(13.13) Theorem. IfX/S carries a separable polarization then we have in CH∗Q(S) the relationLambdaRel

(1 + λ1 + λ2 + . . .+ λg)(1 − λ1 + . . .+ (−1)gλg) = 1. (3)

Proof. The relation Td(E∨) = e−λ1/2 implies that Td(E ⊕ E∨) = 1. This again implies that if

α1, . . . , αg are the Chern roots of E then

g∏

i=1

αi
eαi − 1

=

g∏

i=1

e−αi/2,
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equivalently, that
g∏

i=1

(eαi/2 − e−αi/2) =

g∏

i=1

αi

and this implies that the even degree power sums of the αi vanish. This is easily see to be

equivalent to ch(E⊕ E∨) = 2g or to the relation (3). �

Another important result on the Hodge bundle deals with the top Chern class λg of E in

the rational Chow group CHg
Q(S).

(13.14) Theorem. Let π: X → S be an abelian scheme of relative dimension g over theLambdagisZero

smooth quasi-projective scheme S. Then the top Chern class λg ∈ CHg
Q(S) of the Hodge bundle

E vanishes.

Proof. We apply the Grothendieck-Riemann-Roch theorem to the structure sheaf OX and the

morphism π : X → S. It says

ch(π!(OX)) = π∗(ch(OX)Td((Ω1
X/S)∨)) = π∗(1)Td(E∨),

since Ω1
X/S = π∗(E). We know the cohomology of OX :

π!(OX) = 1− E∨ + ∧2E∨ − . . .+ (−1)g ∧g E∨.

We thus get the identity

ch(1− E∨ + ∧2E∨ − . . . + (−1)g ∧g E∨) = π∗(1)Td(E∨) = 0.

A general relation, due to Borel and Serre 1, p. 128 says that for a vector bundle B of rank r

one has
r∑

j=0

(−1)jch(∧jB∨) = cr(B)Td(B)−1.

So we see λg Td(E∨) = 0. Since Td is invertible the result follows. �

§3. The Fourier transform of an abelian variety.

(13.15) Definition. Let S be a quasi-projective non-singular variety over a field k. Let X bePontrProd

an abelian scheme over S with multiplication map m: X ×S X → X. The Pontryagin product,

or convolution product

∗: CH∗(X)× CH∗(X) −→ CH∗(X)

(relative to S) is the map defined by

α ∗ β = m∗(p
∗
1α · p∗2β) .

Intuitively, the product α ∗ β is obtained by adding the points on cycles representing α

and β. Note that the Pontryagin product depends on the base variety S, though this is not

indicated in the notation.

(13.16) Lemma. Let g = dim(X/S). The Pontryagin product makes CH∗(X) = ⊕iCHi(X)PontrRing

into a commutative ring for which the cycle
[
e(S)

]
∈ CHg(X) given by the identity section

e(S) ⊂ X is the identity element.
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The proof of this fact is straightforward and is left to the reader.

(13.17) Lemma. Let f : X → Y be a homomorphism of abelian schemes over S. Then we havePprodPushf

f∗(α ∗ β) = f∗(α) ∗ f∗(β) for all α, β ∈ CH∗(X).

Proof. Denote the projections of X ×S X (resp. Y ×S Y , resp. Y ×S X) on the two factors by pi
(resp. qi, resp. ri), i = 1, 2. Since f ◦mX = mY ◦(f × f) = mY ◦(idY × f)◦(f × idX), we have

f∗(α ∗ β) = f∗mX,∗(p
∗
1α · p∗2β)

= mY,∗(idY × f)∗(f × idX)∗(p
∗
1α · p∗2β)

= mY,∗(idY × f)∗(f × idX)∗
(
p∗1α · (f × idX)∗r∗2β

)

= mY,∗(idY × f)∗
(
(f × idX)∗p

∗
1α · r∗2β

)
,

where in the last step we use the projection formula. Applying (1) to the Cartesian diagram

X ×S X f×idX−−−−−→ Y ×S X
p1

y
yr1

X
f−−−−−→ Y

gives that

(f × idX)∗p
∗
1α = r∗1f∗α =

(
q1 ◦(idY × f)

)∗
f∗α = (idY × f)∗q∗1f∗α .

Again using the projection formula, this gives f∗(α ∗ β) = mY,∗

(
q∗1f∗α · (idX × f)∗r

∗
2β
)
. Finally

we apply (1) to the Cartesian diagram

Y ×S X idY ×f−−−−→ Y ×S X
r2

y
yq2

X
f−−−−→ Y .

This gives the desired conclusion that f∗(α ∗ β) = mY,∗(q
∗
1f∗α · q∗2f∗β) = f∗α ∗ f∗β. �

We now come to the main notion of this chapter.

(13.18) Definition. Situation as in (13.15). Let ℓ = c1(PX) ∈ CH1(X ×S Xt) be the classFourTDef

of the Poincaré bundle of X. We define the Fourier transform T of X as the correspondence

from X to Xt given by

T = ch(P) = exp(ℓ) = 1 + ℓ+
1

2!
ℓ2 + · · · ∈ CH∗Q(X ×S Xt) .

We write

τK : K(X) −→ K(Xt) and τ = τCH: CH∗Q(X) −→ CH∗Q(Xt)

for the homomorphisms associated to the element [P] ∈ K(X ×S Xt), as explained in (13.4).

Concretely,

τK(x) = pXt,∗(P · p∗Xx) for x ∈ K(X);

τCH(x) = pXt,∗(e
ℓ · p∗Xx) = pXt,∗(T · p∗Xx) for x ∈ CH∗Q(X).
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(13.19) Proposition. Let X/S be an abelian scheme of relative dimension g. Let ξt: Xt → Stau(1)

with zero section et: S → Xt be the dual abelian scheme. Then we have

τCH(1X) = (−1)g · et∗(1S)

in CH∗Q(Xt).

Proof. Let E and Et be the Hodge bundles of X/S and Xt/S, respectively. By (13.8) we have

ch
(
τK [OX ]

)
= τCH(1X) · ξt,∗Td(E∨) . (3)Chow:chtauO1

On the other hand we can calculate τK(1X) = τK [OX ] directly. Namely,

τK [OX ] = pXt,∗

(
P · p∗X [OX ]

)
= pXt,∗(P) =

g∑

i=0

(−1)i · [RipXt,∗P]

= (−1)g · et∗
(
det(Et)−1

)

= (−1)g · et∗(OS) · ξt,∗ det(Et)−1 ,

according to our calculation of the cohomology of the Poincaré bundle P. Now we apply GRR

to the morphism e: S → Xt. This gives

ch
(
et∗(OS)

)
· Td(TXt) = et∗

(
Td(TS)

)
,

hence

ch
(
τK [OX ]

)
= (−1)g · et∗

(
Td(TS)

)
· Td(TXt)−1 · ξt,∗ch

(
det(Et)

)
.

We have an exact sequence 0 → ξt,∗Et,∨ → TXt → ξt,∗TS → 0. This gives the relation

Td(TXt) = ξt,∗Td(Et,∨) · ξt,∗Td(TS). Since et,∗ ◦ξt,∗ = id we get, using the projection formula,

et∗
(
Td(TS)

)
· Td(TXt)−1 = et∗

(
Td(Et,∨)−1

)
= et∗(1S) · ξt,∗Td(Et,∨)−1 .

In total this gives

ch
(
τK [OX ]

)
= (−1)g · et∗(1S) · ξt,∗

[
Td(Et,∨)−1 · ch

(
det(Et)

)−1
]
. (4)Chow:chtauO2

Let λ1 = c1(E) and λt1 = c1(E
t). As shown in 13.12 we have Td(E∨)Td((Et)∨) =

exp(−λ1/2 − λt1/2) and as we remarked in the beginning of section 2 we have λ1 = λt1. Com-

parison of the two expressions (3) and (4) gives the desired identity. �

Let T t be the Fourier transform of Xt. It is associated to the Poincaré bundle on Xt×Xtt.

If we apply the isomorphism κX : X
∼−→ Xtt then T t can be identified with the transpose of the

correspondence T .

(13.20) Proposition. Let f : X → Y be a homomorphism of abelian schemes over S. ThenFourAndHom

TY ◦ [Γf ] = [tΓft ]◦TX in CH∗Q(X ×S Y t). If f is an isogeny then we further have the relation

TX ◦ [tΓf ] = [Γft ]◦TY in CH∗Q(Y ×S Xt).

Proof. Lemma (13.6) gives TY ◦ [Γf ] = (f × idY t)∗ch(PY ) and [tΓft ]◦TX = (idX × f t)∗ch(PX).

So for the first assertion we have to show that

(f × idY t)∗ch(PY ) = (idX × f t)∗ch(PX) . (5)Chow:1xf*chP
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But the dual f t of f is defined by the identity (idX × f t)∗(PX) = (f × idY t)∗(PY ). Applying

the Chern character we get (5).

In a similar way, again using (13.6), the second assertion is equivalent to

(f × idXt)∗ch(PX) = (idY × f t)∗ch(PY ) . (6)Chow:fx1*chP

We use the Cartesian diagram

X ×S Y t idX×f
t

−−−−−→ X ×S Xt

f×idY t

y
yf×idXt

Y ×S Y t idY ×f
t

−−−−−→ Y ×S Xt .

This gives the identity

(idY × f t)∗(f × idXt)∗ch(PX) = (f × idY t)∗(idX × f t)∗ch(PX)

= (f × idY t)∗(f × idY t)∗ch(PY ) by (5)

= deg(f)ch(PY ) .

Applying (idY ×f t)∗ to both sides gives deg(f t)(f× idXt)∗ch(PX) = deg(f)(idY ×f t)∗ch(PY ),

and if f is an isogeny then (6) follows because deg(f t) = deg(f) 6= 0. �

(13.21) Theorem. Let m: X ×S X → X and mt: Xt ×S Xt → Xt be the group laws of XCIdsThm

and Xt, respectively, let ∆: X → X ×S X and ∆t: Xt → Xt×SXt be the diagonal morphisms,

and let T⊗T denote the Fourier transform ofX×SX. Then we have identities of correspondences

T t ◦T = (−1)g · [tΓ−idX
] in CH∗Q(X ×S X) ;

T ◦ [Γm] = [tΓ∆t ]◦(T ⊗ T ) in CH∗Q(X ×S X ×S Xt) ;

T ◦ [tΓ∆] = (−1)g · [Γmt ]◦(T ⊗ T ) in CH∗Q(X ×S X ×S Xt) .

Proof. For the second identity one applies the previous proposition to the homomorphism m.

(Use Exercise 7.1.)

Next remark that, by definition, the correspondence T t ◦T on X ×S X is

p13,∗(p
∗
12e

ℓ · p∗23eℓ
t

) = p13,∗

(
exp(p∗12ℓ+ p∗23ℓ

t)
)
.

Let µ: X×SXt×SX → X×SXt be the homomorphism given on points by (a, b, c) 7→ (a+ c, b)

and let s: X×SXt → Xt×SX be the map reversing the factors. Let P be the Poincaré bundle

on X ×S Xt. In Pic(X×SXt×SX)/S we have the identity

p∗12(P) + p∗23s
∗(P) = µ∗(P) , (7)Chow:XXtXeq

as follows from the Theorem of the Cube by checking that the two sides have the same restrictions

to X×SXt×e(S), to X×e(S)×X and to e(S)×Xt×X. So we find that T t ◦T = p13,∗(e
µ∗(ℓ)) =

p13,∗(µ
∗eℓ). From the Cartesian diagram

X ×S Xt ×S X µ−→ X ×S Xt

p13

y
yp1

X ×S X m−→ X

– 204 –



we get T t ◦T = m∗p1,∗(e
ℓ) = m∗τ tCH(1Xt). Application of Prop. (13.19) then gives T t ◦T =

(−1)gm∗e∗(1S). But by the Cartesian square

X
(idX ,−idX)−−−−−−−−→ X ×X

y
ym

Spec(k)
e−−−−−−−−→ X

we get m∗e∗(1S) = Γ−idX
. This proves the first identity.

For the third identity, start from the relation

T t ◦ [Γmt ] = [tΓ∆]◦(T t ⊗ T t) ,

which is the second identity for Xt. Multiply by T from the left, by (T ⊗T ) from the right, and

use the first identity (both for Xt and for X ×S X). This gives

(−1)g · [tΓ−idXt ]◦ [Γmt ]◦(T ⊗ T ) = T ◦ [tΓ∆]◦ [tΓ−idX×X
]

= T ◦ [tΓ−idX
]◦ [tΓ∆] .

Now observe that T ◦ [tΓ−idX
] = [tΓ−idXt ]◦T , because both equal exp(−ℓ). Since [tΓ−idXt ] =

[Γ−idXt ] is a unit in the ring of correspondences from Xt to itself, this proves the third iden-

tity. �

(13.22) Corollary. Situation as in (13.15). Let g = dim(X/S).CorrIdsCor

(i) We have τ tCH
◦τCH = (−1)g(−idX)∗. For all x, y ∈ CH∗Q(X) we have the relations

τCH(x ∗ y) = τCH(x) · τCH(y) and τCH(x · y) = (−1)gτCH(x) ∗ τCH(y).

(ii) For a homomorphism f : X → Y we have τY ◦f∗ = f t,∗ ◦τX . If f is an isogeny then also

τX ◦f∗ = f t∗ ◦τY .

Proof. These relations follow directly from Prop. (13.20) and Thm. (13.21). For example, for ii)

note that T ◦ [Γm] induces a map CH∗Q(X×SX)→ CH∗Q(Xt) with p∗1α ·p∗2β 7→ τm∗(p
∗
1α ·p∗2β) =

τ(α ∗ β). On the other hand, since PX×SX = p∗1PX ⊗ p∗2PX we have

τX×SX(p∗1α · p∗2β) = pXt×SXt(p∗1(α · PX)p∗2(β · PX))

= p′∗1 (τ(α) · p′∗2 (τ(β))

with p′i the projections of Xt×SXt onto its factors. Now [tΓ∆t ] induces (∆t)∗ so that [tΓ∆t ]◦T⊗
T induces a map sending p∗1(α) · p∗2(β) to τ(α) · τ(β). �

As another corollary we obtain the following elegant result.

(13.23) Theorem. The Fourier transform of X induces an isomorphism of ringsCHXCHXt

τ = τCH:
(
CH∗Q(X), ∗

) ∼−→
(
CH∗Q(Xt), ·

)
,

where · and ∗ denote the intersection product and the convolution product, respectively.

This theorem should justify the name Fourier transform. Just like the Fourier transform

for functions on the real line which transform the convolution product into the usual product

our Fourier transform interchanges the Pontryagin product, which one can see as a sort of

convolution product, with the usual intersection product.
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§4. Decomposition of the diagonal.

(13.24) For any reasonable cohomology theory with a Künneth formula, Poincaré duality andGammax

a cycle class map we have for an abelian variety X of dimension g

H2g(X ×k X) =
2g
⊕
i=0

H2g−i(X)⊗L Hi(X) =
2g
⊕
i=0

Hi(X)∨ ⊗L Hi(X) =
2g
⊕
i=0

EndL
(
Hi(X)

)
.

The diagonal class cl(∆X) ∈ H2g(X ×kX) corresponds to the element ⊕idHi(X). Hence we can

write

cl(∆X) = γ0 + γ1 + · · ·+ γ2g ,

with γi ∈ EndL
(
Hi(X)

)
. The classes γi are called the Künneth components of the diagonal.

Standard conjectures, as discussed for instance in Kleiman [1], predict that these classes are

algebraic. That is, there should exist codimension g cycles Di on X ×k X such that [∆X ] =

D0 +D1 + · · · +D2g and cl(Di) = γi. The main result of this section establishes the existence

of such algebraic classes.

Throughout this section, let S be a smooth connected quasi-projective scheme of dimen-

sion d over a field k. We consider an abelian scheme f : X → S of relative dimension g. Recall

that if ξ ∈ CH∗Q(X ×SX) then we define its transpose tξ ∈ CH∗Q(X ×SX) by tξ := s∗(ξ), where

s: X ×S X → X ×S X is the automorphism switching the two factors.

If x ∈ X(S) is a section of f , we define the graph class [Γx] of x by

[Γx] := x∗[S] =
[
x(S)

]
∈ CHg

Q(X) .

In particular, [Γe] is the identity element of CH∗Q(X) for the Pontryagin product.

Further, let ix := x×1Xt : S×SXt → X×SXt, and consider the pull-back i∗x(ℓ) ∈ CH1
Q(Xt)

of the class of the Poincaré bundle. The following two formulas, due to Beauville, give relations

between i∗x(ℓ) and the graph classes [Γx].

(13.25) Lemma. For all x ∈ X(S) we haveBeauvForms

τ
(
[Γx]

)
= exp(i∗xℓ) and τ t(i∗xℓ) = (−1)g+1

g+d∑

j=1

(−1)j

j
·
(
[Γx]− [Γe]

)∗j
.

Proof. We have τ
(
[Γx]

)
= pXt∗(p

∗
Xx∗[S] · eℓ) = pXt∗ix∗

(
[Xt] · i∗xeℓ

)
= ei

∗
xℓ. This proves the first

relation. Further, in CH∗Q(Xt) we have the identity

i∗xℓ = log
(
1− (1− ei∗xℓ)

)
= −

∞∑

j=1

1

j
(1− ei∗xℓ)j .

Note that for dimension reasons a term of the form
(
1− exp(i∗xℓ)

)j
vanishes for j > dimXt =

g + d. By our first identity and Cor. (13.22) we have

τ t
(
(1− ei∗xℓ)j

)
= τ t ◦τ

((
[Γe]− [Γx]

)∗j)
= (−1)g(−1)j

(
[Γx]− [Γe]

)∗j
,

and combining this with the previous formula this gives the second relation. �

– 206 –



(13.26) Lemma. For x, y ∈ X(S) we have [Γx] ∗ [Γy] = [Γx+y].GamxGamy

Proof. By the Theorem of the Square, i∗x+yℓ = i∗xℓ + i∗yℓ. This implies that τ
(
[Γx] ∗ [Γy]

)
=

τ
(
[Γx]

)
τ
(
[Γy]

)
= ei

∗
xℓei

∗
yℓ = ei

∗
xℓ+i

∗
yℓ = τ

(
[Γx+y]

)
. Now apply Thm. (13.23). �

These formulas can be used to deduce a vanishing property. Let I(X/S) be the Q-subspace

of CHg
Q(X) generated by the elements [Γx]− [Γe] for all x ∈ X(S). By Lemma (13.26), I(X/S)

is a subring of CHg
Q(X) with respect to the ring structure defined by the Pontryagin product.

(13.27) Proposition. Let d = dim(S) and g = dim(X/S). Then I(X/S)∗(g+d+1) = 0.IXSbound

Proof. The Fourier transform of a product

(
[Γx1

]− [Γe]
)
∗
(
[Γx2

]− [Γe]
)
∗ · · · ∗

(
[Γxn

]− [Γe]
)

equals (exp(i∗x1
ℓ)−1)·(exp(i∗x2

ℓ)−1) · · · (exp(i∗xn
ℓ)−1) , and for dimension reasons this expression

vanishes if n > dim(Xt) = g + d. By Thm. (13.23) the result follows. �

In view of Lemma (13.25) we now put

log
(
[Γx]

)
:= (−1)g+1 · τ t(i∗xℓ) .

This is a well-defined element of I(X/S).

(13.28) Corollary. The map X(S) → I(X/S) given by x 7→ log
(
[Γx]

)
is a group homomor-XSIXShom

phism.

Proof. This follows from the identity of formal power series log
(
(1 + x)(1 + y)

)
= log(1 + x) +

log(1 + y). �

(13.29) Theorem. (Deninger, Murre) There is a unique decomposition of the class of theDenMurre

diagonal in CH∗Q(X ×S X),

[∆X/S ] =

2g∑

i=0

πi (8)
FourChow:DDec

such that

πi ◦πj =

{
0 if i 6= j,

πi if i = j,

and such that

[tΓnX
]◦πi = niπi for all n ∈ Z . (9)FourChow:Gnpii

Moreover,

(i) πi ◦ [
tΓnX

] = niπi for all n ∈ Z;

(ii) tπi = π2g−i;

(iii) if f : X → Y is a homomorphism then [tΓf ]◦πi,Y = πi,X ◦ [tΓf ].

Proof. First we prove unicity. Suppose {π′i} is another collection of elements satisfying (8)

and (9). Then
∑2g
i=0 n

i(πi − π′i) = 0 for every integer n; hence πi = π′i for every i.

Let us consider X ×S X as an abelian scheme over X via p1: X ×S X → X. We also

consider the convolution product on CH∗Q(X ×S X) relative to the base scheme X. If n ∈ Z

then the morphism X → X ×S X given by x 7→ (x, nx) is a section of X ×S X over X; its
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graph class is none other than the class [ΓnX
] ∈ CHg

Q(X ×S X) of the graph of nX . If there is

no risk of confusion we simply write [Γn] for this class. In particular, [Γid] = [Γ1] = [∆] and

[Γe] = [Γ0] = [X × e(S)]. (Here the “e” in Γe has to be interpreted as the identity section of

X ×S X over X.)

For i 6 2g, define πi ∈ CH∗Q(X ×S X) by

πi :=
1

(2g − i)! log
(
[Γid]

)∗(2g−i)
=

1

(2g − i)!
( ∞∑

j=1

(−1)j−1

j

(
[Γid]− [Γe]

)∗j)∗(2g−i)
.

Note that πi = 0 for i < −d and π2g =
[
X × e(S)

]
. By the identity exp

(
log(1 + x)

)
= 1 + x of

formal power series we have

[∆] = [Γid] =

2g∑

i=−d

πi . (10)
FourChow:DDec2

By Lemmas (13.6) and (13.17) we have [Γn]◦(α ∗β) =
(
[Γn]◦α

)
∗
(
[Γn]◦β

)
. Combining this

with (13.26) and (13.28) we get

[Γn]◦πi =
1

(2g − i)! log
(
[Γn]

)∗(2g−i)

=
1

(2g − i)! log
(
[Γid]∗n

)∗(2g−i)

=
1

(2g − i)!
(
n log([Γid])

)∗(2g−i)
= n2g−iπi .

(11)

FourChow:Gnpii2

So we have [Γn] = [Γn]◦∆ = [Γn]◦
∑2g
i=−d πi =

∑2g
i=−d n

2g−iπi; hence n2g−jπj = [Γn]◦πj =∑2g
i=−d n

2g−iπi ◦πj . As this holds for every integer n, it follows that

πi ◦πj =

{
0 if i 6= j,

πj if i = j.

From the relation [Γn] =
∑
n2g−jπj we get that πi ◦ [Γn] = n2g−iπi. Furthermore, we have

[Γn]◦ [tΓn] = n2g∆, and so n2g−iπi ◦ [
tΓn] = πi ◦ [Γn]◦ [tΓn] = n2gπi. We find that [Γn]◦ tπi =

t
(
πi ◦ [

tΓn]
)

= ni · tπi. Now remark that the relations (10) and (11) uniquely determine the

collection {πi}—the argument is the same as for the unicity with respect to the relations (8)

and (9). But what we have shown means that the collection of elements {tπ2g−i} satisfies (10)

and (11) too, and (ii) follows. This also implies that πi = 0 for i < 0, so (10) reduces to (8).

Further, (9) and (i) follow by transposition from the relations that we have already proven.

To prove (iii) we let cij = πj,X ◦ [tΓf ]◦πi,Y . Then

nicij = πj,X ◦ [tΓf ]◦n
iπi,Y

= πj,X ◦ [tΓf ]◦ [
tΓn]◦πi,Y

= πj,X ◦ [tΓn]◦ [tΓf ]◦πi,Y = njcij ,

which implies that cij = 0 unless i = j. Hence

[tΓf ]◦πi,Y = [∆X ]◦ [tΓf ]◦πi,Y

= cii

= πi,X ◦ [tΓf ]◦ [∆Y ] = πi,X ◦ [tΓf ] .
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This completes the proof of the theorem. �

(13.30) Example. As remarked in the proof, we have π2g =
[
X × e(S)

]
. Combining thisDenMurExa

with (ii) gives that π0 =
[
e(S)×X

]
.

Next consider an elliptic curve E over a field k. By formula (8) and the previous remark,

we should have

π1 =
[
∆E

]
−
[
{0} × E

]
−
[
E × {0}

]
.

On the other hand, we have defined π1 ∈ CH∗Q(E ×k E) to be

log
(
[Γid]

)
=
(
[∆]− [E × {0}]

)
− 1

2
·
(
[∆]− [E × {0}]

)∗2
,

where the Pontryagin is computed on E ×k E, viewed as an abelian scheme over E via the first

projection. Using Lemma (13.26) we find

π1 = 2 ·
[
∆E

]
− 3

2
·
[
E × {0}

]
− 1

2
·
[
Γ2

]
,

where Γ2 ⊂ E ×k E is the graph of multiplication by 2. To see that the two ansers for π1 agree

we should check that

[
Γ2

]
+
[
E × {0}

]
− 2 ·

[
∆E

]
− 2 ·

[
{0} × E

]
= 0 (12)FourChow:DivEq

in CH1
Q(E×kE). This is indeed the case, for if E is given by a Weierstrass equation f(X,Y ) = 0

for some cubic f(X,Y ) ∈ k[X,Y ] then

(P,Q) 7→ xQ − x2P(
∂f/∂X

)
(P ) · (xQ − xP ) +

(
∂f/∂Y

)
(P ) · (yQ − yP )

(13)
FourChow:RatFn

is a rational function on E ×E whose divisor is precisely the left hand side of (12). (Note that

the restriction of the LHS of (12) to {P} ×E equals [2P ] + [0]− 2[P ]. This is the divisor of the

rational function l1/l2 where l1 is the linear form that defines the line through 2P and 0, and

where l2 is the linear form that defines the tangent space at P . Working this out in coordinates,

l1 and l2 give precisely the numerator and denominator in (13).)

(13.31) The interpretation of Thm. (13.29) is that the motive of X decomposes as a direct sumDenMurRem

of 2g submotives—this point of view shall be further discussed in § 4 below. Let us now already

make the connection with cohomology theory. For this, consider any Weil cohomology X 7→
H•(X), defined for varieties over a ground field k, with coefficients in a field L of characteristic 0.

In particular, we have a Künneth formula, Poincaré duality, and a cycle class map cl : CH∗Q(X)→
H•(X) mapping CHi

Q(X) into H2i(X).

Let g = dim(X). By the Künneth decomposition and Poincaré duality we have

H2g(X ×k X) =
2g
⊕
i=0

H2g−i(X)⊗L Hi(X) =
2g
⊕
i=0

Hi(X)∨ ⊗L Hi(X) =
2g
⊕
i=0

EndL
(
Hi(X)

)
.

The diagonal class cl(∆X) ∈ H2g(X ×kX) corresponds to the element ⊕idHi(X). Hence we can

write

cl(∆X) = γ0 + γ1 + · · ·+ γ2g ,
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with γi ∈ EndL
(
Hi(X)

)
. The classes γi are called the Künneth components of the diagonal.

Standard conjectures, as discussed for instance in Kleiman [1], predict that these classes are

algebraic. That is, there should exist codimension g cycles Di on X ×k X such that [∆X ] =

D0 +D1 + · · ·+D2g and cl(Di) = γi. For abelian varieties, this is exactly what Theorem (13.29)

achieves, as we shall now prove.

(13.32) Corollary. Let k be a field, and let X 7→ H•(X) be any Weil cohomology for k-WeilCohAV

varieties, with coefficients in a field of characteristic 0. Then for any abelian variety X the

Künneth components of the diagonal are algebraic; more precisely, the classes πi in (8) satisfy

cl(πi) = γi. Further we haveH•(X) ∼= ∧•H1(X), and nX induces multiplication by ni onHi(X).

Proof. Let g := dim(X). We make H• := H•(X) into a graded bialgebra by taking m∗ as

co-multiplication and e∗ as augmentation, cf. (6.14) where we used a similar construction for

the cohomology of the structure sheaf. By the Borel-Hopf Theorem (6.12) we have H• =

H•

1 ⊗ · · · ⊗ H•

r , with H•

i generated by a single element xi of degree di > 0. Note that the

degrees di are odd. Indeed, if di were even then xqi 6= 0 for all q > 0, which is absurd; see the

restrictions discussed in (iv) of (6.11), and see Exercise (6.4). It follows that the elements xi,

which are primitive in the sense of (6.16), satisfy x2
i = 0; see again Exercise (6.4). This means

thatH• is a product of exterior algebras; more precisely: if Vj ⊂ H• is the span of the elements xi
for which di = j then we have

H
• ∼= ⊗

j odd

(
∧•
Vj
)

as graded bialgebras. In particular, if rj := dim(Vj) then

H2g =
(
∧r1V1

)
⊗
(
∧r3V3

)
⊗ · · · ⊗

(
∧r2g−1V2g−1

)
, (14)FourChow:H2g

and by comparison of the degrees this gives the relation

2g = r1 + 3r3 + 5r5 + · · · + (2g − 1)r2g−1 . (15)FourChow:2geq

We are going to show that rj = 0 for j > 1.

We have cl(∆X) =
∑2g
i=0 cl(πi), and the elements cl(πi) ∈ EndL(H•) are projectors. Let

us provisionally write H•{i} for the image of cl(πi). It follows from (9) that H•{i} ⊂ H• is

precisely the subspace on which nX induces multiplication by ni.

Suppose h ∈ H• is a primitive element in the sense of (6.16). As 2X equals the composition

m◦∆: X → X ×kX → X, we find that 2∗X(h) = ∆∗m∗(h) = ∆∗(h⊗ 1 + 1⊗ h) = 2h. Hence for

every n which is a power of 2 we have n∗X(h) = nh, and this suffices to conclude that h ∈ H•{1}.
But the elements of V := V1⊕V3⊕· · ·⊕V2g−1 are all primitive; hence V ⊂ H•{1}. This implies

that

(
∧r1V1

)
⊗
(
∧r3V3

)
⊗ · · ·

(
∧r2g−1V2g−1

)
⊆ H•{s} with s = r1 + r3 + · · ·+ r2g−1 .

On the other hand, we know that nX acts as multiplication by n2g on H2g, as H2g is spanned by

the cohomology class of a point. So it follows from (14) that s = 2g, and comparison with (15)

gives that r1 = 2g and rj = 0 for j > 1. Hence H• = ∧•H1 with H1 = V1 ⊂ H•{1}, so nX
induces multiplication by ni on Hi. This last property also implies that cl(πi) = γi. �

(13.33) Let X be an abelian variety over a field k. We now study the effect of nX on CHi
Q(X).LiebTrick

The elements πl of (13.29) give rise to a collection of orthogonal idempotents in EndQ

(
CHiQ(X)

)
.
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symmetric

line

Accordingly, we can decompose CHi
Q(X) as a direct sum of subspaces. To make this more precise,

let us define

CHi,j
Q (X) :=

{
α ∈ CHi

Q

∣∣ n∗X(α) = n2i−jα for all n} .

It follows from (9) that CHi,j
Q (X) is precisely the subspace of CHi

Q(X) that is cut out by the

idempotent π2i−j .

For example, for i = 1 we have CH1(X) = Pic(X). We know that

Pic0(X) =
{
[L] ∈ Pic(X)

∣∣ n∗[L] = [L⊗n] for all n
}
,

and we may also consider the symmetric line bundles

Picsym(X) :=
{
[L] ∈ Pic(X)

∣∣ L is symmetric
}

=
{
[L] ∈ Pic(X)

∣∣ n∗[L] = [L⊗n
2

] for all n
}
,

where the last equality follows from Cor. (2.12). After tensoring with Q we can invert 2 and we

have a direct sum decomposition

CH1
Q(X) =

(
Pic0(X) ⊗Q

)
⊕
(
Picsym(X)⊗Q

)

= CH1,1
Q (X)⊕ CH1,0

Q (X) .

(Cf. the comments after Cor. (2.12).) It is this decomposition that we shall now generalize.

(13.34) Lemma. Let x ∈ CHi
Q(X), and write τCH(x) =

∑g
j=0 ξj with ξj ∈ CHj

Q(Xt). Thentau(x)Dec

ξj ∈ CHj,g−i+j
Q (Xt).

Proof. Recall that we write ℓ ∈ CH1
Q(X × Xt) for the class of the Poincaré bundle. We have

(id× n)∗ℓ = n · ℓ, and, by definition, τCH(x) = pXt,∗

(
p∗X(x) · exp(ℓ)

)
. Hence

ξj = pXt∗

(
p∗X(x) · ℓg−i+j

(g − i+ j)!

)
,

so

n∗(ξj) = pXt∗(id × n)∗
(
p∗X(x) · ℓg−i+j

(g − i+ j)!

)
= pXt∗

(
p∗X(x) · (n · ℓ)

g−i+j

(g − i+ j)!

)
= ng−i+jξj ,

which is what we want. �

(13.35) Proposition. For α ∈ CHi
Q(X) and n ∈ Z \ {−1, 0, 1}, the following are equivalent:CHijchar

(i) α ∈ CHi,j
Q (X);

(ii) n∗(α) = n2i−jα;

(iii) n∗(α) = n2g−2i+jα;

(iv) τCH(α) ∈ CHg−i+j
Q (Xt);

(v) τCH(α) ∈ CHg−i+j,j(Xt).

Proof. That (i) implies (ii) is just the definition of CHi,j
Q . For the implication (ii) ⇒ (iii) we

use that n∗n
∗ is multiplication by n2g on CH∗Q(X). To see that (iii) implies (iv) we use (ii) of

Cor. (13.22), which gives

n∗τ(α) = τ(n∗α) = n2g−2i+jτ(α) . (16)FourChow:n*tau
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Since |n| > 1 this implies, by the preceding lemma, that τ(α) ∈ CHg−i+j
Q (Xt). The implication

(iv) ⇒ (v) is again the preceding lemma.

We now have shown that (i) implies (v). Next assume that (v) holds, and apply (i) ⇒ (v)

to the class τCH(α) on the dual abelian variety. We get that τ tτ(α) ∈ CHi,j(X). By Cor. (13.22)

this means that (−1)∗α ∈ CHi,j
Q (X), which implies that α = (−1)∗(−1)∗α ∈ CHi,j

Q (X). �

(13.36) Corollary. The Fourier transform gives a bijectiontauCHij

τCH: CHi,j
Q (X)

∼−→ CHg−i+j,jQ (Xt) .

(13.37) Theorem. We haveCHiDec

CHiQ(X) =
i
⊕

j=i−g
CHi,j

Q (X) .

If ξ ∈ CHi,j
Q (X) and η ∈ CHr,s

Q (X) then ξ · η ∈ CHi+r,j+s and ξ ∗ η ∈ CHi+r−g,j+s
Q .

Proof. It follows from (13.36) that CHi,j
Q (X) vanishes if j > i or j < i − g, since then g − i+ j

lies outside the range [0, g]. It is clear that ξ · η lies in CHi+r,j+s, and the last assertion follows

from this using Thm. (13.23) and Cor. (13.36). �

§5. Motivic decomposition.

(13.38) We now give a brief introduction to Chow motives. For more explanation we refer toChowMot

Manin [1], Scholl [??], ...

Let S be a smooth quasi-projective scheme over a field k. For simplicity we shall assume

S to be connected. The category M (S) of relative Chow motives has as its objects pairs

(f : X → S, p) with f a smooth morphism, and with p ∈ CH∗Q(X×SX) an idempotent (meaning

that p◦p = p). If there is no risk of confusion we use the shorter notation (X, p). The morphisms

are given by

HomM (S)

(
(X, p), (Y, q)

)
=
{
q ◦α◦p

∣∣ α ∈ CH∗Q(X ×S Y )
}
,

and composition of morphisms is given by composition of correspondences.

The set of morphisms HomM (S)

(
(X, p), (Y, q)

)
carries a natural grading: if X = ∐jXj is

the decomposition of X into connected components, with Xj of relative dimension d(Xj/S)

over S then we set

Homi
(
(X, p), (Y, q)

)
:=
{
q ◦α◦p

∣∣ α ∈ ⊕jCH
d(Xj/S)+i
Q (Xj ×S Y )

}
.

Composition of morphisms respects this grading: if α ∈ Homi and β ∈ Homj then α◦β ∈
Homi+j .

The category M 0
+(S) of effective Chow motives is a variant of M (S). The objects are pairsEffChowMot

(X, p) in M (S), but we require p to be of degree 0 and morphisms are also of degree 0; in other

words, HomM0
+

(S) = Hom0
M (S). There is a natural contravariant functor R: V (S) → M 0

+(S)

sending X/S to (X, [∆X/S ]), and sending a morphism f : X → Y over S to [tΓf ].
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In M 0
+(S) we have direct sums, given by taking disjoint unions; so,

(X, p)⊕ (Y, q) = (X ∐ Y, p∐ q) .

For instance, if p ∈ CH∗Q(X) is a projector then so is q := [∆X/S ] − p, and we have R(X) ∼=
(X, p)⊕ (X, q).

Since we want to keep track of “Tate twists”, we introduce a third category, denoted

by M 0(S). Its objects are triples (X, p,m) with (X, p) in M 0
+(S) and m ∈ Z an integer.

The morphisms are given by

HomM0(S)

(
(X, p,m), (Y, q, n)

)
= Homn−m

M (S)

(
(X, p), (Y, q)

)
.

We view M 0
+(S) as a full subcategory of M 0(S) by sending (X, p) to (X, p, 0).

(13.40) The category M 0(S) is an additive Q-linear category in which every projector has aM0SProps

kernel and a cokernel. Such a category is called pseudo-abelian. We have a tensor product,

given by

(X, p,m) ⊗ (Y, q, n) = (X ×S Y, p×S q,m+ n) .

The object 1S :=
(
S, [S], 0

)
is an identity for the tensor product. As an immediate consequence

of the definitions we have the Künneth formula

R(X ×S Y ) = R(X)⊗R(Y ) .

An object M = (X, p,m) has a dual M∨ in M 0(S). Namely, if X is of pure relative

dimension n over S then we set M∨ := (X, tp, n−m); to extend this to the general case we first

decompose X into connected components. We have a canonical isomorphism

Hom(A⊗B,C) = Hom(A,B∨ ⊗ C) ,

functorial in A, B and C in M 0(S). (In the terminology of tensor categories, as in Deligne and

Milne [1], this makes M 0(S) into a rigid tensor category.)

We define Tate twisting in M 0(S) by

(X, p,m)
(
n
)

:= (X, p,m+ n) .

In particular, for X/S of relative dimension n we have the relation

R(X)∨ = R(X)
(
n
)
,

which may be thought of as the motivic analogue of Poincaré duality. (Note, however, that in

the present context this relation is a tautology.)

(13.41) As an example of a Chow motive we have the Lefschetz motive LS. Take the projectiveLefschMot

line over S, take a section e: S → P1
S, and consider the projector [Γe] :=

[
P1
S ×S e(S)

]
∈

CH1
Q(P1

S ×S P1
S), which is independent of the choice of e. Then we define

LS := (P1
S, [Γe], 0) .

One can check that R(P1
S) ∼= 1S ⊕ LS. This is reminiscent of the splitting P1 = {∞} ∐ A1, and

indeed we can think of LS as a “motivic form” of the affine line.
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For M ∈M 0(S) we have the relation M(−1) ∼= M⊗L; see Exercise (13.3). It easily follows

from this that for all n ∈ Z we have

M(n) ∼= M ⊗ L⊗n , (17)FourChow:TatLef

where for n = −ν 6 0 we define L⊗n to be
(
L∨
)⊗ν

.

Using the Lefschetz motive we can say how to form direct sums in M 0(S). On the full

subcategory M 0
+(S) the direct sum is as described in (13.39). We extend this to the whole

of M 0(S) by using the relation (17). Thus, given M = (X, p,m) and N = (Y, q, n), choose

r > max(m,n), and use that M ∼= M ′(r) and N ∼= N ′(r) with M ′ = (X/S, p, 0) ⊗ L⊗r−m and

N ′(Y/S, q, 0) ⊗ Lr−n. Then M ′ and N ′ are in M 0
+(S) and (M ′ ⊕N ′)

(
r
)

is a direct sum of M

and N .

(13.42) A multiplicative structure on a relative motive M in M (S) is a morphismM⊗M →MMultStr

in M (S). A morphism ϕ: M → N in M (S) is compatible with multiplicative structures on M

and N if it fits in a commutative diagram

M ⊗M ϕ⊗ϕ−−−→ N ⊗N
y

y

M
ϕ−−−→ N .

For example, the relative motive R(X/S) carries a canonical multiplicative structure coming

from the diagonal embedding ∆: X → X ×S X via

R(X/S)⊗R(X/S) = R(X ×S X/S)
[tΓ∆]−−−−→ R(X/S) .

Another example is given by an abelian scheme A/S. The multiplication m: A ×S A → A

induces the convolution multiplicative structure

R(A/S) ⊗S R(A/S)
[Γm]−−−→ R(A/S) .

The relations obtained in Thm. (13.21) may now be reformulated by saying that the Fourier

transform τ yields an isomorphism R(A/S)
∼−→ R(At/S), compatible with the canonical multi-

plicative structure on R(A/S) and the convolution structure on R(At/S). The inverse isomor-

phism is given by (−1)g[tΓ−idX
]◦T t.

(13.43) We shall need the exterior powers ∧iM of a motive M = (X, p,m) in M 0(S). RecallExtProdMot

that for cycles we have an exterior product: if ξ ∈ CH∗Q(X) and η ∈ CH∗Q(Y ) then we have a

well-defined cycle class ξ × η ∈ CH∗Q(X ×S Y ).

Let Si be the symmetric group on i letters, acting on Xi = X ×S · · · ×S X by permuting

the factors. Define si ∈ CH∗Q(Xi ×S Xi) by

si :=
1

i!

∑

σ∈Si

[tΓσ] ,

and let

si,M := si ◦(p× · · · × p) = (p× · · · × p)◦si ◦(p× · · · × p) = (p× · · · × p)◦si .
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We now define

∧iM :=
(
Xi, si,M ,mi

)
.

Note that si,M ∈ CH∗Q(Xi ×S Xi) can be viewed both as a morphism ∧iM → M⊗i and as a

morphism M⊗i → ∧iM .

We say that M has finite dimension if there exists an integer d such that ∧iM = 0 for all

i > d. For a finite-dimensional M we put

∧∗M = ⊕di=0 ∧iM .

The exterior algebra ∧∗M carries a canonical multiplicative structure induced by the composite

maps

si+j ◦(si × sj): ∧iM ⊗S ∧jM −→M⊗i+j −→ ∧i+jM .

(13.44) Remark. In order to get some feeling for these notions, it helps to think about reali-MotReal

sations of motives. For instance, suppose S = Spec(k) and suppose we have a Weil cohomology

X 7→ H•(X) for k-varieties, with coefficients in some field L. Then this gives a (covariant!)

functor h from M 0(k) into the category of finite dimensional, augmented, graded-commutative

L-algebras, referred to as a realisation functor. Via this functor we recognize several notions

defined above as being “motivic analogues” of familiar notions in cohomology. For instance,

the canonical multiplicative structure on R(X) may be thought of as the motivic analogue of

cup-product.

There is a subtle point in this last remark, though. If we have two motivesM1 = (X1, p1,m1)

and M2 = (X2, p2,m2) then there is an obvious isomorphism

ψ: M1 ⊗M2
∼−→M2 ⊗M1 ,

obtained from the isomorphismX1×X2
∼−→ X2×X1 that reverses the two factors. However, with

this identification the multiplicative structure on an exterior algebra ∧∗M is commutative rather

than graded-commutative. Also, the canonical multiplicative structure on R(X) is commutative,

unlike cup-product, which is graded-commutative. Though this does not make any difference

for the results discussed in this section, let us point out that, in a suitable sense, the above

isomorphism ψ is not the right identification to use. A modified version of ψ would give a theory

in which ∧∗M and R(X) are graded-commutative, as it should be. However, to define the right

identification M1 ⊗M2
∼= M2 ⊗M1 we need the algebraicity of the Künneth components of the

diagonal, which, as already mentioned, is not known in general. See ?? for further discussion.

(13.45) Let X/S be an abelian scheme of relative dimension g. DefineAVR(X)Dec

Ri(X) := (X,πi, 0) ,

with πi as in (8). Then Theorem (13.29) yields a canonical decomposition

R(X) =
2g
⊕
i=0

Ri(X)

such that [tΓn] acts on Ri(X) by ni. Poincaré duality tells us that R2g−i(X)∨ = Ri(X)
(
g
)
.

Our goal is to prove a theorem of Künnemann, which asserts that Ri(X) is isomorphic to

∧iR1(X). As a preparation we first give another description of the motive ∧iR1(X). Since we
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shall need the projectors πi for various abelian schemes, we shall from now on often write πi,X
for the elements obtained in (8).

By definition we have ∧iR1(X) =
(
Xi, si ◦(π1,X × · · · × π1,X), 0

)
. By the motivic Künneth

formula we have

πi,Xi =
∑

n1+···+ni=i

πn1,X × · · · × πni,X ,

where the indices ni run from 0 to 2g, satisfying the condition on their sum. To filter out the

term π1,X × · · · × π1,X we use the action of −idX . Note that for [X] ∈ CH0
Q(X) we have

id∗X [X]− (−idX)∗[X] = 0 . (18)FourChow:1X*

Therefore, for a = (a1, . . . , ai) ∈ {±1}i, let sgn(a) := a1a2 · · · ai ∈ {±1} and define

λi := (1/2i)
∑

a∈{±1}i

sgn(a)[tΓa] ∈ CHgi
Q (Xi ×S Xi) ,

where of course Γa denotes the graph of the automorphism (a1, . . . , ai) of Xi. Now observe that

λi ◦πi,Xi = λi ◦
( ∑

n1+···+ni=i

πn1,X × · · · × πni,X

)

= λi ◦(π1,X × · · · × π1,X)

= π1,X × · · · × π1,X .

(19)

FourChow:lambi

Indeed, if nj > 1 for some index j then there is also an index l ∈ {1, . . . , i} with nl = 0; but

then it easily follows from (18) that the term λi ◦(πn1,X ×· · ·×πni,X) vanishes. We are left with

the term corresponding to (n1, . . . , ni) = (1, . . . , 1), which is preserved because each [tΓa] acts

on it as the identity.

(13.46) Lemma. We have ∧iR1(X) = (Xi, λi ◦si ◦πi,Xi , 0) in M 0(S).wdgR1Lem

Proof. One easily checks that the elements si and λi are projectors and that they commute.

Now (19) gives

∧iR1(X) =
(
Xi, si ◦(π1,X × . . .× π1,X), 0

)
= (Xi, si ◦λi ◦πi,Xi , 0) = (Xi, λi ◦si ◦πi,Xi , 0) ,

which is what we want. �

(13.47) Theorem. (Künnemann) There is an isomorphism of motives with multiplicativewedgeR1X

structures

∧∗R1(X)
∼−→ R(X) .

Proof. Let Σi: Xi → X and ∆i: X → Xi be the homomorphisms given by Σi(x1, . . . , xi) =

x1 + · · ·+ xi and ∆i(x) = (x, . . . , x). We have the relations

[tΓ∆i ]◦si = [tΓ∆i ] and si ◦ [
tΓΣi ] = [tΓΣi ] . (20)FourChow:GsG

Let us also note that we have the relations πi,Xi ◦si = si ◦πi,Xi and πi,Xi ◦λi = λi ◦πi,Xi , as

follows from (iii) of Thm. (13.29).
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Define morphisms

Φi := [tΓ∆i ]◦(λi ◦si ◦πi,Xi) = [tΓ∆i ]◦λi ◦πi,Xi ∈ HomM0(S)

(
∧iR1(X), R(X)

)
,

and

Ψi :=
1

i!
(λi ◦si ◦πi,Xi)◦ [tΓΣi ] =

1

i!
λi ◦πi,Xi ◦ [tΓΣi ] ∈ HomM0(S)

(
R(X),∧iR1(X)

)
.

The theorem will result from the following more precise claims:

(i) Φi ◦Ψi = πi,X ,

(ii) Ψi ◦Φi = λi ◦si ◦πi,Xi = id∧iR1(X).

To prove (i) we write

Φi ◦Ψi = (1/i!) · [tΓ∆i ]◦λi ◦πi,Xi ◦λi ◦πi,Xi ◦ [tΓΣi ]

= (1/i!) · [tΓ∆i ]◦λi ◦ [
tΓΣi ]◦πi,X by (iii) of (13.29)

= (1/2ii!) ·
∑

a∈{±1}i

sgn(a)[tΓΣi ◦a◦∆i ]◦πi,X

= (1/2ii!) ·
∑

a∈{±1}i

sgn(a)[tΓa1+···+ai
]◦πi,X

= (1/2ii!) ·
∑

a∈{±1}i

sgn(a)(a1 + · · ·+ ai)
i · πi,X by (9).

Now use that ∑

a∈{±1}i

sgn(a)(a1 + · · · + ai)
k =

{
0 if 0 6 k < i,

2ii! if k = i,

as is easily shown by induction on i.

To prove (ii) we must show that (1/i!) · λi ◦πi,Xi ◦ [tΓΣi ]◦ [tΓ∆i ]◦λi ◦πi,Xi = λi ◦si ◦πi,Xi .

What we shall actually prove is that

(1/i!) · tsi ◦ tλi ◦ [Γ∆i ◦Σi ]◦ tπi,Xi ◦
tλi = tλi ◦

tsi ◦
tπi,Xi . (21)FourChow:goal

After transposition, using (20) and using that si, λi and πi,Xi are mutually commuting projec-

tors, this gives the desired relation.

Write prl: X
i → X for the projection on the lth factor and jl: X → Xi for the inclusion of

the lth factor.

As before, we view Xi ×S Xi as an abelian scheme over Xi via the first projection. We

know that tπi,Xi = π2gi−i,Xi , and by construction the latter equals (1/i!) · log
(
[Γid]

)∗i
. (This

takes place on Xi.) Recall that when we write “Γid” we may interpret this as the graph class

associated to the section ξ 7→ (ξ, ξ) of Xi×SXi over Xi. Likewise, we have meaningfully defined

graph classes [Γjk ◦prl
].

With these remarks, the LHS of (21) equals

(1/i!)2 · tsi ◦ tλi ◦ [Γ∆i ◦Σi ]◦ log
(
[Γid]

)∗i
◦
tλi

= (1/i!)2 · tsi ◦ tλi ◦ log
(
[Γ∆i ◦Σi ]

)∗i
◦
tλi using Exercise (13.4)

= (1/i!)2 · tsi ◦ tλi ◦
( i∑

k,l=1

log
(
[Γjk ◦prl

]
))∗i

◦
tλi

= (1/i!)2 · tsi ◦ tλi ◦
( i∑

k1,...,ki=1

i∑

l1,...,li=1

log
(
[Γjk1

◦prl1
]
)
∗ · · · ∗ log

(
[Γjki

◦prli
]
))

◦
tλi .
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We claim that this equals

(1/i!)2 · tsi ◦ tλi ◦
(∑

σ∈Si

∑

τ∈Si

log
(
[Γjσ(1) ◦prτ(1)

]
)
∗ · · · ∗ log

(
[Γjσ(i) ◦prτ(i)

]
))
. (22)

FourChow:sigtau

Indeed, expanding λi we have

tλi ◦
(
log
(
[Γjk1

◦prl1
]
)
∗ · · · ∗ log

(
[Γjki

◦prli
]
))

◦
tλi

= 2−2i ·
∑

a,b∈{±1}i

sgn(a)sgn(b) · log
(
[Γa◦ jk1

◦prl1
◦b]
)
∗ · · · ∗ log

(
[Γa◦ jki

◦prli
◦b]
)
. (23)

If (a1, . . . , ai) is not a permutation of (1, . . . , i), choose j ∈ {1, . . . , i} \ {n1, . . . , ni}; then the

corresponding terms with aj = −1 and aj = 1 cancel out. Likewise, if there is an index j in

{1, . . . , i} \ {b1, . . . , bi} then the terms with bj = −1 and bj = 1 cancel out. Hence we may

assume that (k1, . . . , ki) =
(
σ(1), . . . , σ(i)

)
and (l1, . . . , li) =

(
τ(1), . . . , τ(i)

)
. If for α ∈ {±1}i

we group the 2i terms of (23) with aσ(i) · bτ(i) = αi for all i then we find that (23) equals

2−i ·
∑

α∈{±1}i

sgn(α) ·
(
log
(
[Γα◦ jσ(1) ◦prτ(1)

]
)
∗ · · · ∗ log

(
[Γα◦ jσ(i) ◦prτ(i)

]
))

= tλi ◦
(
log
(
[Γjσ(1) ◦prτ(1)

]
)
∗ · · · ∗ log

(
[Γjσ(i) ◦prτ(i)

]
))
,

proving our claim.

Next we remark that we may reorder the log-factors in (22), and since tsi ◦ log
(
[Γjσ(l) ◦prl

]
)

=

log
(
[Γjl ◦prl

]
)

for all σ and l, we finally get that the LHS of (21) equals

(1/i!) · tλi ◦ tsi ◦
(∑

σ∈Si

log
(
[Γjσ(1) ◦pr1 ]

)
∗ · · · ∗ log

(
[Γjσ(i) ◦pri

]
))

= tsi ◦
tλi ◦

(
log
(
[Γj1 ◦pr1 ]

)
∗ · · · ∗ log

(
[Γji ◦pri

]
))
. (24)

The RHS of (21) equals

(1/i!) · tλi ◦ tsi ◦ log
(
[Γid]

)∗i

= (1/i!) · tλi ◦ tsi ◦
(
log
(
[Γj1 ◦pr1 ]

)
+ · · ·+ log

(
[Γji ◦pri

]
))∗i

= (1/i!) · tsi ◦ tλi ◦
( i∑

n1,...,ni=1

log
(
[Γjn1

◦prn1
]
)
∗ · · · ∗ log

(
[Γjni

◦prni
]
))
.

With the same argument as above we see that the only non-trivial contributions come from the

terms with (n1, . . . , ni) a permutation of (1, . . . , i). Hence we get

(1/i!) · tsi ◦ tλi ◦
(∑

σ∈Si

log
(
[Γjσ(1) ◦prσ(1)

]
)
∗ · · · ∗ log

(
[Γjσ(i) ◦prσ(i)

]
))
,

and after reordering the log-factors we see that this equals (24), proving relation (ii).

To finish the proof of the theorem we have to check that the maps
∑
i Φi: ∧∗R1(X)→ R(X)

and
∑
iΨi: R(X) → ∧∗R1(X) respect the multiplicative structures. This is a straightforward

verification that we leave as an exercise. �
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(13.48) Remark. Passing to cohomology this gives another proof of Thm. (13.32).

Exercises.

(13.1) Let X be an abelian variety. Write τ = τCH. If α ∈ CH∗Q(X) is a symmetric element,Ex:SyminCH

meaning that (−1X)∗α = α, prove that τ(α) is symmetric too, and that τ(α) ∈ ⊕jCHg−i+2j
Q (X).

Similarly, if α is anti-symmetric, meaning that (−1X)∗α = −α, prove that τ(α) is also anti-

symmetric, and that τ(α) ∈ ⊕jCHg−i+2j+1
Q (X).

(13.2) Let Θ be a divisor on an abelian variety X giving a principal polarization. Let θ ∈Ex:ThetaCH

CH1
Q(X) be its class. Prove that τ(eθ) = e−θ.

(13.3) Consider the category M 0(S) as in (13.39). Let L = (P1
S , [Γe], 0) be the Lefschetz motiveEx:M0S

as defined in (13.41).

(i) Let q := [∆]− [Γe], with ∆ ⊂ P1
S×S P1

S the diagonal. Show that (P1
S/S, q, 0)

∼= 1S . Conlude

that R(P1
S/S) ∼= 1S ⊕ L.

(ii) For M in M 0(S) and L, prove that M(−1) ∼= M ⊗ L.

(13.4) Let f : X → Y be a homomorphism of abelian schemes over a basis S as in (13.38).Ex:GflogGx

For x ∈ X(S), view log
(
[Γx]

)
as a correspondence from S to X. Show that [Γf ]◦ log

(
[Γx]

)
=

log
(
[Γf(x)]

)
. Using Lemmas (13.6) and (13.17), generalize this to the identity [Γf ]◦ log

(
[Γx]

)∗n
=

log
(
[Γf(x)]

)∗n
for all n > 0.

Notes. Pontryagin introduced the Pontryagin product in his investigations of the homology of Lie groups in

1935; see Pontryagin [1], [2]. The Fourier transform can be defined in various contexts. It first occurred in a paper

of Lieberman (see Kleiman [1], Appendix) at the level of cohomology. Mukai introduced it in the derived category

of OX -modules and established many properties of it. Beauville studied the Fourier transform on the Chow rings

of an abelian variety and especially the action of multiplication by n. Deninger and Murre [1] used work of

Beauville to give a canonical decomposition of the Chow motive of an abelian variety which is the analogue of the

well-known cohomological decomposition H(X) ∼= ⊕2g
i=0

Hi(X). It is based on the decomposition of CH∗

Q(X ×X)

into eigenspaces of the endomorphism (1X × nX)∗ for any integer n. If |n| > 1 then the components of the

diagonal for this decomposition yield pairwise orthogonal idempotents in the ring of correspondences and this
gives a decomposition of the Chow motive of an abelian variety. Shermenev had given such a decomposition

earlier, but his decomposition was not canonical. Künneman used these idempotents to prove that the Chow

motive R(X) is the exterior algebra ∧1R1 generalizing the result for cohomology. Proposition (13.27) is due to

Bloch; the proof using the Fourier transform stems from Beauville.

Inventarisatie van wat we nodig hebben in dit hoofdstuk:

— ξt: Xt → S dan Rgξt∗P
∼= et∗ det(Et)−1;

— resultaten over Chern klassen van de Hodge bundel; i.h.b. dat Td(E) = exp(λ1/2) en dat

λ1 = λt1;

— Thm of the Cube voor abelse schema’s;

— Thm of the Square voor abelse schema’s.
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Chapter XIV. Jacobian Varieties.

In this chapter we study a class of abelian varieties that are : Jacobian varieties of curves. In

fact, every abelian variety is isogenous to a quotient of a Jacobian variety. The definition of the

Jacobian J = Jac0(C) of a curve C was already given in Chapter 6: it is the identity component

of PicC/k. If the curve has genus g then J is birationally equivalent to the g-fold symmetric

product of C; this allows for a detailed study of the Jacobian.

The Jacobian comes equipped with a principal polarization given by the theta divisor Θ ⊂
Jacg−1(C) of effective divisor classes of degree g − 1. The geometry of this divisor reflects the

properties of the curve in a spectacular way. The Torelli theorem says that the Jacobian with its

polarization determines the curve. But not every abelian variety is a Jacobian. The Matsusaka

Criterion often helps us to decide whether it is or not.

Unless indicated otherwise, by a curve over a field k we shall mean a 1-dimensional variety

over k. In particular, a curve is supposed to be geometrically irreducible and reduced. In § 9

we shall consider more general curves, that are not assumed to be irreducible.

§1. The Jacobian variety of a curve.

(14.1) We recall from Chapter 6 the definition of the Jacobian variety of a curve. Let k be a fieldJacCDef

and let C/k be a proper smooth curve of genus g. We started with the functor PC/k: Sch0
/k → Ab

given by T 7→ Pic(CT ) = H1(CT , O
∗
CT

). We cannot expect that this functor is representable;

to repair this we have to sheafify it. The relative Picard functor PicC/k: Sch0
/k → Ab is defined

as the fppf sheaf associated to the presheaf PC/k. By standard results, see (6.3) and (6.8), this

functor is representable by a smooth group scheme over k whose connected components are

complete. We shall be most interested in the identity component

J = JC/k := Pic0
C/k ,

which is a g-dimensional abelian variety over k with H1(C,OC ) as its tangent space at the origin.

If C has a k-rational point ε: Spec(k) → C then PicC/k can be identified with the functor

of line bundles with rigidification along ε. In this case we find that PicC/k is isomorphic with

the functor Sch0
/k → Ab given by T 7→ Pic(CT )/p∗TPic(T ), where pT : CT → T is the projection.

In general, not assuming that C has a k-rational point, there is an exact sequence

0→ Pic(T )→ Pic(CT )→ PicC/k(T )→ Br(T )→ Br(CT ) , (1)Jacs:PicBrSeq

where Br(X) denotes the Brauer group of a scheme X; see ??. The boundary map PicC/k(T )→
Br(T ) can be non-zero, which means that not every class in PicC/k(T ) can be represented by a

line bundle on CT . See Example (14.3) for a simple concrete example.

For a line bundle L on CT the function dL: |T | → Z given by t 7→ deg(Lt) is locally constant.

This is a consequence of the fact that the Euler-Poincaré characteristic χ(Lt) is locally constant

(see HAG, Chap. 3, (9.9)), as we have the Riemann-Roch relation χ(Lt) = deg(Lt) + 1 − g.

Hence dL can be viewed as a T -valued point of the constant group scheme Z. As we have

Jac, 8 februari, 2012 (635)
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degree!of

Jacobian!definiti

dL⊗M = dL + dM , the map L 7→ dL defines a homomorphism of presheaves d: PC/k → Z. Now

define

deg: PicC/k → Z

to be the associated homomorphism of group schemes, bearing in mind that PicC/k is the fppf

sheaf associated to PC/k. Of course, if a T -valued point of PicC/k is represented by a line

bundle L on CT then deg
(
[L]
)

is just the function dL.

We now define, for n ∈ Z,

Jacn(C) := deg−1(n) .

(One could also call this PicnC/k but in the context of Jacobians of curves we shall rather use

Jacn(C).) Note that Jacn(C) is a non-empty scheme, as it is clear that it has k-valued points.

Since deg is locally constant, J ⊆ Jac0(C). We assert that, in fact, Jac0(C) is connected,

and hence J = Jac0(C). To see this, we may extend scalars to an algebraic closure of k. Then

every class in Jac0(C) is represented by a line bundle OC(D) with D a divisor of degree 0, i.e.,

D is of the form
∑r
i=1(Pi − Qi) with Pi, Qi ∈ C(k). Now remark that for fixed Q ∈ C(k) the

map C → Jac0(C) given on points by P 7→ [P −Q] has a connected image.

The following result summarizes our conclusions thus far.

(14.2) Theorem. Let C be a proper smooth curve of genus g over a field k. Then J = JC/k :=Jacobian

Pic0
C/k is an abelian variety of dimension g whose tangent space at the origin is isomorphic

with H1(C,OC ), and which coincides with Jac0(C), the kernel of the degree homomorphism

deg: PicC/k → Z.

The resulting variety J = Pic0
C/k = Jac0(C) is called the Jacobian variety or simply the

Jacobian of C. The functor Jacn(C) is represented by an algebraic variety of dimension g over k

which is a torsor under J . In particular, each Jacn(C) is again connected and complete. By

construction we have PicC/k =
∐
n∈Z Jacn(C).

As we shall later, the Jacobian J comes equipped with a natural principal polarization

λ: J
∼−→ J t. Let us note here that in some literature the term “Jacobian” refers to the pair

(J, λ), or to J together with a theta divisor Θ ⊂ J . In this book, the term “Jacobian” refers to

the abelian variety J itself.

(14.3) Example. If C has genus 0 then the degree map gives an isomorphism PicC/k
∼−→ Zgenus0Exa

and all components Jacn(C) are isomorphic to Spec(k). This does not mean that for any n

there exists a line bundle of degree n on C ! For example, take k = R and consider the curve

C ⊂ P2 given by X2 + Y 2 +Z2 = 0. This curve only has line bundles of even degree. However,

CC
∼= P1

C, so given n ∈ Z there is, up to isomorphism, a unique line bundle Ln of degree n on CC.

Hence the Galois group Gal(C/R) fixes the class [Ln] ∈ Pic(CC), and therefore Ln defines an

R-valued (and not just C-valued) point of Jacn(C). Taking T = Spec(C), the sequence (1) in

this example reads

0 −→ 0 −→ 2Z −→ Z −→ Z/2Z→ 0 .

Of course, in genus 0 the Jacobian is not a very interesting object. Some more interesting

examples shall be discussed in § 5 of this chapter. In what follows we shall usually only consider

curves of genus g > 1.

By (3.15) we have

Ω1
Jacn(C)/k

∼= H0(C,Ω1
C/k)⊗k OJacn(C) ,
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where we use the identification T∨J,0 = H1(C,OC )∨ of Cor. (6.6), part (i), and the Serre duality

isomorphism H1(C,OC )∨ ∼= H0(C,Ω1
C/k). In particular this gives an isomorphism

H0
(
Jacn(C),Ω1

Jacn(C)/k

) ∼= H0(C,Ω1
C/k) . (2)Jacs:H0JacnOm1

(14.4) Theorem. LetCtoJac1

j: C → Jac1(C)

be the morphism that associates to a T -valued point P of C the class of the line bundle OCT
(P )

on CT .

(i) If g > 1 then j is a closed immersion.

(ii) The induced map j∗: H0
(
Jac1(C),Ω1

Jac1(C)/k

)
→ H0(C,Ω1

C/k) coincides with the iso-

morphism (2).

Proof. Without loss of generality we may assume that k = k. Since j is a morphism of smooth

k-varieties, it is a closed embedding if it separates points and tangent vectors. To see that j

separates points, suppose that Q1, Q2 ∈ C(k) have the same image under j. Then OC(Q1) ⊗
OC(Q2)

−1 ∼= OC(Q1 − Q2) is trivial, i.e., Q1 − Q2 is the divisor of a function f . But then f

defines an isomorphism of C with P1, contradicting the assumption that g(C) > 1.

Next we want to compute the tangent map of j. Let Q ∈ C(k). Choose a local coordinate t

at Q, i.e., an element of k(C) that vanishes to order 1 at Q. Let U1 be an affine open neigh-

bourhood of Q in C such that t has no zeroes or poles on U1 \ {Q}. Set U2 = C \ {Q} and let

U12 := U1 ∩U2. Then the class of the line bundle OC(Q) in Pic(C) = H1(C,OC) is represented

by the Čech 1-cocycle t−1 ∈ O∗C(U12) with respect to the covering C = U1 ∪ U2.

Let ∂t ∈ TC,Q be the tangent vector at Q given by the local coordinate t. We claim that

the tangent map

Tj: TC,Q → TJac1(C),j(Q)
∼= H1(C,OC ) ∼= H0(C,Ω1

C/k)
∨

is given as follows: If ω ∈ H0(C,Ω1
C/k), write ω locally near Q as ω = f(t)dt; then Tj(∂t)

(
ω
)

=

f(Q).

For the proof of this claim, write C[ε] := C ⊗k k[ε] and Ui[ε] := Ui ⊗k k[ε], where k[ε]

is the ring of dual numbers. We can describe the tangent vector ∂t as a k[ε]-valued point

Q̃: Spec
(
k[ε]
)
→ U1[ε] ⊂ C[ε] that reduces to Q modulo ε. If we let A := OC(U1) then Q̃ is given

on rings by a homomorphism Q̃: A[ε]→ k[ε] of the form Q̃(a+bε) = Q(a)+ε·
(
δ(a)+Q(b)

)
, where

δ: A→ k is a k-derivation. We find that the tangent vector “Q̃ = ∂t” is the one corresponding

to the unique k-derivation δ: A→ k with δ(t) = 1, and that t̃ := t−ε is a local coordinate for Q̃.

The class of the line bundle OC[ε](Q̃) is then represented by the Čech 1-cocycle t̃−1 ∈ O∗C[ε](U12).

Hence the class of the line bundle OC[ε](Q̃ − Q) in H1
(
C[ε], 1 + εOC) is given by the cocycle

t̃−1 · t = 1 + t−1ε ∈ O∗C[ε](U12), and therefore corresponds to the class in H1(C,OC) represented

by the cocycle t−1 ∈ OC(U12).

The isomorphism H1(C,OC )
∼−→ H0(C,Ω1

C/k)
∨ can be described in terms of residues of

differentials; cf. HAG, Chap. III, Sect. 7. In the particular case considered here we find that

Tj(∂t)
(
ω
)

equals the residue at Q of the differential t−1 · ω ∈ Ω1
C/k(U12). If we write ω locally

near Q as ω = f(t)dt then resQ(t−1 · ω) = f(Q), and this proves our claim.

To complete the proof of (i), observe that the canonical system |KC | of C is base-point free,

as g > 1. This just means that there is an ω ∈ H0(C,Ω1
C/k) that does not vanish at Q. Hence

Tj(∂t) 6= 0, and since TC,Q is 1-dimensional, the tangent map at every point is injective.
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The assertion in (ii) is essentially a reformulation of the claim that we have proved. To

see this, take ω ∈ H0(C,Ω1
C/k), and let α be the global 1-form on Jac1(C) corresponding to ω

under the isomorphism (2). Suppose we have a line bundle L of degree 1 on C, and a line

bundle L̃ on C[ε] that reduces to L modulo ε. Write L[ε] for the pull-back of L under the

natural morphism C[ε]→ C. Then L̃⊗ L[ε]−1 is a line bundle on C[ε] that is trivial modulo ε,

and therefore represents a class in H1(C,OC ). On the other hand, we can view L as a k-valued

point of Jac1(C) and L̃ as a tangent vector at [L]. Now the relation between α and ω is that the

evaluation of α at the tangent vector L̃ equals the evaluation of ω ∈ H0(C,Ω1
C/k)

∼= H1(C,OC )∨

at the class given by L̃⊗ L[ε]−1.

Now we compose with j. Let Q ∈ C(k), choose a local coordinate t, and let “Q̃ = ∂t” be

the corresponding tangent vector. Then we find that the value of j∗α at Q̃ equals the evaluation

of ω at the class in H1(C,OC ) given by the bundle OC[ε](Q̃−Q). But by the computation done

above, if we write ω = f(t)dt then the value we find is just f(Q), which is also the evaluation

of ω at the tangent vector Q̃. As this holds for all points Q, this means precisely that j∗α = ω,

as claimed in (ii). �

(14.5) As PicC/k is a group scheme, its tangent bundle is globally trivial. To be precise,GaussMapdef

using the translations we get a natural identification of the tangent bundle of PicC/k with

OPicC/k
⊗k TJ,0. For Q ∈ C(k) the tangent map TjQ: TC,Q → TJac1(C),j(Q) can therefore be

viewed as a map γQ: TC,Q → TJ,0. Alternatively, γQ is the map on tangent spaces induced by

t−j(Q) ◦j: C → J . By (i) of the theorem γQ is injective. Hence γQ(TC,Q) is a line in TJ,0, or

equivalently, a point γ(Q) ∈ P(TJ,0)
(
k
)
. In this way we obtain a well-defined morphism

γ: C → P(TJ,0) ,

called the Gauss map. As an immediate corollary of the theorem and its proof we find that this

Gauss map is in fact nothing but the canonical map of C.

(14.6) Corollary. The Gauss map C → P(TJ,0) ∼= Pg−1 that assigns to a point P theGaussmap

tangent space to j(C) at j(P ) translated to the origin, coincides with the canonical map

ϕ: C → P(H0(C,Ω1
C)∨).

§2. Comparison with the g-th symmetric power of C.

Let C be a proper smooth curve of genus g over a field k. Let n ∈ Z>1. The n-th symmetric

power of C over k, notation C(n), is defined as

C(n) := Cn/Sn ,

the quotient of Cn under the action of the symmetric group Sn via permutation of the coordi-

nates. (Of course, Cn stands for the n-fold product C ×k · · · ×k C over k.) Note that in (5.16)

we have used a different notation for symmetric powers; this was necessary to avoid confusion

with the pull-back of a scheme in characteristic p via the absolute Frobenius. In this chapter we

shall use the more common notation C(n).

Form, n > 0 the natural isomorphism Cm×Cn ∼−→ Cm+n induces a morphism sm,n: C
(m)×

C(n) → C(m+n) that we shall refer to as the sum map. The terminology comes from the fact,

– 223 –



relative

effective

explained in more detail below, that C(m) is the variety of effective divisors of degree m on C;

with this interpretation the morphism sm,n is the map that sends a pair of effective divisors

(D,E) to their sum D + E. More generally, given non-negative integers m1, . . . ,mr we have a

natural morphism s = sm1,...,mr
: C(m1) × · · · × C(mr) → C(M), where M = m1 + · · ·+mr.

(14.7) Lemma. Let C be a proper smooth curve over k. Let n ∈ Z>1.C(n)smooth

(i) Suppose given a partition n = m1 + · · ·+mr and points P1, . . . , Pr ∈ C(k) with Pi 6= Pj
if i 6= j. Write miPi ∈ C(mi)(k) for the image of the point (Pi, . . . , Pi) ∈ Cmi under the quotient

map Cmi → C(mi). Then the sum morphism s: C(m1)×· · ·×C(mr) → C(n) is étale at the point

(m1P1, . . . ,mrPr).

(ii) The n-th symmetric power C(n) is a smooth k-variety.

The “divisor-like” notation for points of the symmetric powers of C will be further justified

below.

Note that the action of Sn on Cn is not free but that, nevertheless, the quotient C(n) is

smooth over k. It is essential for this that C is a curve; a similar conclusion does not hold in

general for the symmetric powers of higher-dimensional varieties.

Proof. Part (i) is an easy application of the result in Exercise (4.5)(ii). For the proof of (ii) we

may assume that k is algebraically closed, and by (i) and induction on n we only need to show

that C(n) is non-singular at points of the form nP for P ∈ C(k). (Here again nP is the image

of (P, . . . , P ) ∈ Cn(k).) By part (i) of Exercise (4.5) the completed local ring of C(n) at nP is

isomorphic to the ring of Sn-invariants in ÔCn,(P,...,P ). But ÔCn,(P,...,P ) is isomorphic to the

formal power series ring k[[t1, . . . , tn]], with Sn acting via permutation of the variables. The

subring of invariants is the formal power series ring k[[σ1, . . . , σn]] in the elementary symmetric

polynomials σi, and this is a regular ring. �

(14.8) As before, let C/k be a smooth proper curve. If k ⊂ k is an algebraic closure thenC(n)andDiv

to give a k-valued point of C(n) is the same as giving an unordered n-tuple of k-valued points

{P1, . . . , Pn}, or, what is the same, an effective divisor P1 + · · · + Pn of degree n. This inter-

pretation of C(n) as the variety parameterising effective divisors of degree n in fact works over

an arbitrary basis. To explain this in detail we need the notion of an effective relative Cartier

divisor. See the first few pages of Katz and Mazur [1] for an excellent introduction. Let us

summarize what we need.

If T is any k-scheme then an effective (relative) Cartier divisor in CT := C ×k T over T is

a closed subscheme D ⊂ CT which is flat over T and such that the ideal sheaf ID ⊂ OCT
is an

invertible OCT
-module. As C is proper over k, such a Cartier divisor is proper over T too, and

OD is finite locally free as an OT -module. The rank of OD as an OT -module (which is a locally

constant function on T ) is called the degree of D.

An effective relative Cartier divisor in CT /T can also be described as the isomorphism class

of a pair (L, s), where L is an invertible sheaf on CT and s ∈ H0(CT , L) is a global section, such

that the quotient sheaf

L/s(OCT
) := Coker(OCT

s−→ L)

is flat over T . Two such pairs (L, s) and (L′, s′) are considered to be isomorphic if there is an

isomorphism of OCT
-modules h: L

∼−→ L′ with h(s) = s′. The correspondence is that to a pair

(L, s) we associate the zero scheme D = Z(s) ⊂ CT of the section s; conversely, to D ⊂ CT we

associate the pair (I−1
D , s), where s is the global section of I−1

D = Hom(ID, OCT
) given by the

inclusion ID →֒ OCT
.

– 224 –



relativeEffective Cartier divisors in CT /T can be added. If D corresponds to the pair (L, s) and D′

to the pair (L′, s′) then D+D′ is the effective Cartier divisor corresponding to (L⊗L′, s⊗ s′).
If D ⊂ CT is an effective Cartier divisor of degree n over T and h: T ′ → T is a morphism of

k-schemes then we can pull D back to an effective Cartier divisor DT ′ = h∗D ⊂ CT ′ of degree n

over T ′. In this way we obtain a contravariant functor

Diveff,n
C/k : Sch/k → Sets with Diveff,n

C/k (T ) =

{
effective Cartier divisors

D ⊂ CT of degree n over T

}
.

In the case considered here, this functor is the same as the Hilbert functor HilbnC/k of closed

subschemes of C that are locally free of rank n over the basis. See for instance BLR, Section 8.2

or SGA4, Exp. ?? for further details.

If P ∈ C(T ) is a T -valued point of C then this gives a section T → CT of the structural

morphism, whose image is an effective Cartier divisor P ⊂ CT of degree 1 over T . More generally,

for P1, . . . , Pn ∈ C(T ) we get an effective Cartier divisor P1 + · · ·+ Pn of degree n. In this way

we obtain a morphism of functors Cn → Diveff,n
C/k . But it is obvious that this morphism is

Sn-invariant; hence it factors through a morphism

h: C(n) → Diveff,n
C/k .

(14.9) Proposition. The morphism h is an isomorphism, so C(n) ∼−→ Diveff,n
C/k .C(n)=Div

Proof (sketch). We need a construction to go back from an effective Cartier divisor D ⊂ CT of

degree n over T to a T -valued point of C(n). If f : CT → T is the structural morphism then

f∗OD is an OT -algebra that is locally free of rank n as an OT -module. If z ∈ OD
(
f−1(U)

)
for

some open U ⊂ T then multiplication by z is an OT (U)-linear endomorphism of OD
(
f−1(U)

)

which has a determinant detD/T (z) ∈ OT (U). This gives a map of sheaves detD/T : f∗OD → OT
which is multiplicative and has the property that detD/T (c ·z) = cn ·detD/T (z) for local sections

c of OT and z of f∗OD. Writing Sn(f∗OD) ⊂ ⊗nOT
(f∗OD) for the sub-OT -algebra of symmetric

tensors, one shows that there is a unique homomorphism of OT -algebras d: Sn(f∗OD) → OT
with the property that d(z⊗· · ·⊗ z) = detD/T (z) for all local sections z. (To prove this we may

work locally on T and assume that f∗OD is free as an OT -module.) In terms of schemes this

means we have a morphism

d: T → D(n) := Dn/Sn = Spec
(
Sn(f∗OD)

)

which is a section of the structural morphism D(n) → T . Composing this with the canonical

morphism D(n) → C(n) induced by the inclusion D →֒ C we obtain a T -valued point of C(n).

Now one verifies that this gives an inverse of the morphism h. �

(14.10) We shall henceforth identify C(n) with Diveff,n
C/k via the above isomorphism h.alphanDef

Earlier we have studied the morphism j: C → Jac1(C), given on points by P 7→ OC(P ).

We can generalize this to a morphism j(n): C(n) → Jacn(C), as follows. If P1, . . . , Pn ∈ C(T )

for some k-scheme T then j(P1) + · · · + j(Pn) is a T -valued point of Jacn(C), and this defines

a morphism Cn → Jacn. As this morphism is clearly invariant under Sn, we get an induced

morphism j(n): C(n) → Jacn(C); this is the morphism in which we are interested. In terms
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of Cartier divisors, j(n) sends an effective Cartier divisor D ⊂ CT of degree n over T to the

class in Jacn(C)
(
T
)

represented by OCT
(D). Better still, if we describe a Cartier divisor as

the isomorphism class of a pair (L, s), then j(n) is simply the forgetful map
[
(L, s)

]
7→ [L].

In particular, this last description makes it clear that the k-valued points of the fibre of j(n)

over [L] form the projective space P
(
H0(C,L)

)
. This is Abel’s theorem that the fibres of j(n)

are precisely the linear systems of degree n. In particular, all (non-empty) fibres are projective

spaces. We shall now give the precise details and prove this scheme-theoretically.

(14.11) Abel’s Theorem. Let L be a line bundle of degree n on C. Then the (scheme-j(n)fibres

theoretic) fibre of the morphism j(n): C(n) → Jacn(C) over the point [L] is P
(
H0(C,L)

)
, the

complete linear system of effective divisors D with OC(D) ∼= L.

Proof. Write Φ ⊂ C(n) for the scheme-theoretic fibre of j(n) over [L], and let P := P
(
H0(C,L)

)
.

Let f : T → Spec(k) be a k-scheme and consider the cartesian diagram

CT
g−→ C

pT

y
yp

T
f−→ Spec(k) .

By definition, P = Proj
(
Sym

•
(
(p∗L)∨

))
. A T -valued point of P is given by a line bundleM on T

together with a surjective homomorphism t: f∗
(
(p∗L)∨

)
→M , where two such pairs (M, t) and

(M ′, t′) are considered equivalent if there exists an isomorphism α: M
∼−→ M ′ with α◦t = t′;

see EGA II, Prop. 4.2.3. By the projection formula, t = pT,∗(s) for a unique global section

s ∈ H0(CT , g
∗L ⊗ p∗TM), and the pair (g∗L ⊗ p∗TM,s) defines a T -valued point of Φ. As this

construction is functorial in T , it defines a morphism of schemes ι: P → Φ over k. Conversely,

if (L′, s) is a T -valued point of Φ then L′ ∼= g∗L⊗ p∗TM for some line bundle M on T , and the

pair
(
M,pT,∗(s)

)
defines a T -valued point of P. This gives an inverse of ι, which therefore is an

isomorphism. �

(14.12) Corollary. Let C/k be a smooth proper curve of genus g > 1. For 0 6 n 6 gj(n)birat

the morpism j(n) is a birational morphism from C(n) to its image in Jacn(C). For n > g the

morphism j(n) is surjective.

Proof. We may assume that k is algebraically closed. If n > g and [L] ∈ Jacn(C)
(
k
)

then it is

immediate from Riemann-Roch that L is effective, so [L] is in the image of j(n).

Now suppose 1 6 n 6 g. As the dimensions of the fibres of j(n) vary in an upper-

semicontinuous manner, it suffices to show that there exists an effective divisor D of degree n

such that h0(D) = 1. Indeed, if we know this then it follows that there is a non-empty open

U ⊂ C(n) such that j
(n)
|U is an immersion, which is what we assert. We proceed by induction

on n 6 g. For n = 1 the assertion is clear, as the assumption that g > 1 implies that h0(P ) = 1

for any point P ∈ C(k). Suppose then that 2 6 n 6 g and that we have an effective divisor

E of degree n − 1 with h0(E) = 1. Let K be a canonical divisor of C. Riemann-Roch gives

h0(K − E) = g + 1− n > 1, so K −E is effective. Now choose any point Q ∈ C which is not a

base point of the linear system |K − E|. Then h0(K − E −Q) = h0(K − E) − 1, and again by

Riemann-Roch E +Q has h0(E +Q) = 1. �

(14.13) Definition. Let C be a complete, non-singular curve of genus g > 1. For anThetaDef

– 226 –



theta

Jacobi’s

Jacobi’s

integer n with 0 6 n 6 g we define Wn ⊂ Jacn(C) to be the image of the morphism j(n): C(n) →
Jacn(C). For n = g − 1 we usually write

Θ ⊂ Jacg−1(C)

for Wg−1; it is called the theta divisor.

Note that Wn is a reduced and irreducible closed subscheme of Jacn(C), as it is the image

of the reduced and irreducible scheme C(n) under the proper morphism j(n). By construction,

Wn parametrizes the effective line bundles of degree n on C. Also note that, by the Corollary, Θ

is indeed a divisor in Jacg−1(C). We further remark that W0 is the origin of J , that W1 = j(C),

and that Wg = Jacg(C).

In the rest of this chapter, whenever we discuss the theta divisor, we assume that our curve

has genus g > 1. Most of the theory works fine in the case g = 0, too, if we define Θ to be

the empty divisor in Jacg−1(C) ∼= Spec(k). But as we have seen in Example (14.3), there is not

much interest in developing the theory of Jacobians for g = 0.

In view of its importance we highlight the case n = g of Corollary (14.12). The dimensions

of C(g) and Jacg(C) are equal and j(g) is surjective.

(14.14) Jacobi’s Inversion Theorem. The morphism j(g): C(g) → Jacg(C) is a bira-Jacobiinversion

tional equivalence.

So roughly speaking, Jacg(C) is “C(g) with the linear systems contracted”. (Recall that

the only morphisms from a projective space to an abelian variety are the constant maps, cf.

Prop. (1.7).) We shall discuss some examples of low genus in ?? below.

Corollary (14.12) also implies that the cycle classes of the subschemes Wn ⊂ Jacn(C) are,

up to a factor, just the Pontryagin powers of the class of the curve. Here we define Pontryagin

products

∗: CH
(
Jacd(C)

)
×CH

(
Jace(C)

)
→ CH

(
Jacd+e(C)

)

by the usual rule α ∗ β = m∗(α× β), where m: Jacd(C)× Jace(C)→ Jacd+e(C) is the addition

map. The precise result is then as follows.

(14.15) Corollary. Assume C has genus g > 0. Let wn ∈ CHg−n
(
Jacn(C)

)
be the cycle classCycClassesWn

of Wn ⊂ Jacn(C). Write γ = w1, which is the class of the 1-cycle j(C) ⊂ Jac1(C). Then for

0 6 n 6 g we have γ∗n = n!wn. As particular instances of this we have

γ∗(g−1) = (g − 1)! θ , and γ∗g = g!
[
Jacg(C)

]
,

where θ = wg−1 ∈ CH1(Jacg−1(C)) is the class of the theta divisor Θ and where
[
Jacg(C)

]
=

wg ∈ CH0(Jacg(C)) is the fundamental class of Jacg(C).

Proof. We identify C with its image j(C) in Jac1(C). Consider the addition map
(
Jac1(C)

)n →
Jacn(C). The restriction of this map to Cn is generically finite of degree n! to its image Wn.

Taking cycle classes and using the definition of the Pontryagin product gives the relation γ∗n =

n!wn. �

In the study of the morphisms j(n): C(n) → Jacn(C) we see a clear transition from the case

n 6 g, when j(n) is generically finite to its image, to the case n > 2g − 2, when all fibres have
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Poincar´dimension n + 1 − g, and C(n) is in fact a projective bundle over Jacn(C). This is a geometric

incarnation of the Riemann-Roch Theorem for curves. For the theory of Jacobians the cases

n = g − 1 and n = g are most important. We shall further discuss the case n > 2g − 2 in ??.

§3. Universal line bundles and the Theta divisor.

(14.16) Suppose the curve C has a k-valued point ε ∈ C(k). Then on C × PicC/k we havePBonCxJac

a universal line bundle P = PC with rigidification along {ε} × PicC/k, which we call the

Poincaré bundle. Its universal property is that given any k-scheme T and a line bundle M

on CT := C ×k T together with a trivialisation along {ε} × T , there is a unique morphism of

k-schemes h: T → PicC/k such that M ∼= h∗P as rigidified line bundles.

This Poincaré bundle depends on the chosen point ε in the following way. Let ε1 and ε2 be

k-rational points of C, and let P1 and P2 be the associated Poincaré bundles. Consider the

morphism

(ε2, id): PicC/k = Spec(k)×k PicC/k → C ×k PicC/k ,

which is a section of the second projection pr2: C × PicC/k → PicC/k. Then we have P2
∼=

P1 ⊗ pr∗2(ε2, id)∗P−1
1 .

(14.17) Without the assumption that C has a k-rational point, it is not clear how to defineUnivDivOnCC(n)

or construct a universal line bundle on C × PicC/k, or on the various connected components

C × Jacn(C). In fact, it is known that in general there does not exist a universal line bundle

over C × Jacn(C); see Mestrano and Ramanan [1]. (However, as we shall see in Thm. (14.20),

for some values of n there does always exist a universal line bundle on C × Jacn(C).)

By contrast, over C×C(n) with n > 1 we can easily write down a universal relative divisor.

Namely, consider the morphism sn: C × C(n−1) → C × C(n) given on points by (x,D) 7→
(x,D+ x). Here we interprete points of C(n−1) and C(n) as divisors on C. The morphism sn is

a closed immersion that realizes C × C(n−1) as an irreducible divisor in C × C(n). Let us write

Dn ⊂ C × C(n) for this divisor. We view Dn as a relative effective Cartier divisor over C(n); as

such it has degree n. As we shall show next, Dn is a universal divisor in C × C(n), by which

we mean that for any effective divisor E on C of degree n, the restriction of Dn to C × {E} is

precisely E.

It is useful for us to reformulate the assertion that Dn is a universal divisor. Namely, if

T is a k-scheme and if D is a relative effective Cartier divisor of degree n on CT over T then

by Prop. (14.9) we have a corresponding classifying morphism ψ(D): T → C(n) = Diveff,n
C/k .

Applying this with T = C(n) and D = Dn we obtain a morphism ψ(Dn): C(n) → C(n). The

assertion that Dn is a universal relative divisor then just means that ψ(Dn) = idC(n) .

(14.18) Proposition. Let n > 1 and consider the relative effective Cartier divisor Dn ⊂DnIsUnivDiv

C×C(n) as just defined. Then Dn is a universal divisor in C×C(n) over C(n), in the sense that

the classifying morphism ψ(Dn): C(n) → C(n) is the identity.

Proof. As C(n) is irreducible, it suffices to show that ψ(Dn) is the identity on the open part

U ⊂ C(n) consisting of divisors of the form E = P1 + · · ·+Pn with P1, . . . , Pn mutually distinct.

But for such E it is immediate from the definition of the map sn that (Dn)|C×{E} = E. �
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Even if this construction does not directly give us a universal line bundle on C × Jacn(C),

it will be useful in our study of the Jacobian.

(14.19) Remark. We have natural morphisms νn: Jacn(C) → Jac2g−2−n(C) given by [L] 7→InvolutJacg-1Rem [
ωC ⊗ L−1

]
. Note that ν2g−2−n ◦νn is the identity on Jacn(C). In particular, on Jacg−1(C) we

obtain an involution ν = νg−1. By Riemann-Roch, if L is a line bundle on C of degree g − 1

then h0(L) = h0
(
ωC ⊗ L−1

)
; hence Θ ⊂ Jacg−1(C) is mapped into itself under ν.

(14.20) Proposition. Consider the morphism f : C × Jacg(C) → Jacg−1(C) given on pointsUnivBunCJacg

by (x,M) 7→M(−x). Then f∗OJacg−1(C)(Θ) is a universal line bundle on C × Jacg(C).

Proof. Let V ⊂ Jacg(C) be the open subset of points [M ] with h0(M) = 1. The line bundle

f∗OJacg−1(C)(Θ) on C×Jacg(C) gives rise to a morphism ψ: Jacg(C)→ PicC/k, and the assertion

that f∗OJacg−1(C)(Θ) is a universal line bundle just means that ψ is the identity map on Jacg(C).

It suffices to show that ψ is the identity when restricted to V . (Cf. the proof of Prop. (14.18).)

Let U ⊂ C(g) be the preimage of V under j(g): C(g) → Jacg(C). By Abel’s Theorem j(g)

restricts to an isomorphism U
∼−→ V . It then follows from Prop. (14.18) that the restriction

of OC×C(g)(Dg) to C × U ∼= C × V defines a universal line bundle on C × V over V . Recall

that Dg was obtained as the image of the map sg: C ×C(g−1) →֒ C × C(g). Further, we have a

commutative diagram
C × C(g−1) sg−−→ C ×C(g)

idC×j
(g−1)

y
yidC×j

(g)

C × Jacg−1(C)
∼−→
t

C × Jacg(C)

where t: C × Jacg−1(C)
∼−→ C × Jacg(C) is the isomorphism given by (x,N) 7→

(
x,N(x)

)
.

Note that h0
(
N(x)

)
= 1 implies that h0(N) 6 1; so, again by Abel’s Theorem, the morphism

idC×j(g−1) is an embedding on the preimage of C×V ⊂ C×Jacg(C). The divisor in t−1(C×V )

that we obtain in this way is just the restriction of C × Θ = pr∗2(Θ). So the conclusion is that

(t−1)∗pr∗2OJacg−1(C)(Θ) is a universal line bundle when restricted to C × V . This gives what

we want because pr2 ◦t−1: C × Jacg(C) → Jacg−1(C) is precisely the morphism f given by

(x,M) 7→M(−x). �

(14.21) Corollary. Let j: C → Jac1(C) be the natural map. Let L be a line bundle of degreeThetaPullbackCor

g− 2 on C, and let tL: Jac1(C)→ Jacg−1(C) be the translation over [L]. Then the pull-back of

OJacg−1(C)(Θ) via tL ◦j: C → Jacg−1(C) is isomorphic to ωC ⊗ L−1.

Proof. With ν as in Remark (14.19), consider the morphism ν ◦tL ◦j: C → Jacg−1(C); it is given

by x 7→ ωC⊗L(x)−1 =
(
ωC⊗L−1

)
(−x). By the proposition, the pull-back of OJacg−1(C)(Θ) un-

der this morphism is isomorphic to ωC⊗L−1. On the other hand, ν is an involution of Jacg−1(C)

that preserves Θ, so ν∗OJacg−1(C)(Θ) = OJacg−1(C)(Θ) and we obtain the corollary. �

In terms of divisors, the corollary says the following. Let K be a canonical divisor on C,

and let D be a divisor of degree g − 2. Consider the translated theta divisor ΘD ⊂ Jac1(C).

It is given by the reduced irreducible subscheme whose points are the [M ] ∈ Jac1(C) such that

M(D) is effective. Then the pull-back of ΘD under the canonical morphism j: C → Jac1(C) is

linearly equivalent to K −D.

(14.22) As another application of Prop. (14.20) we shall next prove that the theta divisor givesPPolJacDiscuss

rise to a principal polarization ϕΘ: J
∼−→ J t of the Jacobian. Note that by the construction
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explained in Chapter 11, § 4, the line bundle OJacg−1(Θ) indeed gives rise to a homomorphism

ϕΘ: J → J t. Concretely, we apply Definition (11.43) with the line bundle OJacg−1(Θ) on the

J-torsor Jacg−1(C).

Classically one usually defines the principal polarization of J by first translating the theta

divisor to the Jacobian J , avoiding the theory of Chapter 11, § 4. This is done as follows. Let

us first assume that there exists a line bundle M of degree g − 1 on C; in particular this is the

case if C has a k-rational point. We have the translation tM : J = Jac0(C)
∼−→ Jacg−1(C), and

we can consider the divisor ΘM := t∗M (Θ) on J . This divisor depends on the choice of M , but

up to translations in J it is independent of this choice. In particular, the class of OJ (ΘM ) in

NSJ/k(k), which is the class of ΘM modulo algebraic equivalence, does not depend on M . (Here

we use that Jacg−1(C) is connected.) It follows from Lemma (7.15), see also (7.26), that the

associated homomorphism ϕΘM
: J → J t is independent of the choice of M , so we may call this

homomorphism ϕΘ.

In general, C does not have a line bundle of degree g− 1 over the given field k. In this case

we may choose a finite Galois extension k ⊂ K such that on CK we do have a line bundle M of

degree g − 1. The previous construction gives us a homomorphism ϕΘ,K : JK → J tK . We need

to show that this homomorphism is defined over k. To prove this it suffices to show that ϕΘ,K

is invariant under the natural action of the Galois group Gal(K/k) on Hom(JK , J
t
K). The point

here is that, because Θ is defined over k, we have σ(ΘM ) = ΘσM as divisors on JK , and as just

explained, ΘσM and ΘM give the same homomorphism JK → J tK .

This classical construction of course gives the same homomorphism ϕΘ: J → J t as the

homomorphism that is obtained using Def. (11.43). To see this, remark that, with k ⊂ K as

before, we have Hom(J, J t) →֒ Hom(JK , J
t
K), so it suffices to verify that the two constructions

agree in case C has a line bundle of degree g − 1. In this case the verification is only a matter

of unraveling the definitions; see also ??. Though the two constructions differ in presentation,

they are in essence the same.

(14.23) Theorem. The homomorphism ϕΘ: J → J t associated to the theta divisor is a prin-PPolJacThm

cipal polarization.

Proof. We may assume that k = k and that g > 1. Choose a point x0 ∈ C(k), consider the

translated theta divisor Θ0 := t∗(g−1)x0
(Θ) in J , and let L := OJ (Θ0) be the corresponding

line bundle. Because L is effective, to prove that the associated symmetric homomorphism

ϕL = ϕΘ: J → J t is a principal polarization it suffices to show that it is an isomorphism.

(Indeed, if this holds then L is non-degenerate, and by Prop. (2.22) it follows that L is ample.)

Let Λ(L) = m∗(L) ⊗ pr∗1(L)−1 ⊗ pr∗2(L)−1 be the Mumford bundle on J × J associated

to L. Recall from Def. (2.16) that K(L) is the largest subscheme K ⊂ J with the property

that ΛJ×K(L) is trivial. By Thm. (6.18) we have K(L) = Ker(ϕΘ), so it suffices to prove that

K(L) = {0}.
Let i: C →֒ J be the closed embedding given by x 7→

[
OC(x0−x)

]
. We have a commutative

diagram
C × J m◦ (i×id)−−−−−−→ J

idC×tgx0

y≀ ≀

yt(g−1)x0

C × Jacg(C)
f−−−−−−→ Jacg−1(C)

where m: J × J → J is the group law and f is the map (x,M) 7→ M(−x) of Prop. (14.20).

By Prop. (14.20) it follows that the restriction of Λ(L) to C × J (via the closed embedding
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theta

theta

theta

even

odd

i× id: C × J →֒ J × J) is the Poincaré bundle PC on C × J with rigidification along {x0} × J
and C×{0}. But the largest subscheme K ′ ⊂ J such that P|C×K′ is trivial, is K ′ = {0}. Hence

also K(L) = {0}, as we wanted to prove. �

(14.24) Corollary. We have deg(Θg) = g! and h0(Jacg−1(C),Θ) = 1.PPolJacCor

Proof. This follows from the theorem by the Riemann-Roch Theorem (9.11). �

Our next topic is the connection between theta characteristics and symmetric theta divisors

in J .

(14.25) Definition. Let C be a curve of genus g over a field k. A theta characteristic on C isThetaChar

a line bundle L such that L⊗2 ∼= ωC . A theta characteristic L is said to be even (resp. odd) if

h0(L) is even (resp. odd).

(14.26) Proposition. Let k be an algebraically closed field with char(k) 6= 2. If C is a curveThetaCharFacts

of genus g over k then C has 22g theta characteristics, 2g−1(2g + 1) of them even, 2g−1(2g − 1)

of them odd.
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An alternative, maybe more satisfactory, definition of the theta divisor is as follows.

We assume that C has a point P ∈ C(k). Let L be a Poincaré line bundle on C×Jacg−1(C),

that is, a line bundle L on C × Jacg−1(C) which is of degree g − 1 on all fibres C × {[D]}, and

such that L|C×{[D]}
∼= O(D) for all [D] ∈ Jacg−1(C).

We choose an effective divisor E of degree g on C and consider the line bundle L(E) =

L ⊗ p∗1O(E) on C × Jacg−1(C). Since E is effective we thus have an exact sequence 0 →
L −→ L(E) −→ L(E)/L → 0. Let π = p2 be the projection of C × Jacg−1(C) on the second

factor. Since we have H1(C,O(D)) = (0) for any divisor D of degree 2g − 1 on C it follows

that R1π∗(L(E)) = (0) and we find the following long exact sequence of sheaves on Jacg−1 in

cohomology

0→ R0π∗L −→ R0π∗L(E)
α−→R0π∗(L(E)/L) −→ R1π∗L→ 0. (6)

To be explicit, over [D] we have the exact sequence of fibres

0→ H0(C,O(D)) −→ H0(C,O(D + E)) −→ O(D + E)|E −→ H1(C,O(D))→ 0.

Since dimH0(C,O(D + E)) = g for every divisor of degree g it follows that R0π∗(L(E)) is a

vector bundle of rank g on Pic(g−1)(C). Also R0π∗(L(E)/L)) is a vector bundle of rank g; it can

be identified with L(E)|E , the direct sum of the fibres of L(E) over the g points of the support

of E. So α : R0π∗(L(E)) −→ L(E)|E is a morphism of vectorbundles on Picg−1(C) of the same

rank g.

(14.27) Definition. The theta divisor Θ ⊂ Pic(g−1)(C) is the locus where the determinant ofThetadef

the bundle map α vanishes. It equals the image of αg−1: C
(g−1) → Jacg−1(C).

Note that by the local triviality of the two vectorbundles Θ is locally described by the

vanishing of a matrix and carries in a natural way a scheme structure. Furthermore, the theta

divisor does not depend on the choice of E and L. For example, if we replace E by E′ then

det(α) is changed by multiplying with an invertible function. Note that

det(α) vanishes at [D] ⇐⇒ H0(C,O(D)) 6= (0) ⇐⇒ H1(C,O(D)) 6= (0). (7)

Therefore the support of Θ coincides with the support of the image that we find the same divisor

Θ as above. Since Θ in either definition is reduced we find the same divisor. In particular, it

does not depend on the existence of a point P on C.

(14.28) Remarks. (i) Let K be a canonical divisor on C. If D is a divisor on C of degreeDetCohomRem

g − 1 then h0(D) = h0(K −D). So the map [D] 7→ [K −D] defines an involution of Jacg−1(C)

that sends Θ to itself.

(ii) The sequence (6) shows that the bundle O(−Θ) represents the “determinant bundle”

of the cohomology of L. Its fibre over a point [D] equals

detH0
(
C,O(D)

)
⊗k detH1

(
C,O(D)

)−1

cf. Knudson ??

(iii) We have found a canonically defined divisor Θ ⊂ Jacg−1(C). If y is a k-rational point

of Jacg−1(C) then Θy := t−y(Θ), the translate of Θ over −y, is a divisor on Jac(C). But of

course Θy is independent of the choice of y only up to translation. So if we speak of the theta

divisor on Jac(C) we mean a divisor (or a divisor class) that is defined up to translation.
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Note that we can choose y, at least over k, in such a way that Θy is symmetric, meaning

that (−1)∗Θy = Θy. Since, as just remarked, Θ is stable under the involution [D] 7→ [K −D]

the classes y ∈ Jacg−1(C) for which Θy is symmetric are precisely the theta-characteristics, i.e.,

the divisor classes y for which 2y is the canonical class.

We shall now prove that the theta divisor defines a principal polarization, that is, the map

ϕΘ: Jac(C) −→ Jac(C)t is an isomorphism. The reason for this is the fact that the pull-back of

the divisor Θ− t∗[D](Θ) to C via α1 is non-trivial for non-zero [D] of degree g − 2.

(14.29) Theorem. Let j: C → Jac1(C) be the natural map. Let D be a divisor of degreeJacisppav

g − 2 on C. Then the pull-back of O(Θ) via t[D] ◦j: C → Jac1(C) → Jacg−1(C) is isomorphic

to OC(K − D). Equivalently, in terms of divisor classes, j∗(Θ − [D]) is linearly equivalent to

K −D on C.

Proof. This calculation was done by Riemann in 1857. It is no restriction of generality to extend

the base field so that C has a rational point or even to assume that k is algebraically closed.

We shall first prove the result for general D in the following sense. Consider the open subset U ′

of Jacg(C) of divisors D′ of degree g with h0(D′) = 1 and such that D′ is a sum of g distinct

points. Since αg is birational U ′ is non-empty. We let U ⊂ Jacg−2 be the corresponding set

{D = K −D′: D′ ∈ U ′}.
Now for a point P of C the image point α1(P ) lies on the divisor t∗D(Θ) if and only if there

exists an effective divisor of degree g− 1 on C such that P +E is linearly equivalent to K −D.

We now assume that D lies in U . Then P +E is an effective divisor in |K −D|, hence coincides

by the assumptions on D′ with D′. So α1(P ) lies on t∗D(Θ) if and only if P is one of the g points

of support of D′. Since the map C×Θ→ Jacg(C) given by (P,E) 7→ P +E is generically finite

of degree g we see that the pull back under α1 of the 0-cycle α1(C) · t∗DΘ equals the divisor D′.

This proves the result for D in U .

To extend our conclusion to all D of degree g − 2 we consider the pull back of O(Θ)

under the addition map m: Jac1(C)× Jacg−2(C)→ Jacg−1(C) and the line bundle M = (α1 ×
idJacg−2(C))

∗m∗O(Θ) on C × Jacg−2(C). The restriction of M to a fibre C × [D] is isomorphic

to O(K −D) for [D] ∈ U . The restriction to P × Jacg−2(C) is t∗PO(Θ) with tP : Jacg−2(C) →
Jacg−1(C) translation over α1(P ). So M agrees by the SeeSaw Principle with the Poincaré

bundle (the variant for C×Jacg−2(C)). But this shows that α∗1t
∗
DO(Θ) is isomorphic to OC(K−

D) for all D of degree g − 2. �

(14.30) Conclusion. The divisor Θ ⊂ Jacg−1(C) defines a principal polarization on Jac(C).Thetapp

In particular, deg(Θg) = g! and h0(Jac(C), O(Θ)) = 1.

Proof. We must show that the map ϕΘ : Jac(C) → Jac(C)t given by x 7→ [t∗xΘ − Θ] is

an isomorphism. To see this we may extend the base field. Let then D be a fixed divisor of

degree g − 1 on C. Now Θ defines a principal polarization if and only if (−1)∗Θ defines a

principal polarization. Therefore, we may as well look at ϕ(−1)∗Θ. But by 14.29 we find that

α∗1(O(t∗xt
∗
[D]DΘ− t∗[D]Θ)) ∼= OC(D −D′) with x+ [D] = [D′]. This shows that the pull back of

of the Mumford bundle Λ(O(−Θ)) is the Poincaré bundle LP and since the maximal subscheme

over which LP is trivial is (0) it follows that the kernel K((−1)∗Θ) of ϕ(−1)∗Θ is trivial. The

conclusions Θg = g! and h0(X,O(Θ)) = 1 follow from (?.?).

We can deduce conclusions on some cycle classes from the geometric results. Recall that

the morphism Cn → Jacn(C) is generically finite of degree n! to its image.
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(14.31) Proposition. Let γ ∈ CHg−1(Jac1(C)) be the class of the 1-cycle α1(C) and θ ∈Jacclasses

CH1(Jacg−1(C)) be the class of the theta divisor Θ. Then we have the relations

γ∗(g−1) = (g − 1)!θ, γ∗g = g! 1Jacg(C), and deg(θg) = g!,

with ∗ the Pontryagin product.

Proof. The addition map of Jac1(C)g−1 → Jacg−1(C) restricted to α1(C) is a map α1(C)n → Θ

generically finite of degree (g − 1)!. This shows that γ∗(g−1) = (g − 1)!θ. Similarly, γ∗g = g!θ

follows from the fact that Cg → Jacg(C) has degree g!. From 14.30 it foolows that deg(θg) =

g!. �

§4. Riemann’s Theorem on the Theta Divisor.

A geometric translation of ‘omegaatD’ interprets the tangent space to Θ at a smooth point in the

following way. Let [D =
∑
Pi] be a smooth point of Θ. Then the projectivized tangent space

of Θ translated to the origin is the hyperplane that cuts out on the canonical image ψ(C) the

divisor
∑
ψ(Pi). But one can also interpret singular points of Θ as Riemann showed in 1857.

(14.32) Theorem. Let D be a divisor of degree g− 1 on C. Then the multiplicity of the thetaRiemannThm

divisor Θ ⊂ Jacg−1(C) at [D] is given by

mult[D]Θ = h0(D).

Proof. To verify the statement we may extend the base field to an algebraic extension. We know

that Θ is a Cartier divisor in Jacg−1(C), so Θ is locally given by one equation ϑ = 0. We know

also that Θ parametrizes effective divisor classes [D] of degree g − 1 on C and we thus may

assume that D is an effective divisor with h0(D) = r + 1 and r > 0.

Let m be the maximal ideal of the local ring OJ,[D] of J at [D]. We must show

ϑ ∈ mr+1, ϑ 6∈ mr+2.

We first show that ϑ ∈ mr+1. For this we choose local parameters x1, . . . , xg at [D] on J and

we expand ϑ as

ϑ = ϑ1 + ϑ2 + . . . ∈ k[[x1, . . . , xg]],

where ϑj is a homogeneous polynomial of degree j in the x1, . . . , xg. Note that we may and

shall identify the coordinates x1, . . . , xg with a basis ω1, . . . , ωg of H0(C,Ω1
C) = H1(C,OC )∨ ∼=

T∨Jac(C),0. We shall show that ϑ1, . . . , ϑr vanish by interpreting them geometrically in the canon-

ical space Pg−1. An term ϑℓ is an element of Symℓ(H0(C,Ω1
C) and using the isomorphism

H0(C(g−1),Ω1
C(g−1)) ∼= H0(C,Ω1

C) we can consider the pull back under αg−1 as an element of

Symℓ(H0(C(g−1),Ω1
C(g−1))). If E =

∑
Pi is a divisor of degree g − 1 in |D| with support on

g − 1 distinct points Pi with local coordinates ti at Pi then the pull back α∗g−1θℓ is given by an

expression
∑
ai1,...,iℓdti1 · · · dtiℓ .

Recall that ψ : C −→ Pg−1 is the canonical map given by the sections of Ω1
C . If D =

∑
Pi

is an effective divisor of degree g−1 and ω an element of H0(C,Ω1
C) then we have by ‘omegaatD’
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that α∗g−1ω vanishes at D ∈ C(g−1) if and only if ω ∈ H0(C,K − D), or in other words, the

hyperplane of Pg−1 defined by ω cuts out on C the divisor
∑g−1
i=1 ψ(Pi).

Consider now ϑ1 =
∑
aiωi with ai = ∂ϑ/∂xi([D]). If it is non-zero it defines the tangent

space to Θ at [D]. Suppose that r > 1. Then |D| is at least 1-dimensional. This means that

for any point Q of C there is a divisor E ∈ |D| which contains Q. The form ϑ1 =
∑
aiωi is

contained in H0(C,K−E), i.e., vanishes in Q. So the hyperplane in Pg−1 defined by ϑ1 contains

the whole canonical curve. Since this curve spans Pg−1 the form
∑
aiωi must vanish identically,

i.e. ϑ1 = 0 and ϑ ∈ m2.

Now we consider the next term ϑ2 =
∑
aijωiωj ∈ Sym2(H0(C,Ω1

C). It is not difficult to

generalize ‘omegaatD’ partially and see that the vanishing of α∗g−1(
∑
aijωiωj) at E ∈ |D| ⊂

C(g−1) implies that the bilinear form
∑
aijωiωj vanishes at all pairs (ψ(Pa), ψ(Pb)) with Pa, Pb

in the support of E. Suppose now that r > 2. Since |D| is at least 2-dimensional we can find

for each pair Pa, Pb of points on C an effective divisor E in |D| containing Pa and Pb. We see

that the bilinear form
∑
aijωiωj vanishes in all pairs (ψ(Qa), ψ(Qb). Since the canonical curve

ψ(C) spans Pg−1 this implies that the bilinear form
∑
aijωiωj vanishes identically. This implies

ϑ2 = 0, i.e. ϑ ∈ m3. We leave it to the reader to generalize this argument and show by induction

that ϑ ∈ mr+1.

We now show that ϑ 6∈ mr+2. We do this by showing that the pull back of the theta divisor

under a suitable map α : C(r+1) −→ J locally at a point E ∈ C(r+1) lying over [D] consists of

r + 1 (smooth) divisors of the form C(r).

So let D be a divisor of degree g − 1 with h0(D) = r + 1. We choose an effective divisor

E =
∑r+1
i=1 Qi of degree r + 1 on C such that

h0(D − E) = 0, h0(D + E) = h0(D). (∗)
It is easy to see that such a divisor exists. (Indeed, take successively Qℓ+1 outside the base

points of |D −∑ℓ
j=1Qj | and |K −D −∑ℓ

j=1Qj | for ℓ = 0, . . . r.)

The map we consider is

α : C(r+1) −→ Jacg−1(C), F 7→ [D + E − F ].

Then the pull back of the divisor Θ under α is of the form α∗(Θ) = a1Z1 + · · ·+ ar+1Zr+1 +R,

where

Zi = {F ∈ C(r+1) : F −Qi > 0} is a divisor isomorphic to C(r)

and where R = {F : h0(D − F ) > 0} is a divisor that does not contain E because of (*). So

if we prove that the multiplicities ai of the smooth divisors Zi are 1 it follows that the divisor∑r+1
i=1 Zi +R has multiplicity r+ 1 at D ∈ C(r+1). But then Θ cannot have multiplicity greater

than r + 1 at [D] because multiplicities can only increase under pullback and we are done.

For this we consider the tangent map Tα of α at a general point Qi+A with A ∈ C(r) of Zi
and show that Tα(TZ1,Q1+A) is not contained in the tangent space TΘ,α(Qi+A) for i = 1, . . . , r+1,

or equivalently, that there exists an η ∈ H0(C,Ω1
C) that vanishes on TΘ,α(Qi+A) but with

α∗(η) 6= 0 on TZi,Qi+A.

But recall that η vanishes at the tangent space to Θ at α(Qi+A) if the divisor of η contains

the effective divisors in |α(Qi + A)|. Furthermore, α∗η vanishes on the tangent space to Zi at

Qi +A if the divisor of η contains the divisor A.

But we are free to choose A and E as long as the conditions (*) are satisfied. So first we

choose A in C(r)(k) such that h0(D − A) = 1. Let D′ be the unique divisor in |D − A|. Then

we have

α(Qi +A) = [D + E −Qi −A] = [D′ + (E −Qi)].
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and we let ηi be a form that vanishes in the effective divisor D′ + (E − Qi). If we now choose

our Qi such that the conditions (*) hold and the Qi are not contained in the divisors of the ηi
for i = 1, . . . r + 1 then we are done. But the requirements are satisfied on a dense open set.

This proves the theorem. �

We refer to the Chapter on Singularities of the Theta divisor for more details on theta and

its singularities.

§5. Examples.

Like a multifaceted diamond, the Jacobian of a curve reflects the geometry of the curve in a

splendid way. A few examples for the low genera should make this clear.

We have already seen in Example (14.3) that PicC/k
∼−→ Z if g(C) = 0, so let us start with

curves of genus 1.

(14.33) Example: g = 1. For a curve C of genus 1 the Jacobian J = Jac0(C) is an ellipticgenus1Exa

curve. By Thm. (14.4) the natural morphism of curves

j: C → Jac1(C)

is an isomorphism. In particular, C is a J-torsor. Note, however, that C may have no k-rational

points. For a concrete example of a curve of genus 1 without rational points, consider the plane

cubic C over Q defined by

3x3 + 4y3 + 5z3 = 0 .

This curve has no Q-rational points. The elliptic curve Jac(C) is the curve defined by

x3 + y3 + 60z3 = 0

with origin (1 : −1 : 0). See Selmer [1].

The theta divisor Θ ⊂ J = Jacg−1(C) is the origin O ∈ J .

(14.34) Example: g = 2. A curve C of genus 2 is hyperelliptic: the canonical linear sys-genus2Exa

tem |KC | defines a morphism π: C −→ P1 of degree 2. This morphism is ramified, but the

ramification points need not be rational over the given field.

By Abel’s theorem the natural map

j(2): C(2) → Jac2(C)

is a birational morphism and its fibres are the linear systems of degree 2. For a line bundle L

of degree 2 Riemann-Roch gives h0(L) = 1 + h0(ωC ⊗ L−1). But ωC ⊗ L−1 has degree 0, so

h0(ωC ⊗ L−1) > 0 only if L ∼= ωC . Hence, for L of degree 2 we have

h0(L) =
{

2 if L ∼= ωC ;

1 else.

It follows that the map C(2) −→ Jac2(C) is the blow-up of Jac2(C) in the canonical point KC .

The exceptional divisor is the canonical linear system |KC | ⊂ C(2), which is just the linear
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system of fibres of the morphism π. If i: C → C is the hyperelliptic involution then over k the

fibres of π are the divisors of the form P + i(P ) with P ∈ C(k), so we see that |KC | ⊂ C(2) is

the image of C under the morphism C → C(2) given by P 7→ P + i(P ). Note that this morphism

factors as

C
π−→ P1 = |KC | →֒ C(2) ,

and in fact π is the quotient morphism of C modulo the action of the group 〈i〉 ∼= Z/2Z. Now

we are back at the description of the Jacobian given in (1.10).

The theta divisor is the image of the morphism j: C → Jac1(C) and is isomorphic to C.

We see that we find the curve back from the Jacobian together with its polarization. This is in

fact true in general; see Torelli’s theorem in (‘??’) below.

(14.35) Example: g = 3. Let C be a curve of genus 3. We first determine the fibres ofgenus3Exa

the birational morphism j(3): C(3) → Jac3(C). If L is a line bundle of degree 3 then h0(L) =

1 + h0(ωC ⊗ L−1) by Riemann-Roch. As ωC ⊗ L−1 has degree 1, it is effective if and only if it

is isomorphic to OC(P ) for some P ∈ C(k). So we find, for L of degree 3, that

h0(L) =

{
2 if L ∼= ωC(−P ) for some P ∈ C(k);

1 else.

As the morphism h: C → Jac3(C) given by P 7→ ωC(−P ) is the composition

C
j−→ Jac1(C)

[−1]Jac(C)−−−−−−−→ Jac−1(C)
t[ωC ]−−−→ Jac3(C)

it follows from Thm. (14.4) that h is a closed immersion. We claim that j(3): C(3) → Jac3(C) is

the blowing-up of Jac3(C) along h(C). [to do: give precise proof]

For the remainder of this example, we treat the hyperelliptic and the non-hyperelliptic case

separately. First assume C is not hyperelliptic. In this case the canonical map C → P2 gives

an embedding of C as a non-singular quartic curve. The fibre of j(3) over the point
[
ωC(−P )

]

corresponds to the pencil of lines in P2 through the point P . More precisely, for each such line ℓ

we get a divisor Dℓ of degree 3 such that ℓ ∩C = P +Dℓ, and |KC − P | is the linear system of

divisors Dℓ obtained in this way.

The theta divisor Θ ⊂ Jac2(C) is the image of the morphism j(2): C(2) → Jac2(C). We

claim that in the non-hyperelliptic case j(2) is a closed immersion. This follows from the fact

that there are no line bundles L on C of degree 2 with h0(L) > 1, as this would give the existence

of a g1
2 on C, contradicting the assumption that C is not hyperelliptic. (As Thm. (14.11) is a

result about the scheme-theoretic fibres of the map j(2), this fact is enough to conclude that j(2)

is an immersion.)

The involution ν of the theta divisor Θ ⊂ Jac2(C) has a nice geometric interpretation in

terms of the canonical embedding C →֒ P2. Namely, if D = P + Q is an effective divisor of

degree 2, let ℓ = ℓPQ be the line in P2 through P and Q. In case Q = P we take ℓ to be the

tangent line of C at the point P . Then ℓ ∩ C is a divisor of degree 4 (counting intersections

with their multiplicity) and we can write ℓ ∩ C = D + D′. The involution ν on Θ is then

given by D 7→ D′. The fixed points of this involution correspond (working over k = k) to the

23−1(23 − 1) = 28 even theta characteristics of C; in the geometric interpretation of ν we see

that these correspond to the 28 bitangents of C ⊂ P2.

and the linear systems |D| giving rise to non-trivial fibres of C(3) −→ Jac3(C) are exactly

the systems |K − P | where P varies through C. That is, they come from the pencils of lines
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passing through a point P on C. So the map ϕ3 contracts a P1 for each point of C, i.e. it

collapses a P1-bundle over C. The image in Jac3(C) is a copy of C given by P 7→ [K −P ]. If C

is hyperelliptic with linear system g1
2 of degree 2 and dimension 1, the positive dimensional fibres

of ϕ3 are the linear systems g1
2 + P with P a point of C. Again P1-bundle over C is collapsed

under ϕ3.

Consider now the theta divisor Θ ⊂ Jacg−1(C). The fibres of C(2) −→ Jac2(C) are the

linear systems of degree 2 that move, i.e. with h0(D) > 1. But a curve of genus g that has a

linear system g1
2 of degree 2 and dim |D| = 1 is necessarily hyperelliptic by Clifford’s theorem.

So Θ is isomorphic to C(2) in case C is not hyperelliptic.

Now if C is hyperelliptic the system g1
2 gives rise to a point [g1

2 ] ∈ Jac2(C) with a fibre

under ϕ−1 that is not just a point. This implies that Θ is obtained from C(2) by contracting

a curve E = P1. Now one checks easily that E2 = −2 on C(2), so the image of E must be a

singular point (an ordinary double point).

g = 4

We distinguish two cases: C is hyperelliptic or not. If C is not hyperelliptic then the image of

C under the canonical map C → P3 has as image the intersection of a quadric and a cubic. If

the quadric Q is smooth and split, i.e. P1 × P1 then the two projections of Q to the factors P1

define two linear systems g1 and g2 of degree 3 and dimension 1. If the quadric is non-split,

then again we have two such linear systems, but they are defined over a quadratic extension of

k. If the quadric is singular (but irreducible) then it is a cone over conic and the projection

gives one linear system g′ of degree 3. What are the linear systems of degree 4 that move? If

D is a divisor of degree 4 with h0(D) > 1 then h0(K −D) > 0, so K −D is represented by an

effective divisor of degree 2 on C. One can now check here that ϕ4 contracts a P1 bundle over

C(2), where C(2) is mapped to Jac4(C) by P1 + P2 7→ [K − P1 − P2].

To describe the theta divisor, consider the map C(3) −→ Jac3(C). The fibres are the linear

systems of degree 3. But a linear system of degree 3 is contained in the canonical linear system,

and one easily sees that we find only the g1
3 mentioned before. So the morphism C(3) −→ Jac3(C)

contracts two copies of P1 to a singular point on Θ if the quadric Q is smooth, but just one in

case Q is singular.

In case C is hyperelliptic the linear systems of degree 4 that move are of the form [K −
P1 − P2], and these have h0(D) = 2 except for the linear system 2g1

2 , with h0(2g1
2) = 3. The

linear systems of degree 3 that move are the linear systems composed with the g1
2 : |g1

2 +P | with

P an arbitrary point of C. As one can check this leads to a whole curve of singularities on Θ.

We refer to Ch. ?? for a more precise description of the singularities of the theta divisor.

Already some salient features emerge from this exploratory tour: in every case we can

recover the curve C from the pair (Jac(C),Θ). That this is generally true is Torelli’s theorem

which we prove in section ‘The Theorem of Torelli’. We also see that as the genus rises the

divisor Θ acquires more singularities. In fact, for a curve of genus g > 3 we have dimSing(Θ) >

g − 4 and = g − 3 for hyperelliptic curves; for this we refer to Ch. ?? and books on algebraic

curves.

§6. A universal property—the Jacobian as Albanese.
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In this section we deal with a universal property of the Jacobian that is of a covariant nature;

this in contrast with the contravariant nature of the Picard functor.

(14.36) Proposition. Let P ∈ C(k) and let ϕP : C → J be the morphism given on points byAlbanese

Q 7→
[
OC(Q−P )

]
. Then every morphism of C to an abelian variety factors uniquely through ϕP .

Proof. Suppose β: C → X is a morphism of C to an abelian variety. Possibly after a translation

onX (which does not affect the validity of our assertion) we can assume that β(P ) = 0. For n > 1

let β(n): C(n) → X be the morphism given on points by [Q1 + · · ·+Qn] 7→ β(Q1)+ · · ·+β(Qn).

By Jacobi’s Inversion Theorem we obtain a rational map b = β(g)
◦

(
j(g)
)−1

: Jacg(C) 99K X,

which by Theorem (1.18) extends to a morphism, again denoted by b. Let tgP : J
∼−→ Jacg(C)

be the morphism “translation by gP”. Then we have a morphism b◦tgP : J → X (in fact, even

a homomorphism, as the assumption that β(P ) = 0 implies that b◦tgP sends 0 to 0), and the

composition (b◦tgP )◦ϕP is easily seen to equal β. �

Though we have a canonical morphism α1: C → Jac1(C) there is no canonical map C → J . AsCminusC

a remedy, there is a canonical map

δ: C × C → J

given on points by (P,Q) 7→ [O(P −Q)]. This morphism contracts the diagonal ∆ ⊂ C2.

If C is not hyperelliptic then δ gives an isomorphism of (C × C) \∆ with its image in J .

In case C is hyperelliptic, the map is of degree 2 on (C × C) \ ∆. For more information on

the surface δ(C × C) ⊂ J we refer to Chapter ?? in which we study the geometry of the theta

divisor.

A variant of this is obtained by considering the surface C × C and the morphism δ.

(14.38) Proposition. Let α: C×C −→ X be a morphism to an abelian variety that contractsAlbanese2

the diagonal. Then α factors through δ.

We leave the proof to the reader.

The functor Pic0
C/k is contravariant, but the universal property of the proposition above

points to a covariant aspect. Let C1 and C2 be (proper, smooth, absolutely irreducible) curves

and χ: C1 → C2 a finite morphism. If P2 ∈ C2(k) is a rational point defining ϕP : C2 −→
Jac(C2) the composition ϕP χ : C1 −→ Jac(C1) factors through Jac(C1) thus giving rise to

Jac(C1) −→ Jac(C2). This is the ‘covariant aspect’ we alluded to before. An abelian variety

with the universal property expressed in the preceding two propositions is called the Albanese

variety.

§7. Any Abelian Variety is a Factor of a Jacobian.

Here we show that any abelian variety over an infinite field is a factor of a Jacobian variety.

We start with a definition.

(14.38) Definition. Let C be an algebraic curve on an abelian variety X. We say that C

generates the abelian variety X if there is no abelian subvariety of X containing C.

Note that the inclusion C →֒ X induces for every positive integer n a morphism C(n) −→ X.

Then C generates X if and only if the induced homomorphism Jac(C) −→ X is surjective.
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(14.39) Theorem. Let X be an abelian variety over an infinite field k of dimension > 1. ThenAVquoJac

X carries a smooth irreducible curve that generates X.

Proof. If dim(X) = 1 the result is clear: C = X. So we shall suppose now that g = dim(X) > 1.

We can embed X into projective space P using an ample line bundle. By Bertini’s theorem

(reference?) there exists an open dense subset U ⊂ P∨ parametrizing the hyperplanes H of P

such that H ∩X is a smooth variety. Since k is infinite U possesses a k-rational point and we

thus obtain a smooth variety X1 = H ∩X to which we can apply Bertini’s theorem again. Thus,

by applying Bertini’s theorem g− 1 times we find a smooth irreducible curve C on X. We must

show that C generates X.

Note that the cycle class [C] of C in cohomology or in the Chow group CHg−1(X) is hg−1

with h the class of the hyperplane. Suppose now that C does not generate X. By Poincaré’s

complete irreducibility theorem there exist positive dimensional abelian subvarieties Y and Z of

X such that C ⊂ Y and Y ×Z → X is an isogeny. Let Γ on Z be an effective divisor which does

not contain the finitely many intersection points of Y and Z in X. Look at the divisor Y × Γ

which maps finite to one to a divisor D on X. Then the intersection number C ·D is zero. On

the other hand, since [C] = hg−1 and because h is the class of an ample divisor the intersection

number C ·D must be non-zero. (Use that for an ample divisor the intersection number with

any curve is positive, so H · (Hg−2 ∩D) > 0.) This contradiction shows that C generates X and

finishes the proof.

(14.40) Corollary. If X is an abelian variety over an infinite field k then X is a quotient of aQuoJac

Jacobian variety.

Proof. After the preceding theorem First remark that the theorem is obviously true for dimen-

sion g = 0. If g > 0 apply the theorem. Then the map C → X induces a morphism Jac(C)→ X

which is surjective. �

Example. An example of a 2-dimensional abelian variety that is not a Jacobian is given by a

product of two elliptic curves with the product polarization. Then the theta divisor consists of

E1 × {0} ∪ {0} × E2 and this divisor is reducible, hence cannot be the image of an irreducible

curve.

§8. The Theorem of Torelli.

A crucial result about Jacobians is Torelli’s Theorem that says that we can retrieve the curve

from the Jacobian together with its principal polarization.

(14.41) Theorem. (Torelli’s Theorem)Let C1 and C2 be two proper smooth irreducible curvesTorelli

over an algebraically closed field k. Then C1 and C2 are isomorphic if and only if the principally

polarized abelian varieties (Jac(C1),Θ1) and (Jac(C2),Θ2) are isomorphic.

There is a slightly stronger statement which says that if (X,Θ) is an abelian variety and

C1 and C2 are two curves on X such that (X,Θ) is the Jacobian of both C1 and C2 then C2 is

a translate of C1 or of (−1X)(C1). The theorem that Torelli proved was stronger. He proved

that if f : C2 → Jac(C1) is a morphism of a curve of genus g = g(C1) such that f(C2) generates

X and deg(f∗(O(Θ)) = g then f is an injection and f(C2) is a translate of C1 or of (−1X)(C1).

In relation to this we refer to the next Section and the Notes.
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There are many proofs for this theorem in the literature, see the Notes; here we sketch

Andreotti’s beautiful proof, cf. [An]. In the Chapter on the geometry of the theta divisor we

shall give another proof.

Proof. It is immediate that if C1 and C2 are isomorphic their polarized Jacobians are isomorphic.

So it suffices to prove that for a proper smooth irreducible curve C we can recover C from the

pair (Jac(C),Θ). To do this we shall consider the Gauss map of the theta divisor Θ ⊂ Jacg−1(C)

that associates to a smooth point of Θ its tangent space translated to the origin:

γ : Θsm −→ P∨, [D] 7→ TΘ,[D] ⊂ TJacg−1(C),[D] = TJac(C),0

where P∨ is the projective space of hyperplanes in TJac(C),0. Note that it is also the dual of the

projective space Pg−1 to which the canonical map ψ = Tj : C → Pg−1 of C goes.

Now recall the description of the tangent space to Θ at a smooth point [D] of Θ, cf.‘omegaatD’.

If [D] is represented by a unique effective divisor
∑g−1
i=1 Pi then the tangent space to Θ trans-

lated to the origin is the hyperplane spanned by the points ψ(Pi): γ([D]) = Span(ψ(Pi), i =

1, . . . , g − 1). We define

Γ = closure of the graph of γ in Θ× P∨

and let Γ̃ be the normalization of Γ. We have a natural morphism p2 : Γ̃ −→ P∨ induced by

projection onto the second factor. We let B be the branch locus in P∨ of p2. The beautiful idea

behind the proof is now that (at least for non-hyperelliptic curves C) the branch locus of p2 is

the so-called envelop of ψ(C), i.e. the set of hyperplanes tangent to ψ(C), and this determines

C. We now distinguish two cases.

Case 1. C is not hyperelliptic. In this case we shall identify C with its canonical image

ψ(C) ⊂ P. We need the following lemma from the theory of curves. (Reference ?)

(14.42) Lemma. Let C be a non-hyperelliptic curve of genus g > 2. Then the canonical imagecurvelemma

has only finitely many bitangent lines (i.e. lines that are tangent to at least two different points).

Moreover, a general canonical divisor K consists of 2g− 2 distinct points and any g− 1 of them

are linearly independent, i.e. for any effective divisor D of degree g − 1 contained in K we have

h0(D) = 1.

The lemma implies that for a general hyperplane H ⊂ P the canonical divisor H ·C contains(
2g−2
g−1

)
divisors D all of which give classes [D] in Θsm. In particular, for a general H the fibre of

γ is contained in the smooth locus Θsm and γ is unramified in the fibre over H.

In order to describe Γ̃ more precisely we consider the variety

Γ0 = {(D,H) ∈ C(g−1) × P∨ : H · C contains the divisorD}.

This is a closed subset of C(g−1) × P∨ and we have an embedding Θsm → Γ0 given by [D] 7→
(D,H), with D the unique effective divisor representing [D] and H the hyperplane spanned

by it. The second projection projection γ0 = p2 extends γ : Θsm → P∨. Obviously, γ0 is a

quasi-finite separable map of degree
(
2g−2
g−1

)
, hence a finite map. There is a natural morphism

Γ0 → Γ with (D,H) 7→ ([D],H) which is quasi-finite and generically of degree 1. Therefore the

map of the normalization Γ̃ to P∨ factors through Γ0 and it is a finite map. We study now its

branch locus B.

(14.43) Lemma. The branch locus B is irreducible and coincides with the envelope C∨ =branchnh

{H ∈ P∨ : H is tangent to C at some point}.
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Proof. It follows immediately from the definitions that the branch locus is the envelope. It is

well known that the envelope of a smooth irreducible curve is irreducible (see Exercise).

So to prove Torelli’s theorem for non-hyperelliptic curves we have to show that we can

recover C from C∨. For this we refer to [ ?].

Case 2. C is hyperelliptic. We denote the hyperelliptic involution of C by σ. In this case the

canonical image of C is a rational normal curve R in P and we have maps

ε : C(g−1) −→ R(g−1) ρ−→P,

where the first map is of degree 2g−1 and ρ is the regular map that associates to D the hyperplane

spanned by D. Note that ρ is indeed regular: if R is obtained by embedding P1 into P via

t 7→ (1 : t : t2 : . . . : tg−1) then ρ is given by (t1, . . . , tg−1) 7→ (σg−1 : σg−2 : . . . : σ0) with σj the

j-th elementary symmetric function in the ti. The map ε is the canonical map of C(g−1). The

analogue of 14.43 is now

(14.44) Lemma. The branch locus of ε is reducible and consists of the envelope of R and thebranchhe

hyperplanes dual to the branch points of ϕ : C → R.

If the characteristic is not 2 it is easy to retrieve the curve C from the Gauss map Θ→ P∨:

the 2g + 2 hyperplanes determine the branch locus of ϕ, hence the hyperelliptic curve C. But

this argument does not work in characteristic 2.

We now give an argument that works for every characteristic. We consider the map ε :

C(g−1) → P∨ and the image of the small diagonal δ of C(g−1) under ε. It is given by associating

to P ∈ C the osculator hyperplane to R at ψ(P ) (which intersects the curve at ψ(P ) with

multiplicity g − 1). The inverse image ε−1(δ) consists of the images on C(g−1) of the maps

di : C −→ C(g−1), Q 7→ iQ+ (g − 1− i)Qσ (0 6 i 6 [(g − 1)/2]).

Note that the degree of inseparability of d0 is pα with α = ordp(g − 1). Thus we can retrieve

C from the image of d0. But we have to see that the isomorphism class of C(g−1) determines

the image of d0. To distinguish the image δ of d0 from the images of the other di we have the

following lemma whose proof is left to the reader.

(14.45) Lemma. The fixed part of the canonical system of C(g−1) consists of g1
2 + C(g−3) ⊂fixedpart

C(g−1).

It now suffices to observe that the base locus g1
2 +C(g−3) of the canonical system of C(g−1)

contains the images of the maps di for i = 1, . . . , [(g − 1)/2], but not the image of d0. So the

isomorphism class of C(g−1) determines the image of d0 and that determines the isomorphism

class of C. This completes the proof of the Torelli theorem. �

§9. The Criterion of Matsusaka-Ran.

In this section we give a criterion for deciding that an abelian variety is a jacobian. For later

convenience we formulate it not only for smooth curves, but for stable curves of compact type

as defined in the following definition. The proof is due to Collino [Co].

Definition A connected complete reduced curve is called of compact type if the curve is a stable

curve whose dual graph is a tree.
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(14.46) Theorem. The Criterion of Matsusaka-Ran. Let (X,L) be a polarized abelianMatsusakaRan

variety of dimension g and let C be an effective 1-cycle on X which generates X such that the

intersection number C ·L 6 g. Then C is a reduced stable curve
∑n
i=1Ci of compact type whose

components Ci are smooth irreducible curves and (X,L) is isomorphic to the Jacobian Jac(C)

, i.e. to the product of the canonically polarized Jacobians
∏n
i=1 Jac(Ci) of the components.

Proof. We write C =
∑n
i=1miCi with distinct irreducible reduced curves Ci and we denote the

normalization of Ci by C̃i and its genus by gi. We denote the embedding Cred → X by ι. The

natural map C̃i → Ci → X factors through the Jacobian Jac(C̃i), say via ψi : Jac(C̃i) → X,

by the (covariant) universal property of Jac(C̃i) as explained in Section 3. By Exercise (II,??)

we know that we can represent L by an effective reduced divisor D. The Moriwaki-Matsusaka

construction (see Chapter on End) gives us now an endomorphism α(C,L) : X → X. If we

translate C the map α(C,L) does not change, so if we assume that D does not contain any

component of C the map α(C,L) is given on an open set of X by x 7→ sum(C · (D+x)−C ·D).

It is then clear that α(C,L) fits into a commutative diagram

α(C,L) : X
q−→ ∏

Jac(C̃i)
ψ−→ X

ց λ ր ι∗

Xt

where ψ = (ψ1, . . . , ψn) and where λ(x) = [(D + x) − D]. The dual of ι∗ is −ψ by 14.29 and

Exercise ??. Now ψ is surjective since C generates X, hence ι∗ and ι∗λ have finite kernel. It

follows that dim
∏m
i=1 Jac(C̃i) = g. Now we know that

∑m
i=1miCi · L 6 g, but on the other

hand by construction the map q factors through X → C̃
(d1)
1 × . . .× C̃(dn0

n with di = Ci ·L, hence

g = dimα(C,L)(X) 6
∑

(Ci, L) 6 g

and by comparing we get mi = 1 for i = 1, . . . , n and Ci · L = dim Jac(C̃i) and
∑
gi = g.

We must show that ψ is an isomorphism of polarized abelian varieties. We do this by

showing that ψ∗(L) is a principal polarization and then by showing that it coincides with the

canonical polarization on this product of Jacobians.

Suppose that ψ∗(L) is not a principal polarization. Let D be a reduced effective divisor

representing L. Then the linear system |D| has dimension > 1 and also all translates t∗y(D)

have this property. Consider a general translate F = t∗y(D) and an effective divisor G 6= F

linearly equivalent to F . Since y is general the pullbacks of F and G under ψi are distinct and

it follows that the pullback of t∗y(D) is a special divisor of degree gi on C̃i. But this divisor

is the pull back of t∗y(D) · Ci and this is the image of y under the i-th component of q. This

implies that the general element of Jacgi(C̃i) is a special divisor, a contradiction. We thus see

that ψ∗i (L) is a principal polarization. Moreover, the map ψi : Jac(C̃i) → X is an embedding

because ϕψ∗(L) = ψ̂iϕLψi is an isomorphism. Now if i 6= j the map ψ̂jϕLψi is zero (see Exercise

..) and thus

ϕψ∗L = ψ̂ϕLψ =
∑

j

∏

i

ψ̂iϕLψj =
∏

i

ψ̂iϕLψi

implying that ψ∗L and ⊗ip∗iϕ∗iL are algebraically equivalent. Thus ψ∗L is a principal polariza-

tion. We also see that ψ is an isomorphism and Ci ∼= C̃i.

Since ψ is an isomorphism two curves Ci can intersect in at most one point. Otherwise,

the difference of the two intersection points would give a non-zero element in Jac(Ci)∩ Jac(Cj).
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Similarly, an non-transversal intersection would yield a non-zero group scheme in Jac(Ci) ∩
Jac(Cj). This implies that C is stable.

By induction on the genus we may assume that the theorem holds for lower dimensional

abelian varieties, hence if C is reducible we are done. So we may assume that C is irreducible.

It follows from the diagram that α(C,L) is an isomorphism of abelian varieties.

We must show that the principal polarization ψ∗(L) is the canonical polarization O(Θ) of

Jac(C). Recall that Θ is up to translation the divisor of effective divisors of degree g − 1 in

Jacg−1(C).

For general x ∈ X we have an identity C · t∗xD = x1 + . . .+ xg, where x1, . . . , xg are points

of C (and X) up to order uniquely determined. This establishes a birational correspondence

b : C(g) → X which is the composition of the natural map C(g) → Jac(C) with q−1 and since we

now know that q is an isomorphism b is a morphism. Then xg ∈ t∗xD, i.e. x+xg ∈ D. Therefore

we see that D contains the image of

β : C(g−1) × C −→ X ∼= Jac(C), (x1 + . . .+ xg−1, xg) 7→ b(x1, . . . , xg) + xg.

We claim: D coincides with the image of β. Indeed, if D is larger than the image of β, then the

closure of D− Im(β) is a divisor D′ in Jac(C). A general translate of C intersects both D′ and

Im(β) outside the intersection D′ ∩ Im(β). We may then even assume that the translate is C

and then have C ·D = x1 + . . .+ xg−1 +w with w ∈ D′. Then we have β(x1, . . . , xg−1, w) = w,

outside the image of β, a contradiction.

By the rigidity lemma the morphism β is of the form β′+β′′ with β′ : Cg−1 → Jac(C) and

β′′ : C → Jac(C) morphisms. For fixed y ∈ C the image of C(g−1) ×{y} under β has dimension

g− 1 since b is generically injective. It follows that β(C(g−1) ×{y}) = D. Since D is a principal

polarization no non-trivial translations leave D fixed and it follows that β′′ contracts C and we

may thus suppose that β′′ = 0. We thus have for every point (x1 + . . .+ xg−1, xg) ∈ C(g−1) ×C
an equality

b(x1 + . . .+ xg) = β(x1 + . . .+ xg−1, xg)− xg.

We now fix g − 1 points c1, . . . , cg−1 on C. Then we find

β(x1 + . . .+ xg−1)− xg = b(x1 + . . . + xg) = b(x2 + . . .+ xg−1 + x1)

= β(x2 + . . .+ xg, x1)− x1 = β(x2 + . . .+ xg, c1)− x1

= b(x2 + . . . + xg + c1) + (c1 − x1)

Repeating the argument gives

β(x1 + . . .+ xg−1)− xg = b(c1 + . . .+ cg−1 + xg) +

g−1∑

i=1

(ci − xi)

= β′(c1 + . . .+ cg−1)− xg +

g−1∑

i=1

(ci − xi).

This shows that D is a translate of (−1)∗Θ and finishes the proof of the theorem. �

(14.47) Corollary. A principally polarized abelian variety which is a specialization of a Jaco-specofJac

bian is a Jacobian of a stable curve of compact type.

Proof. A specialization of an effective 1 cycle is an effective 1 cycle. Also the degree L · C is

preserved under specialization.
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Intermezzo

Intermezzo: the Moriwaki-Matsusaka endomorphism; hoort in Hoofdstuk over End

Let A and B be effective algebraic cycles on a g-dimensional abelian variety X of comple-

mentary dimension. That means, A (res. B) is an element of the free abelian group generated

by the subvarieties of X of dimension a (resp. of dimension b = g − a. We now define an en-

domorphism α(A,B) to the pair (A,B) following Moriwaki and Matsusaka as follows. For a

general point x ∈ X the intersection of t∗xA and B will be a proper 0-cycle
∑d
i=1 pi of degree

d = deg(A ·B). In this way we get a rational map that extends to a morphism (by ..) and after

translation this becomes an endomorphism:

X −→ Xd/Sd
sum−→Xtranslation−→ X

x 7→ (A− x) ∩B

Since α(A,B)(0) = 0 we see that we can write

α(A,B) = sum(t∗x(A) ·B −A ·B),

whenever this is defined.

Lemma. If A and A′ are algebraically equivalent then α(A,B) = α(A′, B).

Proof. Let As (with s ∈ S) be a family of algebraically equivalent cycles. We may assume

that S is normal. Then we get a morphism

β(A,B) : X × S −→ X, (x, s) 7→ α(As, B)(x).

This satisfies β({0} × S) = 0. Define β′ via β′(x, s) = β(x, s) − β(x, s0) for some fixed point

s0 ∈ S. Then β′(X × s0) = β({0} × S) = 0, hence by the Rigidity theorem β′ is constant and

this implies that β factors through pX . �

§6 The genus of a simple abelian variety

Let X be an abelian variety of dimension g over an algebraically closed field k. If X is

isomorphic to the Jacobian of a curve C then X carries a smooth proper curve of genus g. If X

is simple, then X does not carry any curve of smaller genus. For if i : C → X is of genus γ then

we get a homomorphism Xt → Jac(C) which is non-zero (an ample line bundle L on X is not in

the kernel) which is not compatible with the assumption that X is simple. If X is isogenous to

a Jacobian, say r : Jac(C)→ X is an isogeny, then a suitable translate of the image of C under

ϕ : C → Jac(C) has as image under r a curve of genus g.

Definition. Let X be a simple abelian variety over a field k. Then the genus of X is the

smallest geometric genus of a complete irreducible reduced curve on X.

A first remark is that the genus of a simple abelian variety does not change under isogenies. In

characteristic 0 we may therefore assume that X is principally polarized. Very little is known

about this invariant. In [BCV] it is proved that the general 4-dimensional principally polarized

abelian variety has genus 7 and the general 5-dimensional principally polarized abelian variety

has genus 11. The question: what is the maximum genus of an abelian variety of dimension g

– 245 –



seems very interesting. A related invariant is the minimal effective class. If (X,Θ) is a principally

polarized abelian variety then let

θ = [Θg−1/(g − 1)!] ∈ H2(X),

where cohomology means Betti cohomology with integral coefficients or ℓ-adic cohomology with

ℓ 6= Char(k). (Weyl cohomology) It follows from the Matsusaka-Ran criterion that a curve C

on X that generates X has intersection number > g with Θ. Therefore, if C is a curve on X

and if [C] is a rational multiple of θ then [C] is an integral multiple of θ. We define

c(X,Θ) = min{n ∈ Z>1 : cθ is representable by an effective 1-cycle C on X}.

For Jacobians c(X,Θ) equals 1. For Prym varieties is equals 2. It seems an interesting question

to determine c(X,Θ) for the general principally polarized abelian variety of dimension g. We

refere to papers by Debarre.

Exercises

Exercise. Let C be a complete non-singular curve over a field k. We denote by α: C×C(n−1) →
C(n) the natural map. Prove that Ω1

C(n) is isomorphic to α∗(p
∗
1Ω

1
C) with p1: C × C(n−1) → C

the first projection.

Exercise. Prove that for n > 1 the n-th symmetric product of P1 is isomorphic to Pn. Show

that for a smooth, absolutely irreducible curve over a field the variety C(n) is projective. (Hint:

use a finite morphism C → P1.)

Let C be a proper smooth absolutely irreducible complete curve over a field k and let P ∈ C(k)

be a point. Prove that the map ϕP : C → Jac(C) induces by pulling back line bundles the

isomorphism (−ϕΘ)−1 : Jac(C)t −→ Jac(C)

(Bij Poincaré Irreducibiliteit?) Let X,Y be subvarieties of the abelian variety Z with inclusions

ξ : X → Z and η : Y → Z and ξ(X) ∩ η(Y ) finite. If L is a polarization on Z then ηtϕLξ = 0 :

X → Y t.

Exercise. Let α∗1 be the map Pic0(Jac1(C)) → Jac(C) given by pulling back line bundles on

Jac1(C) to C via α1. Show that α∗ is an isomorphism.

Let X and Y be varieties and Z an abelian variety. Suppose that one of X and Y is complete.

If f : X × Y → Z is a morphism, then there exist morphisms g : X → Z and h : Y → Z such

that f = g + h. Prove this. (In het hoofdstuk met het stijfheidslemma.)

Notes

For a long time the theory of abelian varieties was synonimous with the theory of Jacobians.

The work of Riemann [R1, R2] was a milestone in the development. He introduced the theta

divisor and interpreted the singularieties of the theta divisor on a Jacobian in terms of linear

systems on the curve. Torelli made two key contributions to the theory. He showed that

one can retrieve a curve from its Jacobian together with the theta divisor. Moreover, Torelli

observed that every abelian variety is a quotient of a Jacobian. All these authors worked over the

complex numbers. In the beginning of the 20th centure the need was felt for an algebraic theory

of Jacobian variety in order to be able to deal with curves over number fields and over finite

fields. This theory was created by A. Weil and in order to do this he had to lay new foundations
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of algebraic geometry. He constructed the Jacobian of a curve C of genus g by starting from the

symmetric power C(g) and by extending the birational group law. His celebrated proof of the

Riemann hypothesis for curves over finite fields was a direct corollary. The present approach

towards the Jacobian via representability of the Picard functor is due to Grothendieck. We

refer to his exposés FGA. The criterion of Matsusaka-Ran was proved by Matsusaka for smooth

curves in 19.., but a form of it is already in the work of Torelli, cf. [T?]. Ran extended it [R?].

We follow the clear proof of Collino [Co]. There are many proofs of the Torelli theorem in the

literature. A sort of survey is found in Mumford (Curves and their Jacobians). We shall give

another prove in the Chapter on the Geometry of the Theta Divisor. Yet another proof is in

Polishchuck. We refer to (Andreotti, Beauville, Ciliberto, Collino, Matsusaka, Mattuck-Mayer,

Weil). Our proof Riemann’s theorem on the singularities of Θ follows [A-C-G-H].
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Chapter XV. Dieudonné theory.

§1. Dieudonné theory for finite commutative group schemes and for p-divisible groups.

(15.1) Basics on Witt vectors, mainly to set up notation. Introduce σ = ’Frobenius’ = endo-W(k)Basics

morphism induced by x 7→ xp on residue field. Introduce Zpa = W (Fpa) and Qpa .

(15.2) Let R be a commutative ring with identity. Let α be an endomorphism of R. If M1 andSemiLinear

M2 are (left) R-modules then by an α-linear map f : M1 →M2 we mean an additive map with

the property that f(rm) = α(r) · f(m) for all r ∈ R and m ∈M1. If it is clear which α we are

considering then such a map is also simply called a semilinear map.

A semilinear map can be linearized. For this we consider the R-module M
(α)
1 := R⊗R,αM2,

obtained from M1 by extension of scalars via α: R → R. Then an α-linear map f : M1 → M2

gives rise to an R-linear homomorphism f ♯: M
(α)
1 → M2 by f ♯(r ⊗m) = r · f(m). Note that

this is well-defined, as f ♯(r⊗ sm) = r · f(sm) = rα(s) · f(m) = f ♯(rα(s)⊗m). Conversely, to a

homomorphism of R-modules g: M
(α)
1 → M2 we can associate the α-linear map g♭: M1 → M2

defined by g♭(m) := g(1⊗m). One readily checks that these constructions are mutually inverse:

(f ♯)♭ = f and (g♭)♯ = g. Hence an α-linear map may also be described as an R-linear map

M
(α)
1 →M2.

(15.3) Definition. Let R be a ring with identity. Let α be an endomorphism of R, and let tSkewPol

be an indeterminate. Then the skew polynomial ring R[t;α] is the ring of polynomials in the

variable t with coefficients in R, in which

(a) addition is as in the usual polynomial ring R[t];

(b) the ring multiplication is distributive and satisfies t · c = α(c) · t for all c ∈ R.

In other words, the only new aspect is that the variable t does not commute with the

coefficients (unless α = id), but is “α-linear”.

By iteration of (b) we find that tn · c = αn(t) · tn for all n ∈ N and c ∈ R. Clearly, if

α = idR then R[t;α] is just the ordinary polynomial ring. If α is not the identity then R[t;α] is

non-commutative.

In the sequel it will usually be clear which endomorphism α we are taking, and especially

in the context of Dieudonné modules we shall occasionally drop the α from the notation.

(15.4) Definition. Definitie Dieud modules, category DM/k, full subcats DMfree
/k and DMtors

/k .DModDef

Dual of a Dieud module.

(15.5) Main theorem on Dieud theory for finite flat group schemes + Cartier duality.DModFinThm

(15.6) ExamplesDModExa

(15.7) Maybe something on consequences for finite group schemes. Eg, only simple groupDModConseq

schemes over k = k are µp, Z/pZ, Z/ℓZ, αp. Are there further things we need at some point?

(15.8) Dieud mod of a BT, Serre duality.DModBT

DTheory, 8 februari, 2012 (635)
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(15.9) Some general comments on Dieud theory; covariant vs contravar; references to literature.DTheoryRem

§2. Classification up to isogeny.

(15.10) Throughout this section, k denotes a perfect field of characteristic p > 0. We writeClassIsogIntro

W := W (k) for its ring of Witt vectors, L for the fraction field of W , and σ for the automorphism

of W (and also of L) induced by the Frobenius automorphism x 7→ xp of k.

If N is a finite dimensional L-vector space then by a W -lattice in L we mean aW -submodule

M ⊂ N such that the natural map L⊗W M → N is an isomorphism. (Equivalent: M is free of

rank dimL(N) as a W -module.) If M1 and M2 are W -lattices in N then so are M1 +M2 and

M1 ∩M2. We define

χ(M1 : M2) := lengthW (M/M2)− lengthW (M/M1) ,

where M is any W -lattice in N containing both M1 and M2; this is easily seen to be inde-

pendent of the chosen M . In particular, if M2 ⊆ M1 then we simply have χ(M1 : M2) =

lengthW (M1/M2). If M3 is a third lattice we have the relation χ(M1 : M3) = χ(M1 :

M2) + χ(M2 : M3).

Our main goal in this section is to discuss a number of key results on the classification

of p-divisible groups over k up to isogeny. Dieudonné theory allows us to translate this into a

problem in semi-linear algebra. More precisely, we are led to consider finite dimensional L-vector

spaces N together with a bijective σ-linear operator F : N → N . We refer to such a pair (N,F )

as an F -isocrystal over k. Not all F -isocrystals arise from a p-divisible group; a necessary and

sufficient condition for this is that there exists a W -lattice M ⊂ N with p ·M ⊆ F (M) ⊆ M .

Still, it proves an advantage to work with general F -isocrystals, and in fact these naturally

appear in the context of crystalline cohomology; cf. () below.

An F -isocrystal can be viewed as a module over the skew polynomial ring L[F ;σ]. To be

precise, the modules that we are interested in are those whose underlying L-vector space is finite

dimensional and on which the action of F is bijective. This brings ring-theory into play, which

in this context is very helpful, as L[F ;σ] is a non-commutative principal ideal domain and there

is a good general theory of modules over such a ring; see Jacobson [1], Chap. 3.

Another possible approach—the one we shall take—is to exploit that two W -lattices in

a finite dimensional L-vector space can be compared, and this gives rise to useful discrete

invariants. If (N,F ) is an F -isocrystal and M ⊂ N is a W -lattice, we can measure the relative

position of M and F (M), and express it in a polygon, called the Hodge polygon of (M,F ).

Pushing this further, one may also look at F 2(M), or the image under M under higher powers

of F . To create the right context for this, we shall consider pairs (N,F ) as before where the

“Frobenius” F is not necessarily σ-linear but can be σa-linear, for some a ∈ Z. Such objects are

called σa-F -crystals.

Information about the asymptotic behaviour of F can be encoded in a second polygon,

called the Newton polygon of (N,F ). In contrast with the Hodge polygon, the Newton polygon

only depends on (N,F ), not on the choice of a lattice M ⊂ N . Among the main results of this

section is a theorem of Dieudonné, Theorem (15.33), which says that over an algebraically closed

field k an F -isocrystal is classified by its Newton polygon. In concrete terms this means that we
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have a collection of explicitely defined F -isocrystals Nλ, one for each λ ∈ Q (the Newton slope),

such that any F -isocrystal over k = k is isomorphic to a direct sum of such objects Nλ.

In the approach we take, Dieudonné’s Theorem is preceded by another import result, valid

over any perfect field k of characteristic p, which says that an F -isocrystal has a canonical

decomposition into isoclinic pieces. See Theorem (15.30). An F -isocrystal (N,F ) is called

“isoclinic” if there exist a W -lattice M ⊂ N and integers r and s > 0 such that F s(M) = pr ·M ;

the quotient r/s is then called the slope of (N,F ). The proof of Theorem (15.30) requires some

preparations, all completely elementary in nature, but once we are there Dieudonné’s Theorem

hardly requires further work. As a bonus we obtain a useful result about F -isocrystals over

a finite field, that allows to calculate the Newton polygon in a very simple manner from the

characteristic polynomial of a suitable power of F .

A final key result in this section... Mazur??

Though we are mainly interested in F -crystals, we shall state and prove results in the more

general setting of σa-F -crystals. This is not just out of academic interest; it actually leads to

much simpler proofs. A typical trick, that we shall use several times, is that we can pass from

a σa-F -isocrystal (N,F ) to a σas-F -isocrystal (N,F ′) with F ′ = pνF s for suitable integers ν

and s. By this, we can reduce several arguments to the isoclinic case with slope = 0, and in

this we can often prove what we want by an easy direct argument. See the proofs of ... for nice

examples of this.

Our exposition of the material in this section closely follows Zink [1].

(15.11) Definition. Let a ∈ Z. Then a σa-F -crystal over k is a pair (M,F ) consisting of aFCrysDef

free W -module M of finite rank, together with a σa-linear injective map F : M →M ⊗W L.

A morphisms of σa-F -crystals f : (M1, F1) → (M2, F2) is a homomorphism f : M1 → M2

of W -modules (so a W -linear map) such that f ◦F1 = F2 ◦f . We denote by σa-F -Crys/k the

category of σa-F -crystals over k that is thus obtained.

The map F is not required to take values in M itself; it is allowed to have “denominators”.

If F (M) ⊆ M then we say that the crystal is effective. The condition that F is injective

implies that the induced map M ⊗W L → M ⊗W L is bijective. We shall use the notation

MQ := M ⊗W L = M ⊗Zp
Qp = M ⊗Z Q.

Note that in the definition of a morphism, the identity f ◦F1 = F2 ◦f is an identity of maps

M1 →M2,Q, so the “f” on the left has to be interpreted as the linear map M1,Q →M2,Q induced

by the given f : M1 →M2.

If a = 0 then a σa-F -crystal is of course just a finite free W -module M together with a

linear injective map M →MQ. We shall mainly be interested in the case a = 1. In this case one

usually drops the prefix “σ”; so by an F -crystal we mean a σ-F -crystal, and we write F -Crys/k

for σ-F -Crys/k. The category DMfree
/k of torsion-free Dieudonné modules is equivalent to the full

subcategory of F -Crys/k consisting of all F -crystal (M,F ) with p ·M ⊆ F (M) ⊆ M , as these

inclusions are equivalent to the existence of a map V : M →M with FV = p · idM = V F .

A homomorphism of σa-F -crystals f : (M1, F1)→ (M2, f2) is called an isogeny if the induced

map M1,Q →M2,Q is bijective. If one wants to study σa-F -crystals only up to isogeny, it suffices

to know the L-vector space MQ together with its σa-linear Frobenius. Thus one is led to the

following notion of an isocrystal.

(15.12) Definition. Let a ∈ Z. Then a σa-F -isocrystal over k is a pair (N,F ) consistingFIsocDef

of an L-vector space N of finite dimension, together with a bijective, σa-linear endomorphism
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F : N → N .

A morphisms of F -isocrystals f : (N1, F1)→ (N2, F2) is an L-linear map f : N1 → N2 such

that f ◦F1 = F2 ◦f . We denote by σa-F -Isoc/k the category of σa-F -crystals over k that is thus

obtained.

Note that σa-F -Isoc/k can also be described as the category of modules over the ring

L[F,F−1] with finite dimensional underlying L-vector space; here the F in L[F,F−1] is σa-

linear, so F · c = σa(c) · F for all c ∈ L. This category can also be identified with a full

subcategory of the category of modules over the skew polynomial ring L[F ;σa], namely the

subcategory of modules that are of finite L-dimension and on which the action of F is bijective.

As before, we are mainly interested in the case a = 1. By an F -isocrystal we mean a

σ-F -isocrystal, and we shall abbreviate σ-F -Isoc/k to F -Isoc/k.

If (M,F ) is a σa-F -crystal then (MQ, F ) is a σa-F -isocrystal. In the other direction,

if (N,F ) is a σa-F -isocrystal then for any W -lattice M ⊂ N the pair (M,F|M ) is a σa-F -

crystal. Up to isogeny the σa-F -crystal thus obtained is independent of the choice of the lattice.

Indeed, if M1 and M2 are W -lattices in N then there exists a ν ∈ Z with pνM1 ⊆ M2, and

then ·pν : M1 → M2 gives an isogeny from (M1, F|M1
) to (M2, F|M2

). So indeed the isocrystals

describe crystals up to isogeny, much in the same way as we can pass from abelian varieties

over some basis to the category of abelian varieties up to isogeny. More formally, the category

σa-F -Isoc/k is equivalent to the localization of the category σa-F -Crys/k ETC

We say that an isocrystal (N,F ) is effective if there exists a W -lattice M ⊂ N with

F (M) ⊆M .

The category σa-F -Isoc/k is abelian. The category σa-F -Crys/k is additive but not abelian.

We still have, in an obvious way, notions like direct sums, kernels and sub-objects. Further, if

(M,F ) is a σa-F -crystal and M ′ ⊂M is a primitive W -submodule that is stable under F then

M/M ′ with Frobenius induced by F is again a σa-F -crystal. Here we recall that a W -submodule

M ′ ⊆M is called primitive if M/M ′ is torsion-free.

If k ⊂ k′ is an extension of perfect fields we have a functor

“extension of scalars”: σa-F -Crys/k → σa-F -Crys/k′ ,

sending a pair (M,F ) to
(
W (k′)⊗W (k)M,σa⊗F

)
. Note that if k is finite, this functor depends

on the integer a, not only on the automorphism σa. The point is that if k has cardinality pm

then σa only depends on the class of a modulo m. A similar remark applies to isocrystals.

(15.13) Let (M,F ) be a σa-F -crystal over k. The rank of M as a W -module is called theOrdIterate

height of (M,F ). Similarly, the height of a σa-F -isocrystal (N,F ) is defined as the L-dimension

of the underlying vector space N .

Writing N := MQ we have that M and F (M) are both W -lattices in N . Hence there exist

integers r < R such that pR ·M ⊆ F (M) ⊆ pr ·M , and we can define ord(F ), the p-adic order

of F , by

ord(F ) := max
{
r ∈ Z

∣∣ F (M) ⊆ pr ·M
}
.

We shall later re-encounter ord(F ) as the first Hodge slope of (M,F ); see (15.16) below. The

p-adic order of F in general depends on the lattice M ⊂MQ, i.e., it is not an isogeny-invariant.

For any n ∈ Z we may consider the nth iterate (M,Fn), which is a σan-F -crystal over k.

Note that this also makes sense for n 6 0. As we shall see later there is no simple rule to
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calculate ord(Fn) from ord(F ). The asymptotic behaviour of ord(Fn) for n→∞ is encoded in

the first slope of the Newton polygon of (M,F ); see (15.21) and () below.

Another useful way to construct new crystals out of a given one is simply to multiply F by

a power of p. So, for any m ∈ Z we can consider (M,pmF ), which is again a σa-F -crystal. It

should be regarded as “(M,F ), Tate-twisted by m”, just as we can consider the Tate twists of

a Hodge structure or a Galois representation. (Cf. ??) We have ord(pmF ) = m+ ord(F ).

(15.14) If (M1, F1) and (M2, F2) are two σa-F -crystals over k (for the same exponent a) thenWedgeCrys

we define the tensor product (M1⊗M2, F1⊗F2) to be the σa-F -crystal with underlying module

M1 ⊗W M2 and with Frobenius given by (F1 ⊗ F2)
(
m1 ⊗m2) = F1(m1) ⊗ F2(m2). Note that

F1 ⊗ F2 is well-defined and is indeed again σa-linear.

The ith exterior power ∧iWM , which by definition is a quotient ofM⊗i, inherits the structure

of a σa-F -crystal (M,F ) with Frobenius given by (∧iF )
(
m1∧m2∧· · ·∧mi

)
= F (m1)∧F (m2)∧

· · · ∧ F (mi).

Analogously we can define tensor products and exterior powers of isocrystals.

If (N,F ) is a σa-F -isocrystal of height h then det(N) := ∧hLN is an L-vector space of

dimension 1. Write det(F ) = ∧hF , and choose any 0 6= e ∈ det(N). Then there is a non-zero

c ∈ L with det(F )
(
e
)

= c · e. The actual value of c depends on the chosen generator, but its

valuation does not. Indeed, a different generator is of the form e′ = b · e for some b ∈ L∗, and

then F (e′) = c′ · e′ with c′ =
(
σa(b)/b

)
· c, which has the same order as c. Hence we can define

orddet(F ) := ordp(c), where ordp: L
∗ → Z is the p-adic valuation with ordp(p) = 1. If M ⊂ N

is any W -lattice in N then the number orddet(F ) defined in this way equals ord
(
det(FM )

)
as

defined above; here we write FM := F|M and det(FM ) := ∧hFM . So, whereas in general ord(FM )

depends on the lattice M , for the determinant the p-adic order only depends on the isocrystal.

Also note that, using the notation introduced in (15.10), we have orddet(FM ) = χ
(
M : F (M)

)
;

see Exercise (15.1).

(15.15) To a σa-F -crystal we shall associate a Hodge polygon and a Newton polygon. SuchPolygons

a polygon is given by a finite sequence of rational numbers r1 6 r2 6 · · · 6 rn. One can also

describe it by giving a strictly increasing sequence λ1 < λ2 < · · · < λt together with multiplicities

m1,m2 . . . ,mt (in Z>0), where the λj are the values that occur in the sequence of ri, and mj is

the number of times that λj occurs. So we have





r1 = r2 = · · · = rm1
= λ1

rm1+1 = · · · = rm1+m2
= λ2

rm1+m2+1 = · · · = rm1+m2+m3
= λ3

· · ·
rm1+···+mt−1+1 = · · · = rm1+···mt

= λt .

The numbers λj are called the slopes of the polygon.

In practice it is often convenient to have a graphical representation of a polygon. For

this we consider the graph of the piecewise linear continuous function ϕ: [0, n] → R that has

ϕ(0) = 0 and ϕ(i) = r1 + r2 + · · · + ri for 1 6 i 6 n, and that is extended linearly between

consecutive integers. In terms of the slopes λi this means that ϕ is linear with slope λj on the

interval [m1 + · · ·+mj−1,m1 + · · ·+mj ]. In other words, we start at the point (0, 0), draw a

line segment to the point (m1,m1λ1), from there draw a line segment to (m1+m2,m1λ1+m2λ2),

etc.
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HodgeThus, for instance, if the polygon is given by the sequence −2, −2, −1/3, −1/3, −1/3, 0,

1/2, 1, 1, 4 then the slopes are −2, −1/3, 0, 1/2, 1, and 4, with multiplicities 2, 3, 1, 1, 2 and 1,

respectively, and the graphical representation of the polygon is

The points (m1 + · · · + mj ,m1λ1 + · · · + mjλj) are called the break points of the polygon.

(Indicated in the figure by dots.) By definition, the polygon starts at (0, 0), and it ends at the

point (n,
∑
ri) = (

∑
mj ,

∑
mjλj).

Note that, because we order the slopes in increasing order, the region of points (x, y) ∈
[0, n]× R lying above the polygon is convex.

(15.16) Let (M,F ) be a σa-F -crystal of height h over k. Note that both M and F (M) areHodgePol

W -lattices in MQ. By the theory of modules over a principal ideal domain (see e.g. Bourbaki [1],

Chap. 7, § 4, Prop. 4, or Curtis and Reiner [1], § 16) there exist ordered W -bases {e1, . . . , eh}
and {f1, . . . , fh} for M , together with integers r1 6 r2 6 · · · 6 rh, such that F (ei) = pri · fi for

all i. The sequence of integers ri does not depend on the chosen bases. The polygon defined

by this sequence is called the Hodge polygon of (M,F ). We shall denote the Hodge slopes of

(M,F ) by µ1 < µ2 < · · · < µt; if necessary we write µi(M) or µi(M,F ).

Note that, by construction, all slopes of the Hodge polygon are integers; in particular also

the break points of the polygon have integral coordinates. The smallest Hodge slope, µ1 = r1,

is the largest integer r such that pr ·M contains F (M), and we recognize this as the integer

ord(F ) defined previously. The largest Hodge slope, rh, is the smallest integer s such that ps ·M
is contained in F (M).

Let hi = hi(M,F ) be the multiplicity of i ∈ Z as Hodge slope. The numbers hi are called

the Hodge numbers of the crystal (M,F ). See Example () below for the relation with the

classically defined Hodge numbers of a variety.

The Hodge polygon can also be expressed in terms of the orders of the exterior powers

of F . For this we just have to remark that ord(∧iF ), which is the smallest Hodge slope of

(∧iM,∧iF ), equals r1 + r2 + · · · + ri. So the Hodge polygon is obtained by starting at (0, 0),

plotting the points
(
i, ord(∧iF )

)
for 1 6 i 6 h, and joining consecutive points by line segments.

In particular, the end point of the Hodge polygon of (M,F ) is the point
(
h, orddet(F )

)
.

(15.17) Example. Consider the F -crystal (M,F ) over k corresponding to the W [F ]-moduleHodgePolExa

W [F ]/W [F ] · (p2 +pF +pF 2−F 3), where W [F ] := W [F ;σ]. In other words, M is free of rank 3

as a W -module, and Frobenius is given on a basis {e1, e2, e3} (corresponding to the classes of 1,
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crystallineF and F 2, respectively) by
F (e1) = e2

F (e2) = e3

F (e3) = p2 · e1 + p · e2 + p · e3 .
Then {e1, e2, e′3 := e3 − p · e1 − p · e2} and {e2, e3, e1} are ordered W -bases for M and F is in

diagonal form for these bases:
F (e1) = e2

F (e2) = e3

F (e′3) = p2 · e1 .
Hence the Hodge slopes of (M,F ) are 0 with multiplicity 2 and 2 with multiplicity 1.

If we take M ′ ⊂MQ the W -lattice generated by ε1 := p · e1, ε2 := e2 and ε3 := e3 then we

have
F (ε1) = p · ε2
F (ε2) = ε3

F (ε3) = p · ε1 + p · ε2 + p · ε3 .
In this case we find, by passing to the basis {ε1, ε2, ε3 − p2ε1 − pε2}, that the Hodge slopes are

0 with multiplicity 1 and 1 with multiplicity 2.

HP(M) HP(M ′)

So although (M,F ) and (M ′, F ) are isogenous, their Hodge polygons are different.

(15.18) Example. Let G be a p-divisible group over a perfect field k of characteristic p. WeHodgePolBT

define the Hodge polygon of G to be the Hodge polygon of its Dieudonné module. The only

slopes that can occur are 0 and 1, say with multiplicities h0 and h1. We have h0 + h1 = h, the

height of G, and h1 = dim(G), the dimension of G as defined in ??. In particular, the Hodge

polygon of an abelian variety X of dimension g is the polygon

(0,0) (g,0)

(2g,g)

with g times slope 0 and g times slope 1.

(15.19) Example. Let X be a proper smooth k-scheme. Crystalline cohomology theory (seeHiCrysExa

e.g. Berthelot [1], Berthelot and Ogus [1], as well as the reports by Illusie [1], [2], [3], [4]) gives
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us finitely generated W -modules Hi
crys(X/W ) with all the usual functorialities. The relative

Frobenius FX/k: X → X(p) induces W -linear maps F ♯: Hi
crys(X

(p)/W )→ Hi
crys(X/W ).

If X is an abelian variety over k then the F -crystal obtained in this way from H1
crys(X/W )

can be identified with the Dieudonné module of (the p-divisible group of) X as defined in ??.

See ??.

We now start investigating the p-adic order of the iterates of F . We start with an elementary

lemma.

(15.20) Lemma. Let k be a perfect field of characteristic p.FirstNewtLem

(i) Let (M,F ) be a σa-F -crystal of height h over k. Then for all n ∈ N we have

ord(F ) 6
ord(Fn)

n
6

orddet(F )

h
. (1)DTheory;ordord

(ii) Let (N,F ) be a σa-F -isocrystal over k. For any W -lattice M ⊂ N the limit

lim
n→∞

ord(FnM )

n
(2)DTheory;limord

exists, and this limit is independent of the choice of the lattice M .

Proof. (i) Let r = ord(F ). Then F (M) ⊆ pr ·M , and by induction on n this gives that Fn(M) ⊆
prn ·M . Hence ord(Fn) > rn, which is the first inequality in (1). For the second inequality we

note that det(Fn) = det(F )n; hence orddet(Fn) = n · orddet(F ). (Cf. Exercise (15.1).) So it

suffices to show that for any σa-F -crystal (Λ, ϕ) of height h we have h · ord(ϕ) 6 orddet(ϕ); we

then apply this with ϕ = Fn. But if ord(ϕ) = r then ϕ(Λ) ⊆ pr · Λ. This readily implies that

det(ϕ)
(
det(Λ)

)
⊆ phr · det(Λ); so indeed orddet(ϕ) > hr.

(ii) Fix a lattice M ⊂ N , and write FM := F|M . It follows from (i) that for any m ∈ N the

limit λ(m) := limn→∞ ord(Fm
n

M )/mn exists. Fix m. Given ε > 0, choose an integer ν > 0 such

that ord(Fm
ν

M )/mν > λ(m) − ε/2. If a ∈ N, write a = q ·mν + r with 0 6 r < mν . It follows

directly from the definitions that ord(F b+cM ) > ord(F bM ) + ord(F cM ) for all b, c ∈ N. Using this

we find
ord(F aM ) > q · ord(Fm

ν

M ) + r · ord(FM )

> a ·
(
λ(m)− ε

2

)
+ r ·

(
ord(FM )−

(
λ(m)− ε

2

))

> a ·
(
λ(m)− ε

2

)
−mν ·

∣∣∣ord(FM )−
(
λ(m)− ε

2

)∣∣∣ .

Hence there exists an A > 0 such that ord(F aM )/a > λ(m) − ε for all a > A. In particular, it

follows that λ(m) is independent of m. Further, if we have ord(F aM )/a > λ(m) for some a then

it follows from (i) that λ(a) > λ(m), contradicting the conclusion just obtained. Hence indeed

λ(m) = lima→∞ ord(F aM )/a.

Next we want to show that the limit in (2) is independent of the chosen lattice. Suppose we

have W -lattices M1 and M2. Write Fi := F|Mi
. Choose integers c and d such that pc ·M1 ⊆M2

and pd ·M2 ⊆M1. We claim that |ord(F1)−ord(F2)| 6 c+d. Applying this to the iterates of F

(which does not change c and d), this claim implies that the limit in (2) is independent of M .

By symmetry it suffices to show that ord(F2) > ord(F1) − c − d. But this is clear, because if

ord(F1) = r then

F (M2) ⊆ p−d · F (M1) ⊆ p−d+r ·M1 ⊆ p−c−d+r ·M2 ,
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so indeed ord(F2) > −c− d+ r. �

(15.21) Definition. Let (N,F ) be a σa-F -isocrystal over k. Then we define the first NewtonFirstNewtDef

slope of (N,F ), notation λ1 = λ1(N,F ), to be the number limn→∞ ord(FnM )/n, where M ⊂ N
is any W -lattice.

As we shall prove in Proposition (15.25), the first Newton slope is actually a rational number.

After some preparations we shall define, in (15.31), the Newton polygon of an isocrystal.

The first Newton slope as defined here shall appear as the smallest of the Newton slopes; this

explains the terminology, which otherwise at this point might seem a bit strange. For a σa-F -

crystal (M,F ) we let λ1(M,F ) := λ1(MQ, F ).

(15.22) Remark. Let (M,F ) be a σa-F -crystal of height h. By (1) we have ord(F ) 6mu1lambda1Rem

λ1(M,F ) 6 orddet(F )/h. Now ord(F ) is just the first Hodge slope of (M,F ), which we usually

denote by µ1 = µ1(M,F ). Using this notation we have

µ1(M,F ) 6 λ1(M,F ) 6
orddet(F )

h
.

Note that for h = 1 this says that µ1(M,F ) = λ1(M,F ).

(15.23) Lemma. Let (N,F ) be a σa-F -isocrystal over k. Then we have λ1(N, p
mFn) =FirstNewtpmFn

n · λ1(N,F ) +m for all m, n ∈ Z.

Proof. The relation λ1(N,F
n) = n · λ1(N,F ) readily follows from the definition of the first

Newton slope. The relation λ1(N, p
mF ) = λ1(N,F )+m follows from the relation ord(pmnFnM ) =

ord(FnM ) +mn. By combining these two cases we obtain the lemma. �

(15.24) Lemma. Let (N,F ) be a σa-F -isocrystal of height h over k.LatticeLem

(i) If there exists a W -lattice M ⊂ N such that Fh+1(M) ⊆ p−1 ·M then (N,F ) is effective.

(ii) Let r and s be integers with s > 0 and λ1(N,F ) > r/s. Then there exists a W -lattice

M ⊂ N with F s(M) ⊆ prM .

Proof. (i) Let M ′ := M + F (M) + F 2(M) + · · ·+ Fh(M), which is again a W -lattice in N . We

have
h+1∑

j=0

F j(M ′) =
2h+1∑

j=0

F j(M) = M ′ +
h+1∑

j=0

F j
(
Fh+1(M)

)
⊆ p−1 ·M ′ .

Now consider the ascending chain

M ′ ⊆M ′ + F (M ′) ⊆ · · · ⊆
h+1∑

j=0

F j(M ′) ⊆ p−1 ·M ′ .

As p−1M ′/M ′ is a k-vector space of dimension h, there exists an index n ∈ {0, 1, . . . , h} with∑n
j=0 F

j(M ′) =
∑n+1
j=0 F

j(M ′). Then M ′′ :=
∑n
j=0 F

j(M ′) is a lattice with F (M ′′) ⊆ M ′′, so

(N,F ) is effective.

(ii) Let F ′ := p1−r(h+1)F s(h+1). By Lemma (15.23) we have λ1(N,F
′) = s(h+1)λ1(N,F )+

1−r(h+1) > 1. Hence there exists a W -lattice M ⊂ N and an n ∈ N such that (F ′)n
(
M
)
⊆M .

Let M ′ := M + F ′(M) + (F ′)2(M) + · · · + (F ′)n−1. Clearly F ′(M ′) ⊆ M ′, which can be
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isoclinicrewritten as (p−rF s)h+1(M ′) ⊆ p−1 ·M ′. Hence by (i) there exists a lattice M ′′ ⊂ N with

p−rF s(M ′′) ⊆M ′′. �

We are now ready to prove that the first Newton slope is a rational number, and that, for

a suitable choice of a lattice, the limit value λ1 = limn→∞ ord(FnM )/n is already attained for a

finite n.

(15.25) Proposition. Let (N,F ) be a σa-F -isocrystal of height h over k. Let d := orddet(F ).ordFs=rProp

Then there exist integers r and s with 0 < s 6 h and r 6 d and a W -lattice M ⊂ N such that

λ1(N,F ) = r/s and ord(F sM ) = r. In particular, λ1 ∈ Q6d/h.

Proof. We begin by choosing integers r and s with 1 6 s 6 h and |λ1 − (r/s)| 6 1/s(h + 1);

see Exercise (15.2) for the existence of such r and s. Let F ′ := p−rF s. By Lemma (15.23)

we have |λ1(N,F
′)| = |sλ1(N,F ) − r| 6 1/(h + 1). By (ii) of Lemma (15.24) the inequality

λ1(F
′) > −1/(h+1) implies that there exists a W -lattice M ′ ⊂ N with (F ′)h+1

(
M ′
)
⊆ p−1 ·M ′.

Then part (i) of the lemma tells us that there also exists a W -lattice M ⊂ N with F ′(M) ⊆M ,

so in particular λ1(F
′) > 0. Precisely the same argument applies to F ′′ := (F ′)−1; this gives

that λ1(F
′) = −λ1(F

′′) 6 0. Hence λ1(F
′) = 0, and because by the first inequality in (1) we

have 0 6 ord(F ′M ) 6 λ1(F
′) it also follows that ord(F ′M ) = 0. Translating back to the original F ,

again using Lemma (15.23), we find that λ1(F ) = r/s and ord(F sM ) = r. In particular λ1 ∈ Q,

and because λ1 6 d/h and 1 6 s 6 h we must have r 6 d. �

(15.26) Corollary. Situation as in (15.25). If there exists integers r and s > 0 and a latticeordFs=rCor

M ⊂ N with F s(M) = pr ·M then λ1(N,F ) = r/s = d/h and Fh(M) = pd ·M . Conversely, if

λ1(N,F ) = d/h then there exists a lattice M ⊂ N such that Fh(M) = pd ·M .

Proof. If F s(M) = pr · M then it follows directly from the definition that λ1(N,F ) = r/s.

Further we then have

rh = χ(M : pr ·M) = χ
(
M : F s(M)

)
= s · χ

(
M : F (M)

)
= sd ,

where we recall that χ
(
M : F (M)

)
= orddet(FM ). (See also Exercise (15.1).) Conversely, if

λ1(N,F ) = d/h then by (ii) of Lemma (15.24) there exists a W -lattice M with Fh(M) ⊆ pd ·M .

But

χ
(
pdM : Fh(M)

)
= χ

(
M : Fh(M)

)
− χ(M : pdM) = h · χ

(
M : F (M)

)
− dh = 0

so indeed Fh(M) = pd ·M . �

(15.27) Definition. Let (N,F ) be a σa-F -isocrystal of height h over k, and let d := orddet(F ).IsoclinicDef

Then (N,F ) is said to be isoclinic, of slope d/h, if λ1(N,F ) = d/h, or, equivalently, if there exist

integers r and s > 0 (necessarily with r/s = d/h) and a lattice M ⊂ N such that F s(M) = pr ·M .

As we shall discuss in () below, if (N,F ) is isoclinic and M ⊂ N is a lattice with F s(M) =

pr ·M then the Hodge polygon of (M,F ) coincides with its Newton polygon, and this polygon

has only one slope, viz. d/h.

(15.28) Proposition. Let k be a perfect field of characteristic p.HomIsoclinics

(i) If (N,F ) is an isoclinic σa-F -isocrystal over k then any sub-isocrystal and quotient-

isocrystal of (N,F ) is isoclinic too, of the same slope.
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(ii) If (N1, F1) and (N2, F2) are isoclinic σa-F -isocrystals over k of different slopes then

Homσa-F -Iso
/k

(
(N1, F1), (N2, F2)

)
= 0.

(iii) Given a σa-F -isocrystal (N,F ) over k and a slope λ ∈ Q, there exists a unique maximal

sub-isocrystal of (N,F ) that is isoclinic of slope λ.

Proof. (i) Let M ⊂ N be a W -lattice with Fh(M) = pd · M . If N ′ ⊂ N is an F -stable

subspace, let M ′ := N ′ ∩M , which is a W -lattice in N ′. Then Fh(M ′) = Fh(N ′ ∩ M) =

N ′ ∩ Fh(M) = N ′ ∩ pd ·M = pd · (N ′ ∩M) = pd ·M ′, so indeed (N ′, F|N ′) is again isoclinic

of slope d/h. Similarly, if q: N →→ N ′′ is a quotient then M ′′ := q(M) is a lattice in N ′′ and

Fh(M ′′) = Fh
(
q(M)

)
= q

(
Fh(M)

)
= q(pd ·M) = pd · q(M) = pd ·M ′′. The assertions in (ii)

and (iii) readily follow from (i). �

(15.29) Example. Let λ ∈ Q, and write λ = d/h with h > 0 and gcd(d, h) = 1. Define, forNlambdaExa

a ∈ Z \ {0}, a σa-F -crystal Mλ over k by taking Mλ := W · e1 ⊕ · · · ⊕W · eh with

F (ei) =

{
ei+1 if 1 6 i < h;

pd · e1 if i = h.

In terms of (left) modules over the ring W [F ] = W [F ;σa] we can also say that we take Mλ :=

W [F ]/W [F ] · (Fh− pd). It is clear that Fh = pd on Mλ, so Mλ is isoclinic of slope λ. It follows

from (i) of the proposition that the corresponding isocrystal Nλ := L⊗W Mλ is simple, because

if N ′ ⊂ Nλ is a subobject, say of height h′ and with orddet(F|N ′) = d′, then d′/h′ = d/h,

which by the assumption that gcd(d, h) = 1 is possible only if h′ = h, so N ′ = Nλ.

If there is a risk of confusion we shall use the notation N
(a)
λ to indicate the exponent a.

Using the description Nλ = L[F ]/L[F ] · (Fh − pd) with L[F ] = L[F ;σa] it is not hard to

calculate the endomorphism algebra of Nλ. We shall first do this under the assumption that k

contains a field with pah elements.

An endomorphism α ∈ Endσa-F -Iso
/k
(Nλ) is completely determined by α(1̄), and this

should be a class representable by a polynomial f = c0+c1F+· · ·+ch−1F
h−1 with (Fh−pd)·f ∈

L[F ] · (Fh − pd). But (Fh − pd) · f is the class represented by

(
σah(c0)− c0

)
pd +

(
σah(c1)− c1

)
pd · F + · · · +

(
σah(ch−1)− ch−1

)
pd · Fh−1 ,

so as a necessary and sufficient condition for f to give an endomorphism we find that σah(ci) = ci
for all i ∈ {0, 1, . . . , h1}. Note that if α is the endomorphism sending 1̄ to f̄ and β is the

endomorphism sending 1̄ to ḡ, then β ◦α sends 1̄ to the class of fg. The fixed field of σah in L

can be identified with Qpah , the fraction field of W (Fpah). (Here we use the assumption that

k ⊇ Fpah .) Then the conclusion is that

Endσa-F -Iso
/k
(Nλ) =

(
Qpah [F ;σa]/(Fh − pd)

)opp

.

Note that Fh−pd lies in the centre of Qpah [F ;σa], so it generates a 2-sided ideal. One recognizes

Qpah [F ;σa]/(Fh−pd) as the cyclic algebra (Qpah/Qpa , σa, pd), which is the division algebra with

centre Qpa and invariant λ = d/h in the Brauer group Br(Qpa); cf. Appendix A, especially (A.5)

and (A.6). Hence Endσa-F -Iso
/k
(Nλ) is the central simple algebra over Qpa with Brauer invariant

−d/h. Note that in this case we know that the endomorphism algebra is a division algebra (and

not just a simple algebra) because Nλ is simple.

The situation is a little more subtle if we work over a field k that does not contain Fpah .

For instance, suppose a = 1. Let k0 ⊂ k, the algebraic part of the extension Fp ⊂ k, be the
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slopelargest subfield of k that is finite. Let pm be the cardinality of k0 and let h′ := gcd(h,m).

The fixed field of σh in L can be identified with Qph′ , and the above calculation now gives that

Endσa-F -Iso
/k
(Nλ) is the opposite of the algebra Qph′ [F ;σ]/(Fh − pd). The latter is the cyclic

algebra (Qph′/Qp, σ, p
d), which is the division algebra with centre Qp and Brauer invariant d/h′.

For the general case see Exercise (15.3).

(15.30) Theorem. (Slope decomposition) Let (N,F ) be a σa-F -isocrystal over a perfect field kSlopeDec

of characteristic p. For λ ∈ Q let (Nλ, F ) be the maximal sub-isocrystal that is isoclinic of

slope λ. Then we have a decomposition of σa-F -isocrystals (N,F ) = ⊕λ∈Q (Nλ, F ).

The decomposition thus obtained is referred to as the slope decomposition of (N,F ). Note

that this is a theorem about isocrystals, i.e., crystals up to isogeny. If (M,F ) is a σa-F -crystal

and if we write N := MQ then Mλ := M ∩Nλ is a W -lattice in Nλ and (Mλ, F ) is a sub-crystal

of (M,F ). However, in general the inclusion ⊕λ∈QMλ →֒ M is not an isomorphism, only an

isogeny. Under some further assumptions it is sometimes possible to obtain a decomposition at

the level of the crystal; see for instance Katz [2], Thm. 1.6.1 on “Newton-Hodge decompositions”.

Proof. Write λ1(N,F ) = r/s. Consider the isocrystal (N ′, F ′) := (N, p−rF s), which by

Lemma (15.23) has first Newton slope λ1(N
′) = 0. Suppose we know the theorem for (N ′, F ′); so

we have a slope decomposition N ′ = ⊕ν∈QN
′
ν . By (ii) of Proposition (15.28) the endomorphism

F ∈ Endσa-F -Iso
/k

(
(N ′, F ′)

)
respects this slope decomposition, so (N ′ν , F ) is a sub-isocrystal

of (N,F ). Writing ν = a/b there exists a W -lattice M ⊂ N ′ν with (F ′)b
(
M
)

= pa ·M . Hence

F bs(M) = pa+rb ·M , so (N ′ν , F ) is isoclinic of slope (a+rb)/sb = (ν+r)/s. If we set Nλ := N ′sλ−r
then N = ⊕λ∈QNλ is the desired slope decomposition of N .

In the rest of the proof we may assume that λ1(N,F ) = 0. Using induction on the height

of (N,F ) we are done if we can show that there is a decomposition of isocrystals (N,F ) =

(Nét, F )⊕ (N ′, F ) with (Nét, F ) isoclinic of slope 0 and λ1(N
′, F ) > 0.

By (ii) of Lemma (15.24) there exists a W -lattice M ⊂ N such that F (M) ⊆ M . (I.e.,

(N,F ) is effective.) For each n ∈ N we have that M/pnM is a module of finite length over the

ring W [F ;σa]. Put

(M/pnM)ét := ∩i>1 Im(F i) and (M/pnM)′ := ∪i>1 Ker(F i) .

Then (M/pnM)ét and (M/pnM)′ are stable under F , and we have a Fitting Decomposition

M/pnM = (M/pnM)ét ⊕ (M/pnM)′ ;

see e.g. Lam [1], Thm (19.16). It follows that (M/pnM)ét is the largest submodule of M/pnM

on which F is bijective.

Let π: M/pn+1M →M/pnM be the canonical map. It is clear that π maps (M/pn+1M)ét
to (M/pnM)ét and (M/pn+1M)′ to (M/pnM)′. Hence by passing to the limit we obtain a

decomposition

M = lim
←− M/pnM = Mét ⊕M ′ with Mét := lim

←− (M/pnM)ét and M ′ := lim
←− (M/pnM)′ .

By construction this gives a decomposition of σa-F -crystals (M,F ) = (Mét, F )⊕(M ′, F ) with F

bijective on Mét, so (Mét, F ) is isoclinic of slope 0. Further, for r sufficiently big we have F r = 0

on (M/pM)′, as M/pM has finite length. This means that F r(M ′) ⊂ pM ′, so λ1(M
′
Q, F ) > 0.

Hence by passing to isocrystals we obtain the desired decomposition of (N,F ). �
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Newton

Newton

(15.31) Definition. Let (N,F ) be a σa-F -isocrystal over k. Consider its slope decopositionNPDef

(N,F ) = ⊕λ∈Q (Nλ, F ). We define the Newton polygon of (N,F ) to be the polygon whose

slopes are the numbers λ ∈ Q with Nλ 6= 0, and where we take each λ with multiplicity mλ

equal to the height of (Nλ, F ) (i.e, the L-dimension of Nλ).

If (M,F ) is a σa-F -crystal then we define its Newton polygon to be the Newton polygon of

the associated isocrystal (MQ, F ).

By its very definition, the Newton polygon is an isogeny invariant. There are subtle relations

between the Hodge polygon and the Newton polygon of a crystal; we shall further investigate

these in ?? below. The Newton polygon is invariant under extension of the base field.

We refer to the slopes in the Newton polygon of an isocrystal simply as the Newton slopes

and we denote by mλ = mλ(N,F ) ∈ Z>0 the multiplicity of λ as a slope in the Newton polygon

of (N,F ).

Observe that the breakpoints of the Newton polygon are integral, i.e., lie in Z2. Indeed,

if (N,F ) is isoclinic of slope λ and height h then we have seen in Corollary (15.26) that hλ =

orddet(F ) ∈ Z. So each isoclinic piece contributes to the Newton polygon a segment of integral

horizontal length (the height) and integral vertical length (the p-adic order of det(F )).

Intuitively, the Newton slopes are the valuations of the eigenvalues of F . Note that, because

the map F : N → N is σa-linear, there is no well-defined notion of an eigenvalue. In order to

make precise in what way we can still talk about the valuations of the eigenvalues, we consider

a purely ramified extension L ⊂ L′ = L
[

e
√
p
]

where the ramification index e is chosen such that

eλi ∈ Z for all Newton slopes λi. We extend σ to an automorphism of L′ by the requirement

that σ
(

e
√
p
)

= e
√
p. Then we can find a basis of L′⊗LN on which the matrix of σa⊗F is upper

triangular of the form



pλ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

pλ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
pλ2 ∗ ∗ ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗ ∗ ∗
pλ2 ∗ ∗ ∗ ∗

∗ ∗ ∗
0

. . . ∗ ∗
∗
pλt




with pλi :=
(

e
√
p
)eλi

. See Exercise (15.4). So in this sense the Newton slopes may indeed be

thought of as the valuations of the eigenvalues of F . Some care has to be taken here, though.

If we simple choose any basis for N , let Φ be the matrix of F with respect to this basis, and

then calculate the eigenvalues of Φ in some algebraic closure L of L, then it is not true, in

general, that the valuations of these eigenvalues give the correct Newton slopes. See however

Theorem (15.35) below, where we obtain a positive result in this direction for isocrystals over a

finite field.

Our next goal is to prove an important theorem of Dieudonné [1] that gives a complete and

explicit classification of isocrystals over an algebraically closed field. As explained earlier, the

advantage of working with general σa-F -isocrystals is that we can easily reduce the proof to a

problem about isocrystals of slope 0. In that case everything boils down to a concrete statement

in semilinear algebra, which we now prove first.
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(15.32) Lemma. Let k be an algebraically closed field of characteristic p. Let ν ∈ Z\{0}, andDThmLemma

write F ⊂ k for the unique subfield with p|ν| elements.

(i) Let V be a finite dimensional k-vector space, and let ϕ: V → V be a bijective Frobνk-

linear map. Further let V0 :=
{
v ∈ V

∣∣ ϕ(v) = v
}
, which is an F-subspace of V . Then the

natural map k ⊗F V0 → V is an isomorphism.

(ii) Let M be a free W (k)-module of finite rank, and let F : M →M be a bijective σν -linear

map. Further let M0 :=
{
m ∈ M

∣∣ F (m) = m
}
, which is a W (F)-submodule of M . Then the

natural map W (k)⊗W (F) M0 →M is an isomorphism.

Proof. (i) We assume that V 6= 0; otherwise there is nothing to prove. Further we can assume

that ν > 0, as the assertion about (V,ϕ) follows from the statement for (V,ϕ−1). We begin by

showing that V0 6= 0. Start with any 0 6= v ∈ V . Let n be the largest positive integer such that

the vectors v, ϕ(v), . . . , ϕn(v) are linearly independent. Then there is a relation

ϕn+1(v) = cnϕ
n(v) + cn−1ϕ

n−1(v) + · · ·+ c1ϕ(v) + c0v .

For 0 6 i 6 n, let di := ci+c
p
i−1+· · ·+cp

i

0 . By direct calculation one finds that w :=
∑n
i=0 diϕ

i(v)

satisfies ϕ(w) = w. Further, as the coefficients ci are not all zero, the same is true for the

coefficients di, so w is a nonzero element in V0.

The natural map k ⊗F V0 → V is injective. Write kV0 for the image. If kV0 ( V then

V := V/kV0 is a nonzero k-vector space, on which we have an induced map ϕ. Applying what

we have just proved to the pair (V ,ϕ), there is a nonzero w ∈ V with ϕ(w) = w. We are done

if we can show that w can be lifted to an element v ∈ V with ϕ(v) = v. Start with any v ∈ V
lifting w. Then x := ϕ(v) − v ∈ kV0. For any y ∈ kV0 the element v′ = v + y is again a lifting

of w, and ϕ(v′) − v′ = ϕ(v) − v + ϕ(y) − y = x + ϕ(y) − y. So it suffices to show that the

map kV0 → kV0 given by y 7→ ϕ(y) − y is surjective. But this is clear, for if e1, . . . , er is an

F-basis of V0 then kV0
∼= ke1 + · · · + ker, with ϕ given by (y1, . . . , yr) 7→ (yp

ν

1 , . . . , yp
ν

r ). So if

x = (x1, . . . , xr) then we have to solve the equations yp
ν

i − yi + xi = 0, and this can be done

because ν > 0 and k = k.

(ii) As in the proof of (i) we may assume that ν > 0. Let W := W (k), and let τ := σν . As

the map W ⊗W (F) M0 →M is injective, we are done if we can show that M0 spans M over W .

Write V := M/pM , and let ϕ: V → V be the map induced by F . Let ε = {e1, . . . , er}
be a W -basis for M such that the elements ei mod p form a k-basis for V0; this is possible

by (i). Let Φ be the matrix of F with respect to the basis ε. By construction Φ ≡ id mod p.

If A = (aij) is a matrix in GLr(W ) then the matrix of F with respect to the basis Aε is

A−1Φ τA; here τA =
(
τ(aij)

)
. By induction on n we construct matrices An ∈ GLr(W ) such

that An+1 mod pn = An mod pn and A−1
n Φ τAn ≡ id mod pn. For n = 1 we can take A1 = id.

Suppose we have already found A1, . . . , An with the desired properties. Let Ψ = (ψij) ∈Mn(W )

be the matrix with A−1
n Φ τAn = id + pn · Ψ. Because k = k there exist elements bij ∈ W such

that their reductions bij modulo p satisfy b
pν

ij − bij + ψij = 0. Set An+1 := An · (id + pnB) with

B = (bij). Note that An+1 is again invertible because det(An+1) ≡ det(An) mod pn and n > 1.

Also note that A−1
n+1 ≡ (id− pnB) · A−1

n mod pn+1. Hence calculating modulo pn+1 we find

A−1
n+1Φ

τAn+1 ≡ (id − pnB)(id + pnΨ)(id + pn · τB) ≡ id + pn · (Ψ + τB −B) ,

and by our choice of the matrix B the term (Ψ + τB − B) vanishes modulo p. So we can take

An+1 as the next term in the sequence.

Finally let A∞ ∈ GLr(W ) be the limit of the sequence (An), where we note that this limit

is again invertible because det(A∞) ≡ det(A1) = 1 mod p. By construction, the matrix of F
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on the basis A∞ · ε is the identity matrix. So M has a W -basis contained in M0 and we are

done. �

(15.33) Theorem. (Dieudonné) Let k = k be an algebraically closed field of characteristic p,ThmDieudonne

and let a ∈ Z \ {0}. Then the category σa-F -Isoc/k is semisimple. The simple objects are the

isocrystals Nλ, for λ ∈ Q, defined in Example (15.29). If (N,F ) is any σa-F -isocrystal over k

then we have

(N,F ) ∼=
⊕

λ∈Q

N
⊕

mλ
h(λ)

λ ,

where h(λ) = dimL(Nλ) is the height of Nλ, and where mλ = dimL(Nλ) ∈ Z>0 is the multi-

plicity of λ as a Newton slope of (N,F ).

Proof. We already know that the isocrystals Nλ are simple, so it suffices to show that every

σa-F -isocrystal (N,F ) is isomorphic to a direct sum of objects Nλ. By Theorem (15.30) it

suffices to prove this under the additional assumption that (N,F ) is isoclinic, of slope λ.

Write λ = d/h with h > 0 and gcd(d, h) = 1, and write Nλ = L[F ;σa]/(Fh − pd). (So

h = h(λ) is the height of Nλ, not of (N,F ).) Write H := Homσa-F -Iso
/k

(
Nλ, (N,F )

)
. We

have an isomorphism H
∼−→ N0 :=

{
n ∈ N

∣∣ Fh(n) = pd · n
}

by sending f to f(1). This is an

isomorphism of left modules over the ring

B := Qpah [F ;σa]/(Fh − pd) = Endσa-F -Iso
/k
(Nλ)

opp ,

which, as we have seen in Example (15.29), is the division algebra with centre Qpa and Brauer

invariant d/h.

The main point of the proof is that the B-dimension of N0 equals mλ/h, with mλ =

dimL(N), the height of (N,F ). As B has dimension h over its subfield Qpah this is equivalent to

the assertion that dimQ
pah

(N0) = dimL(N). To see this, consider F ′ := p−d · Fh. Then (N,F ′)

is an isoclinic σah-F -isocrystal of slope 0, so there exists a W -lattice M ⊂ N with F ′(M) = M .

Now M0 := N0 ∩M is a W (Fpah)-lattice in N0, and by (ii) of Lemma (15.32) the rank of M0

over W (Fpah) equals rankW (M) = dimL(N). So indeed dimB(N0) = mλ/h.

To conclude the argument, write t := mλ/h and choose a B-basis e1, . . . , et for H ∼= N0. We

claim that the map ρ: N
⊕t
λ → (N,F ) given by (y1, . . . , yt) 7→ e1(y1) + · · · + et(yt) is injective.

By what we have shown, N t
λ and N have the same dimension, so the claim implies that ρ is an

isomorphism, which is what we want to prove.

We view ρ as a homomorphism of modules over the ring L[F ;σa], which is artinian because

it has finite dimension over L. Suppose Ker(ρ) 6= 0. Choose a simple submodule N ′ ⊂ Ker(ρ).

Because Nλ is simple, the Jordan-Hölder Theorem (see e.g. ??) implies that N ′ ∼= Nλ as

L[F ;σa]-modules. Hence they are also isomorphic as σa-F -isocrystals, say by an isomorphism

γ: Nλ
∼−→ N ′. If j: N ′ →֒ N t

λ is the inclusion, the composition j ◦γ: Nλ →֒ N t
λ is given by a

t-tuple (b1, . . . , bt) ∈ Bt with bi 6= 0 for at least one index i. By construction, b1e1 + · · · btet = 0.

This contradicts the assumption that the elements ei form a B-basis for H. Hence ρ is injective,

and this finishes the proof. �

(15.34) Remarks. (i) The statements in the theorem do not hold for a = 0 !ThmDieudRem

(ii) Let k be an arbitrary perfect field of characteristic p. Let (N,F ) be a σa-F -isocrystal

over k. In general there is no finite extension of k over which (N,F ) becomes isomorphic to a

direct sum of objects Nλ. Further the category σa-F -Isoc/k is in general not semisimple. For
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instance, consider the F -isocrystal (N,F ) over Fp with N = Q2
p and F given on the standard

basis {e1, e2} by the matrix
(

1
0

1
1

)
. Then (N,F ) is isoclinic of slope 0 (note that F maps the

standard lattice Z2
p bijectively to itself), and it is clear that (Qpe1, F ) is a sub-isocrystal. Now

we extend scalars to a finite field Fq with q = pm, and we try to find a γ ∈ L = Qpm such that(
L · (γe1 +e2), F

)
is a complementary sub-isocrystal. The condition we find is that γ = σ(γ)+1.

In W (Fq) this has no solution, because by iteration we get

γ = σ(γ) + 1 = σ2(γ) + 2 = · · · = σm(γ) +m = γ +m,

which leads to a contradiction. So (N,F ) is not a semisimple object in F -Isoc/Fq
for any q, and

in particular it is not isomorphic to N
⊕2

0 . The equation γ = σ(γ) + 1 does have a solution

in W (Fp), but if we write a solution γ as a Witt vector, γ = (γ0, γ1, . . .) then the coefficients

γi ∈ Fp have unbounded degrees over Fp.

(15.35) Theorem. Let (N,F ) be a σa-F -isocrystal of height h over a finite field Fq withNewtPol/Fq

q = pm. Let π := Fm, which is an L-linear endomorphism of N , and let f = det(t · idN − π) be

its characteristic polynomial, which is a monic polynomial of degree h. Let {αa, . . . , αh} be the

multiset of roots of f in some fixed algebraic closure L ⊂ L. If ord: L
∗ → Q is the valuation with

ord(p) = 1 then the slopes of the Newton polygon of (N,F ) are the numbers ord(αi)/ord(q),

counted with their multiplicities.

Proof. Without loss of generalization we may assume that (N,F ) is isoclinic, say of slope λ = d/h.

We have to show that for all roots α of h we have h · ord(α) = d · ord(q). Write F ′ := p−dFh.

Then (N,F ′) is isoclinic of slope 0 and q−dαh is a root of the characteristic polynomial of

π′ := (F ′)m = q−d · πh. On the other hand, because (N,F ′) is isoclinic of slope 0 there exists

a W (Fq)-lattice M ⊂ N with F ′(M) = M . Hence also π′(M) = M , so all eigenvalues of π′

are units in OL, as both π′ and (π′)−1 are integral over W (Fq). This gives the desired relation

−d · ord(q) + h · ord(α) = 0. �

We now combine the theorem with a classical method, called the Newton polygon method,

to determine the valuations of the roots of a polynomial over a p-adic field in terms of its

coefficients. See for instance Neukirch [1], Chap. II, § 6. This gives us the following efficient way

of calculating the Newton polygon of (N,F ) over Fq once we know the characteristic polynomial

of π = Fm.

(15.36) Corollary. Situation as in (15.35). Write the characteristic polynomial of π as f =NPFqAlgo

cht
h + ch−1t

h−1 + · · · + c1t + c0; in particular ch = 1. Then the Newton polygon of (N,F ) is

obtained by taking the lower convex hull of the set of points
(
i, ord(ch−i)

ord(q)

)
for i = 0, 1, . . . , h with

ch−i 6= 0.

(15.37) Example. Suppose we work over Fp and the characteristic polynomial of F = π isNPFqExa

f = t12 + t11 + p4t10 + pt9 + pt8 + p2t6 + p4t5 + p3t4 + p4t3 + p7t2 + p5t+ p6 .

We draw in the plane the points
(
i, ord(c12−i)

)
, where ci is the coefficient of ti, and, within the

region
{
(x, y) ∈ R2

∣∣ 0 6 x 6 12
}
, we take the lower convex hull of this set of points. Note that

we simply omit the point
(
5, ord(c7)

)
, as c7 = 0; if we wanted to give meaning to this point it
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would have to be (5,∞), which has no effect on the lower convex hull anyway.

Then the Newton polygon of (N,F ) is the boundary of this region, discarding the vertical

halflines at x = 0 and x = 12.

So the conclusion is that after extension of scalars to Fp, our isocrystal (N,F ) is isomorphic to

N0 + N1/3 + N
⊕2

1/2 + N2/3 + N1.

(15.38) Remark. Let (N1, F1) and (N2, F2) be two F -isocrystals over a finite field Fq, withFIsocFqRem

q = pm. Let πi := Fmi , for i = 1, 2, be the associated linear automorphism of Ni, and regard

Ni as a module over Qpm [t] by letting t act as πi. Then (N1, F1) and (N2, F2) are isomorphic as

F -isocrystals if and only if N1 and N2 are isomorphic as Qpm [t]-modules. For a proof, by purely

ring-theoretic methods, see Jacobson [1], Corollary to Thm. 33.

(15.39) Theorem. Let (M,F ) be a σa-F -crystal of height h over k. Then the Newton polygonNewton>Hodge

of (M,F ) lies on or above its Hodge polygon, and the two polygons have the same begin point,

namely (0, 0), and end point, namely
(
h, orddet(F )

)
.

Proof. We may assume that k = k. Let r1 = µ1(M,F ) 6 r2 6 · · · 6 rh be the Hodge slopes and

s1 = λ1(M,F ) 6 s2 6 · · · 6 sh the Newton slopes. Let Hodge: [0, h]→ R and Newton: [0, h]→
R be the functions whose graphs are the Hodge and Newton polygons, respectively. Both

functions are linear on intervals [i, i+ 1], and by definition we have Hodge(i) = r1 + · · · + ri
and Newton(i) = s1 + · · · + si. As remarked in (15.16) we have Hodge(i) = µ1(∧iM,∧iF ),

the first Hodge slope of ∧iM . We claim that, similarly, we have Newton(i) = λ1(∧iM,∧iF ),

the first Newton slope of ∧iM . To see this, let R be a common denominator for the Newton

slopes. By Theorem (15.33) there is an L-basis e1, . . . , eh for MQ on which FR is given by the

diagonal matrix with diagonal coefficients pRsi . From this our claim readily follows, using that

(∧iF )R = ∧i(FR), and using Lemma (15.23).

As remarked in (15.22) we have λ1 > µ1 for any σa-F -crystal. Applying this to the exterior

powers of (M,F ) we find that Newton(i) > Hodge(i) for all i ∈ {0, 1, . . . , h}, so indeed the
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ordinary

supersingular

Newton polygon is on or above the Hodge polygon. By definition both polygons start at (0, 0).

Taking i = h in the above, we find that the assertion that the polygons have the same end point

just means that µ1(detM,detF ) = λ1(detM,detF ), which is clear as detM has rank 1; cf.

Remark (15.22). �

§3. The Newton polygon of an abelian variety.

(15.40) Definition. Let X be an abelian variety of dimension g over a field of characteristicOrdSSDef

p > 0. Then X is said to be ordinary if its Newton polygon is given by 0g1g; this is equivalent

to the condition that f(X) = g. We say that X is supersinguar if its Newton polygon is given

by (1/2)2g .

In Figures 1 and 2 we give, for dimensions up to 4, the complete list of possible Newton

polygons. The arrows indicate which specializations are possible according to ??; as we shall

discuss in ?? these specializations all indeed occur. The dotted polygons are the Hodge polygons.

For g = 4 we also give the p-rank.

Exercises.

(15.1) Let (M,F ) be a σa-F -crystal over a perfect field k.Ex:chiMFsM

(i) Show that χ
(
M : F (M)

)
= orddet(F ).

(ii) Show that χ
(
M : F s(M)

)
= s · χ

(
M : F (M)

)
for all s > 1.

(15.2) Let λ be a real number, and let h > 1 be an integer. Show that there exist integers rEx:Approximate

and s with 1 6 s 6 h and |λ− (r/s)| 6 1/s(h+ 1).

(15.3) Let λ = d/h with h > 0 and gcd(d, h) = 1. Let a ∈ Z \ {0}, let k be a perfect field ofEx:EndNlambda

characteristic p, and consider the σa-F -isocrystal Nλ defined in Example (15.29). Let k0 ⊂ k

be the largest subfield that is finite, and let pm be its cardinality. Define δ := gcd(a,m).

Show that Endσa-F -Iso
/k
(Nλ) is the division algebra with centre Qpδ and Brauer invariant

−d/[(a/δ) · gcd(h,m/δ)].

(15.4) Consider a σa-F -isocrystal (N,F ) over a perfect field k of characteristic p. Let L be theEx:Fuptriang

fraction field of W (k) and let σ be its Frobenius automorphism.

(i) If (N,F ) is isoclinic of slope 0, show that there exists a basis for N on which the matrix

of F is upper triangular with all diagonal coefficients equal to 1. [Hint: Look at the proof

of Lemma (15.32), part (i).]

(ii) For a general (N,F ), let λ1 < λ2 < · · · < λt be the Newton slopes, and let e be a common

denominator of the λi. (So eλi ∈ Z for all i; for instance one can take e = h!, where h is

the height). Consider the purely ramified extension L ⊂ L′ := L[X]/(Xe − p). Let u ∈ L′
be the class of X; so “ u = e

√
p ”. For any λ ∈ Q with eλ ∈ Z, write pλ := ueλ. Extend σ

to an automorphism of L′ by the requirement that σ(u) = u. Show that there is a basis of

L′ ⊗L N on which the matrix of σa ⊗ F is upper triangular with diagonal coefficients pλi .

[Hint: First reduce to the isoclinic case. If (N,F ) is isoclinic of slope r/s, first apply (i)

to find a vector n ∈ N with F s(n) = pr · n. Now argue as in the proof of Lemma (15.32),
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Figure 1. Newton polygons and their specializations for g = 1, 2 and 3.
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Figure 2. Newton polygons and their specializations for g = 4.
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Chapter XVI. Abelian Varieties over Finite Fields.

As the theme of this chapter is that of abelian varieties over a finite field k, it will come as no

surprise that the main character of this chapter is the geometric Frobenius morphism πX of an

abelian variety X relative to k (which raises the coordinates of a point to the exponent #k).

The first goal is to understand the eigenvalues of the induced action by Frobenius on the Tate

modules of an abelian variety and on the p-visible group with p = char(k). Then we characterize

the homomorphisms between abelian varieties by the induced Galois module homomorphisms of

the corresponding Tate modules and we study the endomorphism algebras. After this we describe

which numbers occur as eigenvalues of Frobenius. We also deal with the question which rings

occur as endomorphism rings. We illustrate the result with the case of elliptic curves. We finish

with a description of the category of abelian varieties over a finite field using the canonical lift.

The finiteness of the ground field plays an important role in the following way. If we fix the

cardinality of the finite field k then it is a fundamental fact that the number of k-isomorphism

classes of g-dimensional abelian varieties with a polarization of degree d2 defined over k is finite.

This follows from the fact that if λ: X → Xt denotes such a polarization of degree d2 then 3λ

defines an embedding of X into a fixed projective space of dimension 3gd − 1 as a variety of

degree 3gd (g!). A general theorem (cf. ??) says that there exists a scheme (Chow scheme)

of finite type that parametrizes all varieties of fixed dimension g and fixed degree in projective

space. This scheme has only finitely many points over k. Alternatively, the existence of a moduli

space of abelian varieties with a given polarization implies the result.

§1. The eigenvalues of Frobenius.

(16.1) Let q = pm be a power of a prime number. As customary, Fq denotes the field with qGeomFrobDef

elements. We fix an algebraic closure Fq ⊂ Fq. For any n ∈ Z>0 we take Fqn to be the unique

subfield of Fq with qn elements.

For any scheme X over Fq we have a morphism πX : X → X over Fq, called the geometric

Frobenius of X, which is defined to be the identity on the underlying topological space and

is given by f 7→ f q on (sections of) the structure sheaf OX . In particular, on affine schemes

Spec(A) the geometric Frobenius corresponds to the endomorphism of A given by a 7→ aq. If

there is a need to indicate the ground field, we shall write πX/Fq
instead of πX .

As is clear from the definitions, for a finite extension Fq ⊂ Fqn the geometric Frobenius

of X ⊗ Fqn over Fqn equals πnX , the nth power of πX . More formally, we have the relation

π(X⊗Fqn)/Fqn = πnX/Fq
⊗ id as morphisms from X ⊗ Fqn to itself.

We can also describe the geometric Frobenius as an “iterated relative Frobenius”. To be

precise, if q = pm then πX equals the composition

X
FX/Fq−−−−→ X(p)

F
X(p)/Fq−−−−−−→ X(p2)

F
X(p2)/Fq−−−−−−−→ · · ·

F
X(pm−1)/Fq−−−−−−−−−→ X(pm) ,

where we note that X(pm) = X(q) = X. So in the notation of (5.21) we have πX = FmX/Fq
.

AVFF, 8 februari, 2012 (635)
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If f : X → Y is any morphism of Fq-schemes then πY ◦f = f ◦πX . In particular, if Fq ⊂ k

is a field extension then πX acts on the set X(k) of k-valued points by sending x: Spec(k)→ X

to πX ◦x, which equals the composition

Spec(k)
πSpec(k)−−−−−→ Spec(k)

x−→ X .

More concretely, if we have an embedding X →֒ PN over Fq then πX acts by raising all coordi-

nates to the qth power, i.e., πX
(
(a0 : · · · : aN )

)
= (aq0 : · · · : aqN ). As Fqn =

{
a ∈ Fq

∣∣ aqn

= a
}
,

it follows that X(Fqn) is the set of fixed points of πnX acting on X(Fq); so

X(Fqn ) =
{
x ∈ X(Fq)

∣∣ πnX(x) = x
}
.

(16.2) Let X be an abelian variety of dimension g over Fq. As the origin of X is an Fq-rationalGeomFrobAV

point, it is fixed under πX . Hence πX is an endomorphism of X as an abelian variety. The

description of πX as an iterated relative Frobenius, together with Proposition (5.15), shows that

πX is a purely inseparable isogeny of degree qg.

As mentioned above, for any morphism f : X → Y of schemes over Fq we have f ◦πX =

πY ◦f . In particular, πX commutes with all endomorphisms of X, and lies therefore in the centre

of the endomorphism algebra End0(X).

We write fX = PπX
for the characteristic polynomial of πX . It is a monic polynomial of

degree 2g with coefficients in Z, and for any n ∈ Z we have fX(n) = deg(n − πX). For any

prime number ℓ 6= p we know by Theorem (12.18) that fX is also the characteristic polynomial

of the induced endomorphism Tℓ(πX) of the Tate module TℓX. We usually refer to fX as the

characteristic polynomial of Frobenius, with the understanding that the “Frobenius” in question

is the geometric Frobenius endomorphism.

(16.3) Proposition. Let X be an abelian variety over Fq.piXsemisimple

(i) Let ℓ be a prime number, ℓ 6= p. Then Vℓ(πX) is a semisimple automorphism of VℓX.

(ii) Assume X is elementary over Fq (i.e., isogenous to a power of a simple abelian variety).

Then Q[πX ] ⊂ End0(X) is a field, and fX is a power of the minimum polynomial fπX

Q of πX
over Q.

Proof. (i) As remarked above, πX lies in the centre of End0(X), which is a product of number

fields. Hence Q[πX ] ⊂ End0(X) is a product of (number) fields, too. It follows that also

Qℓ[πX ] ⊂ Qℓ ⊗ End0(X) is a product of fields; in particular Qℓ[πX ] is a semisimple ring. Now

VℓX is a module of finite type over Qℓ[πX ], with πX acting as the automorphism Vℓ(πX). Hence

VℓX is a semisimple Qℓ[πX ]-module, and this means that Vℓ(πX) is a semisimple automorphism.

(ii) If X is elementary then the centre of End0(X) is a field, so also Q[πX ] is a field. Let

g := fπX

Q be the minimum polynomial of πX over Q. If α ∈ Qℓ is an eigenvalue of Vℓ(πX) then

g(α) is an eigenvalue of g
(
Vℓ(πX)

)
= Vℓ

(
g(πX)

)
= Vℓ(0) = 0; hence g(α) = 0. Note that these

eigenvalues (the roots of fX) are algebraic over Q, as fX has rational coefficients. So every

root of f in Q is also a root of g, which just means that fX divides a power of g. Because g is

irreducible this implies that f is a power of g. �

(16.4) Theorem. Let X be an abelian variety of dimension g over Fq.HasseWeil

(i) Every complex root α of fX has absolute value |α| = √q.
(ii) If α is a complex root of fX then so is ᾱ = q/α, and the two roots occur with the same

multiplicity. If α =
√
q or α = −√q occurs as a root then it occurs with even multiplicity.
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Proof. (i) We first reduce to the case that X is simple (over Fq). For this, choose an isogeny

h: X → X ′ = X1 × · · · ×Xs where the factors Xi are simple. Then h induces an isomorphism

Vℓ(h): VℓX
∼−→ VℓX

′ = VℓX1 ⊕ · · · ⊕ VℓXs, and because h◦πX = πX′ ◦h the automorphism

Vℓ(h)◦Vℓ(πX)◦Vℓ(h)
−1 of VℓX1 ⊕ · · · ⊕ VℓXs is the one given by

(ξ1, . . . , ξs) 7→
(
Vℓ(πX1

)(ξ1), . . . , Vℓ(πXs
)(ξs)

)
.

Hence fX = fX1
· · · fXs

and we find that it suffices to prove the theorem for simple abelian

varieties.

Let λ be any polarization of X, and let † denote the associated Rosati involution on

End0(X). We first show that πX ·π†X = q. Because πX ·π†X = πX ·λ−1 ·πtX ·λ = λ−1 ·πXt ·πtX ·λ,

it suffices to show that πXt · πtX = [q]Xt . But πX = FmX/Fq
, so by Proposition (7.34) we have

πtX = V mXt/Fq
, and as in (5.21) it follows that πXt · πtX = FmXt/Fq

· V mXt/Fq
= [pm]Xt = [q]Xt .

Because X is simple, Q[πX ] is a number field, and as fX is a power of the minimum

polynomial of πX over Q the complex roots of fX are precisely the complex numbers of the form

ι(πX) for some embedding ι: Q[πX ]→ C. The relation π†X = q/πX shows that Q[πX ] ⊂ End0(X)

is stable under the Rosati involution, which by ?? is a positive involution. This leaves two

possible cases:

(a) Totally real case: Q[πX ] is a totally real field and † is the identity on Q[πX ].

(b) CM case: Q[πX ] is a CM-field and for every complex embedding ι: Q[πX ]→ C we have

ι(x†) = ι(x), for all x ∈ Q[πX ].

In either case the relation πX · π†X = q implies that all complex roots α of fX have absolute

value |α| = √q.
(ii) The first two assertions are trivial, because fX has real (even rational) coefficients. The

only non-trivial point is that
√
q and −√q can only occur as root with even multiplicity, and

again it suffices to show this under the assumption that X is simple. Because a CM field has no

real embeddings, ±√q can only occur as a root of fX in the totally real case, and in that case

they are the only possible roots, because of the relation αᾱ = q. If
√
q occurs with multiplicity n

then −√q occurs with multiplicity 2g − n, so fX(0) = (−1)nqg. But fX(0) = deg(−πX) = qg,

so n is even. �

(16.5) Remarks. (i) An alternative argument showing that πX · π†X = q is the following. LetHasseWeilRem

L := (id, λ)∗PX , which is an ample bundle on X. By Proposition (11.1) we have ϕL = 2λ, and

† is also the polarization associated to ϕL. Hence π†X ·πX = ϕ−1
L ·πtX ·ϕL ·πX , so we want to show

that πtX ·ϕL · πX = ϕL · q. Because L is a line bundle on X (over Fq) we have π∗XL = Lq, as πX
sends the transition functions to their qth powers. (Caution: This only works for line bundles

on X itself, not for line bundles on XT with T an arbitrary Fq-scheme.) For any x ∈ X(T ) we

then have (
πtX · ϕL · πX

)
(x) =

[
π∗X
(
t∗πX(x)L⊗ L−1

)]

=
[
t∗xπ
∗
XL⊗ π∗XL−1

]

=
[
t∗xL

q ⊗ L−q
]

= ϕLq (x) = q · ϕL(x) ,

which proves the desired relation.

(ii) Given a prime power q, let f ∈ Z[t] be a monic polynomial of degree 2g such that all

complex roots have absolute value
√
q, and such that if ±√q is a root of f then it has even

multiplicity. It is not always the case that f occurs as the characteristic polynomial of Frobenius

of an abelian variety over Fq. However, we shall see in ?? below that there is always some power
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Zetaof f that occurs as fX for some abelian variety X. Also we shall see there that the totally real

case is a very exceptional one.

(iii) The theorem implies that the characteristic polynomial of Frobenius satisfies the iden-

tity t2g · fX(q/t) = qg · fX(t). (To see this, note that fX can be written over R as a product

of quadratic factors of the form h = (t − α)(t − ᾱ) with αᾱ = q; for such a factor we have

t2 · h(q/t) = q · h(t).) If we write

fX = t2g + c2g−1t
2g−1 + · · ·+ c2t

2 + c1t+ c0

then this identity for fX just says that ci = q2g−i · c2g−i.
As we shall see later, the isogeny class of an abelian variety X over a finite field is completely

determined by the associated characteristic polynomial fX , and every algebraic integer π that

has absolute value
√
q under all embeddings Q[π] →֒ C occurs, in a suitable sense, as Frobenius

of an abelian variety over Fq. See § 6 of this Chapter.

(16.6) If Y is a scheme of finite type over Fq then for any positive integer n the numberZetaFunction

Nn := #Y (Fqn) of Fqn -rational points of Y is finite. The sequence of numbersNn is conveniently

encoded in the zeta function of Y , defined by

Z(Y ; t) := exp

(
∞∑

n=1

Nn ·
tn

n

)
∈ Q[[t]] .

For an alternative definition, let |Y |cl denote the set of closed points of Y , and for y ∈ |Y |cl let

deg(y) :=
[
Fq(y) : Fq

]
. Then Z(Y ; t) can also be written as an infinite product:

Z(Y ; t) =
∏

y∈|Y |cl

(
1− tdeg(y)

)−1
.

(16.7) Theorem. Let X be an abelian variety of dimension g over Fq. Let {α1, . . . , α2g} be theZetaAVFF

multiset of complex roots of the characteristic polynomial fX , so that we have fX =
∏2g
i=1(t−αi).

If I is a subset of {1, . . . , 2g}, define αI :=
∏
i∈I αi.

(i) For any positive integer n we have

#X(Fqn) =

2g∏

i=1

(1− αni ) =

2g∑

j=0

(−1)j · trace(πnX ;∧jVℓX) ,

where ℓ is any prime number different from p and where by trace(πnX ;∧jVℓX) we mean the trace

of the automorphism ∧jVℓ(πnX) of ∧jVℓX.

(ii) The zeta function of X is given by

Z(X; t) =

2g∏

j=0

P
(−1)j+1

j =
P1P3 · · ·P2g−1

P0P2 · · ·P2g
,

where Pj ∈ Z[t] is the polynomial given by

Pj =
∏

I⊂{1,...,2g}
#I=j

(
1− t · αI

)
= det

(
id− t · πX ;∧jVℓX

)
,
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Zetathe reciprocal characteristic polynomial of ∧jVℓ(πX).

(iii) The zeta function satisfies the functional equation Z
(
X; 1

qgt

)
= Z(X; t).

Proof. (i) The characteristic polynomial Pπn
X

of πnX is equal to
∏2g
i=1(t − αni ). By what was

explained in (16.1) the kernel of id− πnX in X(Fq) is precisely X(Fqn). As this is finite, id− πnX
is an isogeny. Because πX is purely inseparable it induces the zero map on the tangent space.

Hence id − πnX induces the identity on the tangent space, so it is a separable isogeny. This

implies that #X(Fqn) = deg(id− πnX) = Pπn
X

(1) =
∏2g
i=1(1− αni ).

The eigenvalues of ∧jVℓ(πnX) are the numbers αnI where I runs over all subsets of {1, . . . , 2g}
of cardinality j. The second identity in (i) therefore follows from the elementary relation

2g∏

i=1

(1− αni ) =

2g∑

j=0

(
(−1)j ·

∑

I⊂{1,...,2g}
#I=j

αnI

)
.

(ii) We use the general fact (see HAG, Appendix C, Lemma 4.1) that for an endomorphism ϕ

of a finite dimensional vector space V over a field K we have an identity of formal power series

exp

(
∞∑

n=1

trace(ϕn;V ) · t
n

n

)
= det(id− t · ϕ;V )−1 . (1)

AVFF:fpsidentity

Applying (i) then gives

Z(X; t) = exp



∞∑

n=1

2g∑

j=0

(−1)j · trace(πnX ;∧jVℓX) · t
n

n




=

2g∏

j=0

exp

(
∞∑

n=1

trace(πnX ;∧jVℓX) · t
n

n

)(−1)j

=

2g∏

j=0

det(id− t · πX ;∧jVℓX)(−1)j+1

.

The eigenvalues of ∧jVℓ(πX) are the numbers αI for I ⊂ {1, . . . , 2g} of cardinality j, so

det(id − t · πX ;∧jVℓX) =
∏

I⊂{1,...,2g}
#I=j

(
1− t · αI

)
=: Pj .

As Gal(Q/Q) naturally acts on the multiset {αI}I⊂{1,...,2g},#I=j this polynomial has rational

coefficients. As furthermore Pj is a monic and all its roots are algebraic integers we have

Pj ∈ Z[t].

(iii) For any j ∈ {0, . . . , 2g} the eigenvalues of ∧2g−jVℓ(πX) are the numbers αK where K

runs over all subsets of {1, . . . , 2g} of cardinality 2g − j. Because
∏2g
i=1 = qg, these are also the

numbers qg/αI where I runs over all subsets of {1, . . . , 2g} of cardinality j. So

P2g−j =
∏

I⊂{1,...,2g}
#I=j

(
1− tqg

αI

)
=

∏

I⊂{1,...,2g}
#I=j

− tq
g

αI
·
(

1− αI
tqg

)
.

The number of subsets I ⊂ {1, . . . , 2g} with #I = j equals the dimension of ∧jVℓX, which is(
2g
j

)
. Further,

∏

I⊂{1,...,2g}
#I=j

αI = (α1 · · ·α2g)
j
2g ·(

2g
j ) = q

j
2 ·(

2g
j ) ,
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as each αi occurs
(
2g−1
j−1

)
= j

2g ·
(
2g
j

)
times as a factor. Hence

P2g−j = (−t)(
2g
j ) · q

2g−j
2 ·(2g

j ) · Pj
( 1

qgt

)
.

Because
∑2g
j=0(−1)j+1

(
2g
j

)
= 0 and also

∑2g
j=0(−1)j+1 2g−j

2
·
(
2g
j

)
= g ·∑2g−1

j=0 (−1)j+1
(
2g−1
j

)
= 0,

taking the product over all j gives the relation

Z(X; t) =

2g∏

j=0

P
(−1)j+1

2g−j =

2g∏

j=0

(
Pj
( 1

qgt

))(−1)j+1

= Z
(
X;

1

qgt

)
,

which is the desired functional equation. �

(16.8) Theorems (16.4) and (16.7) prove the Weil conjectures for abelian varieties, and in orderWeilConj

to put these results in their proper context it is worthwile to include a brief discussion of the

Weil conjectures. As this is only intended to give some background material, the reader may

jump ahead to (16.12) without missing much.

In his 1949 paper Weil [4], André Weil formulated some beautiful conjectures about the

zeta functions of varieties over Fq, which have had an enormous influence on the development

of abstract algebraic geometry. To state his conjectures, consider a smooth projective variety Y

over Fq of dimension d. Let the zeta function Z(Y ; t) be defined as in (16.6), and let χ(Y ) be the

topological Euler characteristic of Y , which can be defined for instance as the self-intersection

number of the diagonal ∆Y ⊂ Y × Y .

Weil conjectured that the zeta function Z(Y ; t) is a rational function for which there is an

expression

Z(Y ; t) =
P1P3 · · ·P2d−1

P0P2 · · ·P2d
,

where the Pi are polynomials with integral coefficients that in C[t] can be written as Pi =∏bi

j=1(t − αij), with all roots αij of Pi algebraic integers of absolute value |αij | = qi/2. (These

properties uniquely determine the polynomials Pi, if they exist.) Further Weil conjectured that

Z(Y ; t) satisfies a functional equation

Z
(
Y ;

1

qdt

)
= ± · q d·χ(Y )

2 · tχ(Y ) · Z(Y ; t) .

When Weil stated these conjectures, he could prove them for curves (Bijdrage FK Schmidt?),

and not long thereafter he gave a complete proof for abelian varieties. (Historisch correct?

Vergelijk met ons bewijs??). The rationality of the zeta function and the functional equation were

proved by Dwork in 1960, using p-adic analysis, and later again by Grothendieck as application

of the machinery of ℓ-adic cohomology that he had developped in collaboration with M. Artin,

among others. The remaining assertion that all roots of Pi are algebraic integers of absolute

value qi/2 is known as the Riemann Hypothesis for varieties over finite fields and turned out to

be much harder. It was proved by a beautiful combination of techniques by Deligne in 1973; see

Deligne [3]. We refer to HAG, Appendix C or Katz [1] for a further introduction to the Weil

conjectures and Deligne’s proof.

Weil himself already realised that his conjectures could be proven once one had a sufficiently

good cohomology theory, satisfying analogues of a number of properties that are known to hold

for singular cohomology of smooth projective varieties over C. See Kleiman [1] for a precise
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description of the mechanism one needs. The way one uses cohomology is as follows. (We shall

formulate everything using ℓ-adic cohomology.)

As already explained in (16.1), #Y (Fqn) equals the number of fixed points of πnY in Y (Fq).

Let Γn ⊂ YFq
× YFq

be the graph of πnY . Because the tangent map of πnY is everywhere zero,

all intersections of Γn with the diagonal ∆ ⊂ YFq
× YFq

are transversal. Hence the number of

fixed points of πnY equals the intersection number Γn ·∆. By the Lefschetz trace formula, this

intersection number also equals the alternating sum of traces of πnY acting on the cohomology

of YFq
; so we find that

#Y (Fqn) =
2d∑

i=0

(−1)i · trace
(
πnY ,H

i(YFq
,Qℓ)

)
.

Using the identity (1) we find that if we define polynomials Pi by

Pi := det
(
id− t · πY ;Hi(YFq

,Qℓ)
)
,

we get the identity

Z(Y ; t) =

2d∏

i=0

P
(−1)i+1

i =
P0P2 · · ·P2d

P1 · · ·P2d−1
.

The rationality of the zeta function now follows from the fact that Q[[t]] ∩ Qℓ(t) = Q(t). The

functional equation for Z(Y ; t) follows by elementary arguments from Poincaré duality; see HAG,

Appendix C, Section 4. If d := dim(Y ) is odd then the sign in the functional equation is +1, if

d is even the sign is (−1)N , where N is the multiplicity of qd/2 as an eigenvalue of πY acting on

Hd(YFq
,Qℓ). Note that a priori the polynomials Pi are in Qℓ[t]; the fact that they are in Z[t] is

part of the Riemann Hypothesis. Further note that P0 = 1− t and P2d = 1− qdt.
The proof of the Riemann Hypothesis requires deeper results than merely the existence of

a Weil cohomology theory. In the years before Deligne’s proof the general expectation was that

the Riemann Hypothesis should be obtained as a consequence of two further properties of ℓ-adic

cohomology, namely the hard (or “strong”) Lefschetz Theorem and an analogue of the Hodge

Index Theorem. (These are part of Grothendieck’s “standard conjectures”.) This, however,

turned out not to be the easiest route. Deligne proved the hard Lefschetz Theorem using the

Riemann Hypothesis, whereas the Hodge Index Theorem in this setting is at present still an

open problem. See also Katz [1] and Messing [2].

Looking at our proofs of Theorems (16.4) and (16.7) we recognize that part of what we have

been doing fits nicely with the general approach sketched here, where we have the advantage

that we can do without any reference to ℓ-adic cohomology, using the Tate module instead. (Cf.

Corollary (10.39). Note that the Tate module is the first homology, rather than cohomology.) For

example, the equality between the first and third term in (i) of Theorem (16.7) is just an instance

of the Lefschetz trace formula. But the most interesting part is the Riemann Hypothesis, and as

sketched above, for general varieties this is far from an automatic consequence of the existence of

a Weil cohomology theory. For abelian varieties, the proofs we have given ultimately boil down

to results about the structure of the endomorphism algebra, and in particular the positivity of

the Rosati involution. Note that for abelian varieties we do know that the Hodge Index Theorem

holds (see ??) but that we do not directly use it here. Morally speaking its role is taken over by

the positivity of the Rosati involution, which, like the Hodge Index Theorem, is a result about

the signature of a quadratic form.
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Lefschetz(16.9) Let X be an abelian variety over a finite field Fq. By () the characteristic polynomialNPX/Fq

of πX on the rational Dieudonné module MQ(X) equals fX . Theorem (15.35) and its Corol-

lary (15.36) give us a quick way to read off the Newton polygon of X from fX . To summarize,

if {α1, . . . , α2g} is the multiset of roots of fX in Q then, with conventions as in ??, we have the

following information about the valuations of the αi:

(1) If v is a prime of K := Q(α1, . . . , α2g) of residue characteristic ℓ 6= p then ordv(αi) = 0 for

all i. This follows from the relation αiᾱi = q since αi and ᾱi are both integral.

(2) If v is a prime of K above p then the multiset
{
ordv(α1)/ordv(q), . . . , ordv(α2g)/ordv(q)

}

is the (unordered) collection of slopes, counted with multiplicity, of the Newton polygon

of X. This is Theorem (15.35).

(3) If v is an infinite prime of K then ordv(αi)/ordv(q) = 1/2 for all i. This is (i) of Theo-

rem (16.4).

By Remark (15.38), the action of πX on MQ(X) actually determines the Fq-isogeny class of

the p-divisible group X[p∞]. This class carries finer information than just the Newton polygon,

which only depends on XFp
, but this additional information is more difficult to exploit. We shall

come back to this in the proof of Corollary (16.30), where we determine the precise structure

of the endomorphism algebra of X in terms of πX . The hardest part in that calculation is to

determine the local invariants of the endomorphism algebra at the places above p, and by a

theorem of Tate (see Theorem (16.24)) this boils down to the calculation of EndDM(MQ(X)
)
.

§2. The Hasse-Weil-Serre bound for curves.

Let C be a nonsingular complete curve over a finite field Fq. The discussion in (16.8) tells us

what to expect for the zeta function of C. Namely, we should have Z(C; t) = P1/(1− t)(1− qt)
where P1 is the reciprocal characteristic polynomial of Frobenius acting on the H1 of the curve.

Further, the Riemann Hypothesis should hold and Z(C; t) should satisfy a functional equation.

Keeping the cohomological interpretation of the Weil conjectures in mind, it should come as

no surprise that the proof of these assertions can be reduced to the Weil conjectures for the

Jacobian of C. In fact, as we shall see in (16.14) below, C always has Fq-rational points,

and if we choose P ∈ C(Fq) then by ?? the map ϕP : C → Jac(C) induces an isomorphism

ϕ∗P : H1(Jac(C)Fq
,Zℓ)

∼−→ H1(CFq
,Zℓ) on cohomology in degree 1, compatible with the actions

of the geometric Frobenii. So all the relevant information should be contained in the Tate module

of the Jacobian with its action of the geometric Frobenius. To turn this philosophy into a solid

theorem we first prove a special case of the Lefschetz trace formula, in terms of the Tate module

of the Jacobian.

(16.10) Proposition. Let C be a nonsingular complete curve over a finite field Fq. LetLefTraceCurve

J := Jac(C) be its Jacobian, and let {α1, . . . , α2g} be the complex roots of the polynomial fJ .

Then for every positive integer n we have

#C(Fqn) = 1− trace(πnJ ) + qn = 1−
2g∑

i=1

αni + qn .

Proof. It suffices to prove this for n = 1, as the assertion for arbitrary n then follows by

considering C⊗Fqn . As already explained in (16.8) we have #C(Fq) = ∆C ·Γ, where Γ ⊂ C×C

– 276 –



Weil

Hasse-Weil

is the graph of the geometric Frobenius πC . To prove the identity ∆C · Γ = 1 − trace(πJ ) + q

we may work over k := Fq. Choose a point P ∈ C(k) and let α: C → J be the map given on

points by Q 7→ [Q− P ]. [NOG AFMAKEN - bewijs v Gerard is niet goed]

(16.11) Theorem. Let C be a nonsingular complete curve of genus g over a finite field Fq,WeilCCurve

and let J := Jac(C) be its Jacobian. Let {α1, . . . , α2g} be the multiset of complex roots of the

characteristic polynomial fJ of the geometric Frobenius of J . Let P0 := 1− t and P2 := 1− qt,
and let P1 :=

∏2g
i=1(1− αi · t) be the reciprocal of the polynomial fJ . Then we have

Z(C; t) =
P1

P0P2
=

P1

(1− t)(1− qt) .

All complex roots of the polynomial Pi are algebraic integers of absolute value qi/2. Further,

Z(C; t) satisfies the functional equation

Z(C; t) = qg−1 · t2g−2 · Z
(
C;

1

qt

)
.

Proof. The identity Z(C; t) = P1/P0P2 readily follows from Proposition (16.10) together with

identity (1). The assertion about the roots of the polynomials Pi is obvious for i = 0 and i = 2,

and for i = 1 it is just (i) of Theorem (16.4). For the functional equation, note that by (ii) of

Theorem (16.4) there is an involution ι ∈ S2g such that αι(i) = ᾱi = q/αi for all i. We then

have

P1 =

2g∏

i=1

(
αι(i) · t− 1

)
=

2g∏

j=1

αj · t2g ·
2g∏

i=1

(
1− 1

αι(i) · t
)

= qg · t2g ·
2g∏

i=1

(
1− αi

qt

)
= qg · t2g · P1

( 1

qt

)
.

As P0P2 = q · t · P0

(
1
qt

)
P2

(
1
qt

)
we obtain the functional equation. �

We note that the zeta function of C can also be written as

ZC(t) =

∞∑

n=0

Dnt
n ,

where Dn is the number of effective divisors of degree n on C that are defined over Fq, see

Exercise 16.1.

By Proposition (16.10), to count the number of Fq-rational points of C, it suffices to know

trace(πJ ) =
∑2g
i=1 αi, which is minus the coefficient of t2g−1 in fJ . Because all αi have absoulte

value
√
q we have the estimate |trace(πJ )| 6 ⌊2g√q⌋ (the Hasse-Weil bound). Serre showed that

one can improve this a bit, as follows.

(16.12) Theorem. Let X be an abelian variety of dimension g over Fq. Then trace(πX)SerreHW

satisfies

|trace(πX)| 6 g · ⌊2√q⌋ . (2)AVFF:HWSineq

This is an equality if and only if either αi + ᾱi = ⌊2√q⌋ for all i or αi + ᾱi = −⌊2√q⌋ for all i.
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Proof. We number the complex roots of fX such that αg+i = ᾱi for i = 1, . . . , g. Write

ai = αi + ᾱi. These are real numbers with |ai| < ⌊2√q⌋ + 1. Hence the numbers bi :=

⌊2√q⌋ + 1 + ai are positive algebraic integers. The Galois group Gal(Q/Q) naturally acts on

the multiset {b1, . . . , bg}. It follows that the product b1 · · · bg is an element of Z>0. Now we use

the arithmetic-geometric mean inequality

b1 + · · ·+ bg
g

> (b1 · · · bg)1/g ,

with equality if and only if all bi are equal. So ⌊2√q⌋ + 1 +
∑g
i=1 ai/g > 1, i.e., trace(πX) =∑g

i=1 ai > −g · ⌊2√q⌋. Repeating the same argument for −πX gives the estimate trace(πX) 6

g · ⌊2√q⌋. If we have equality in (2) then all ai are equal, and this readily gives the last

assertion. �

Applying this to the Jacobian Jac(C) gives the following bound on the number of rational

points on a curve.

(16.13) Corollary. (Hasse-Weil-Serre) Let C be a complete nonsingular curve over Fq. ThenHWSbound

for the number of Fq-rational points of C we have the inequalities

q + 1− g⌊2√q⌋ 6 #C(Fq) 6 q + 1 + g⌊2√q⌋ .

Note that in order to determine the g roots αi of fJac(C) it suffices to calculate #C(Fqi) for

i = 1, . . . , g. We give some examples.

(16.14) Examples. (1) If C is a complete nonsingular curve of genus g over Fq then #C(Fq) >ZetaExa

q + 1− 2
√
q =

(√
q − 1

)2
> 0, so C has an Fq-rational point.

In particular, a curve of genus 1 over Fq always has an Fq-rational point and, taking such

a point as the origin, can be given the structure of an elliptic curve.

(2) Consider the complete nonsingular curve C of genus 2 over F2 with affine equation

y2 + y = x5 + x2 + 1. We easily find by explicit computation #C(F2) = 1 and #C(F4) = 9.

Using the identities
∑
αni = 2n + 1 − #C(F2n) and αiᾱi = 2 we find for J := Jac(C) the

characteristic polynomial fJ = t4 − 2t3 + 4t2 − 4t + 4. We have #J(F2) = fJ(1) = 3 and this

fits, since there are three F2-rational divisors of degree 2 on C.

In a similar fashion, the genus 3 curve D over F2 given by the affine equation y2 + y =

(x4 + x2 + 1)/(x4 + x3 + x2 + x + 1) has no points over F2, has 10 rational points over F4

(the maximum possible for a hyperelliptic curve over F4), and 6 points over F8; hence the

characteristic polynomial of its Jacobian is t6 − 3t5 + 7t4 − 13t3 + 14t2 − 12t+ 8.

Applying Corollary (15.36) we find that the curve C is supersingular and that D is ordinary.

NP(C) NP(D)
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(The dots represent the points
(
i, ordp(c2g−i)

)
, where the ci are the coefficients of the charac-

teristic polynomial.)

(3) Let r = pm and q = r2 = p2m. Let a ∈ Fq be a non-zero element satisfying ar + a = 0.

Then the complete nonsingular curve with affine equation yp−y = axr+1 has genus g = (p−1)r/2

and has 1 + pq = 1 + p2m+1 rational points over Fq. Note that 1 + p2m+1 = q + 1 + 2g
√
q, so

these curves attain the Hasse-Weil bound q+ 1 + 2g
√
q. This shows that the Hasse-Weil bound

is sharp for certain g and q. It is not sharp if g is large with respect to q, see Exercise 16.2.

(4) Let C ⊂ P2 be the nonsingular quartic curve over F2 given by the homogeneous equation

X3Y + Y 3Z + Z3X = 0, also known as the Klein curve. The genus of C is 3 and one easily

checks that #C(F2) = 3, that #C(F4) = 5, and #C(F8) = 24. The characteristic polynomial

of Frobenius is fJ = t6 + 5t3 + 8 and C is ordinary. This curve reaches the Serre bound

q + 1 + g⌊2√q⌋ over F8. Note that in this case Serre’s bound is better than the original Hasse-

Weil bound: 8 + 1 + 3⌊2
√

8⌋ = 24, whereas 8 + 1 + ⌊6
√

8⌋ = 25.

(5) Consider the Jacobian J0(103) of the modular curve X0(103). The curve X0(103) has

genus 8 and has an (Atkin-Lehner) involution w. The Jacobian splits, up to isogeny, as a product

of two abelian varieties, J+ and J−, with J± = Im
(
w ± idJ0(103)

)
, the + and − part of w, of

dimensions 2 and 6, respectively. The minus part J− is attached to a normalized cusp form f

of weight 2 on the congruence subgroup Γ0(103), an eigenform for the Hecke operators. It has

a Fourier expansion f =
∑∞
n=1 a(n)qn with the coefficients a(n) that are algebraic integers in a

totally real number field K of degree 6 over Q and normalized such that a(1) = 1. The trace

of Frobenius acting on the Tate module Tℓ of J− ⊗ Fp for p 6= 103 and ℓ 6= p is given by the

Fourier coefficient b(p) of the form trace(f) =
∑∞
n=1 b(n)qn =

∑
σ:K→R

∑∞
n=1 σ

(
a(n)

)
qn. This

form has Fourier series starting

6 q + 4 q2 + 6 q4 + 3 q5 − 3 q6 − 2 q7 + 9 q8+8 q9 − 10 q10 − q11 − 13 q12

− q13 − 9 q14 − 9 q15 + 2 q16 + 21 q17 − 3 q18 + · · ·

We observe that for p = 2 (resp. p = 17) the expression p + 1 − b(p) equals −1 (resp. −3).

Therefore, J−⊗F2 and J−⊗F17 cannot be (isogenous to) a Jacobian since then the corresponding

curve would have a negative number of F2-rational (resp. F17-rational) points. (Note that

isogenous abelian varieties have the same zeta function; see Corollary (16.25).)

§3. The theorem of Tate.

The topic of this section is an important theorem of Tate, asserting that for abelian varieties

X and Y over a finite field k and any prime number ℓ 6= char(k) the natural map

Zℓ ⊗HomAV(X,Y )→ HomGal(k/k)(TℓX,TℓY ) (3)AVFF:HomHom

is an isomorphism. Here the RHS of (3) denotes the group of Zℓ-linear maps TℓX → TℓY that

are equivariant with respect to the natural Galois actions on the two terms. Equivalently, these

are the homomorphisms of Zℓ
[
Gal(k/k)

]
-modules, or also the Gal(k/k)-invariant elements in

HomZℓ
(TℓX,TℓY ) = (TℓX)∨ ⊗Zℓ

TℓY ; therefore the RHS of (3) is also sometimes denoted by

HomZℓ[Gal(k/k)](TℓX,TℓY ) or Hom(TℓX,TℓY )Gal(k/k).

Tate’s theorem should be seen as an analogue of ??, with Galois representations taking over

the role of Hodge structures. There are other types of ground fields for which the analogue of
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Tate’s theorem is true. Zarhin proved that it is true for function field over finite fields; later

Faltings, in his spectacular 1983 breakthrough, proved that the map (3) is an isomorphism for

abelian varieties over any field k that is finitely generated over its prime field (e.g., number

fields). At the same time, there are also types of ground fields for which we cannot hope to have

such a result. E.g., if k = k or also if k is a local field then (3) is not, in general, surjective. We

shall further discuss Faltings’s results in ??.

Over the years the proof that Tate gave has been improved, mainly by Zarhin, and there

are several steps in the proof that work over an arbitrary field. We shall state and prove

results in a general setting. The assumption that we work over a finite field will enter only in

Proposition (16.19), from which Tate’s Theorem (16.20) follows by some general results. Still,

there is one aspect that is special to the case of a finite ground field. Namely, if k is a finite

field, say of cardinality q = pm, then the action of Gal(k/k) on TℓX is completely determined by

the single automorphism Tℓ(πX). (Note that Tℓ(πX) is indeed an automorphism for any ℓ 6= p.)

The reason for this is that Gal(k/k) is isomorphic, as a topological group, to Ẑ, the pro-finite

completion of Z, and is topologically generated by the element ϕ ∈ Gal(k/k) given by ϕ(x) = xq.

Furthermore, ϕ acts on TℓX as the automorphism Tℓ(πX), since ϕ and πX both give the action

“raising all coordinates to the power q” on X(k). Hence the elements of HomGal(k/k)(TℓX,TℓY )

are also the Zℓ-linear maps f : TℓX → TℓY for which Tℓ(πY )◦f = f ◦Tℓ(πX). As in our proof of

Tate’s theorem we focus on general arguments, this aspect will not play a role there, but once

we pass to applications it is again the geometric Frobenius endomorphism that plays a key role.

(16.15) Lemma. Let k be a field, ks a separable closure, and let ℓ be a prime number differentTateZlQl

from char(k).

(i) If X and Y are abelian varieties over k then the map

Tℓ: Zℓ ⊗HomAV(X,Y )→ HomGal(ks/k)(TℓX,TℓY )

is an isomorphism if and only if the map

Vℓ: Qℓ ⊗HomAV(X,Y )→ HomGal(ks/k)(VℓX,VℓY ) (4)AVFF:HomHomQl

is an isomorphism.

(ii) Assume that for every abelian variety Z over k the map

Qℓ ⊗ EndAV(Z)→ EndGal(ks/k)(VℓZ)

is an isomorphism. Then also for any two abelian varieties X and Y over k the map (4) is an

isomorphism.

Proof. (i) By Theorem (12.10) the map Tℓ is injective and Coker(Tℓ) is torsion-free (hence free).

Hence Tℓ is an isomorphism if and only if Qℓ ⊗Coker(Tℓ) = 0. Now use that Qℓ is flat over Zℓ,

so the map Vℓ is again injective and Coker(Vℓ) = Qℓ ⊗ Coker(Tℓ).

(ii) Take Z := X × Y . We have a decomposition of vector spaces

End0(Z) = End0(X)⊕Hom0(X,Y )⊕Hom0(Y,X) ⊕ End0(Y ) .

Likewise we have, writing Γ := Gal(ks/k), a decomposition

EndΓ(VℓZ) = EndΓ(VℓX)⊕HomΓ(VℓX,VℓY )⊕HomΓ(VℓY, VℓX)⊕ EndΓ(VℓY ) .
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The map Vℓ,Z : Qℓ ⊗ End(Z) → EndGal(ks/k)(VℓZ) respects these decompositions. In par-

ticular it follows that if Vℓ,Z is an isomorphism then so is the map Qℓ ⊗ HomAV(X,Y ) →
HomGal(ks/k)(VℓX,VℓY ). �

(16.16) As fuel for Tate’s theorem we need a finiteness property for the number of isomorphismFinitenessI

classes within a given isogeny class. We shall state it here in an axiomatic form. Given a field k,

an abelian variety X over k, and a prime number ℓ 6= char(k), consider the condition

Fin(X/k, ℓ) :
up to isomorphism there are finitely many abelian varieties Y over k

for which there is an isogeny X → Y of degree a power of ℓ.

This finiteness property is used in an essential way in the following lemma. Once we have

this lemma the proof of Tate’s Theorem will be easy. For brevity we shall write QℓEnd(X) for

Qℓ ⊗ End(X), and we view it as a subalgebra of End(VℓX). For u ∈ QℓEnd(X) we shall write

u · VℓX instead of Vℓ(u)
(
VℓX

)
.

(16.17) Lemma. Let X an abelian variety over a field k, and let ℓ be a prime number differentFinIuV=W

from char(k). Assume that condition Fin(X/k, ℓ) holds. Then for every Qℓ-subspace W ⊂ VℓX
that is stable under the action of Gal(ks/k) there exists an element u ∈ QℓEnd(X) such that

W = u · VℓX.

Proof. For n ∈ Z>0 define Un := (W ∩ TℓX) + ℓn · TℓX, which is a Galois-stable lattice in

VℓX with ℓn · TℓX ⊂ Un ⊂ TℓX. Let Kn ⊂ X[ℓn]
(
ks
)

= TℓX/ℓ
nTℓX be the image of Un.

Then Kn is stable under the action of Gal(ks/k) on X[ℓn]
(
ks
)
, and using Proposition (3.26) it

follows that Kn = Kn(ks) for some subgroup scheme Kn ⊂ X[ℓn]. Let πn: X → Yn := X/Kn

be the quotient, and let ιn: Yn → X be the unique isogeny such that ιn ◦πn = [ℓn]X . Using

Proposition (10.6) we find that TℓY ∼= Un as Zℓ-modules with Galois action; taking this as an

identification Tℓ(πn): TℓX → TℓY = Un is the map induced by multiplication by ℓn on TℓX and

Tℓ(ιn): Un = TℓY → TℓX is the inclusion map.

Assumption Fin(X/k, ℓ) implies that we can find a sequence n = n1 < n2 < · · · such that

we have isomorphisms αi: Yn
∼−→ Yni

. Define ui := ιni
◦αi ◦qn, which is an endomorphism of X.

The induced map Tℓ(ui) is the composition

TℓX
·ℓn−−→ Un

Tℓαi−−−→ Uni
−֒→ TℓX .

Because ZℓEnd(X) (:= Zℓ ⊗ End(X)) is a free Zℓ-module of finite rank, it is compact for the

ℓ-adic topology. Hence possibly after replacing the sequence of integers ni by a subsequence,

the elements ui converge ℓ-adically to an element u ∈ ZℓEnd(X). As Un1
⊃ Un2

⊃ · · · the

endomorphism Tℓ(u) maps TℓX to
(
∩i>1 Uni

)
= W ∩ TℓX. On the other hand, we claim that

the image of Tℓ(u): TℓX → (W ∩TℓX) contains ℓn · (W ∩TℓX). To see this note that an element

x ∈W ∩ TℓX lies in Uni
for every i, so it follows from the given description of Tℓ(ui) that ℓn · x

lies in the image of Tℓ(ui) for every i. Hence ℓn ·x can be approximated arbitrarily closely by an

element in the image of Tℓ(u); but this image is closed so ℓn · x actually lies in Im
(
Tℓ(u)

)
. Now

pass to Qℓ-coefficients and note that Qℓ · (W ∩ TℓX) = Qℓ ·
(
ℓn · (W ∩ TℓX)

)
= W ; it follows

that the image of Vℓ(u) is precisely W . �

(16.18) Theorem. Let X an abelian variety over a field k, and let ℓ be a prime number differentFinItoTate

from char(k). Assume that Fin(X/k, ℓ) and Fin(X2/k, ℓ) are true. Then the representation

ρℓ: Gal(ks/k)→ GL(VℓX)
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is semisimple and the map

Qℓ ⊗ EndAV(X)→ EndGal(ks/k)(VℓX)

is an isomorphism.

Proof. To prove that ρℓ is a semisimple representation, suppose we have a Galois-stable subspace

W ⊂ VℓX. As just shown, there exists an element u ∈ QℓEnd(X) with W = u · VℓX. Because

QℓEnd(X) is semisimple the right ideal u · QℓEnd(X) is generated by an idempotent e. Write

u = e · a and e = u · b for some a, b ∈ QℓEnd(X); this gives u · VℓX = e · (a · VℓX) ⊆ e · VℓX =

u · (b · VℓX) ⊆ u · VℓX. Hence W = e · VℓX. Then W ′ := (1− e) · VℓX is a complement for W ,

and W ′ is again Galois-stable because ρℓ(g) commutes with (1 − e) for every g ∈ Gal(ks/k).

This proves that ρℓ is semisimple.

We already know from Theorem (12.10) that the map QℓEnd(X) → EndGal(ks/k)(VℓX)

is injective. If C = EndQℓEnd(X)(VℓX) then the Bicommutant Theorem (A.2) tells us that

QℓEnd(X) = EndC(VℓX). Hence it suffices to show that for every ϕ ∈ EndGal(ks/k)(VℓX) and

c ∈ C we have ϕc = cϕ. The graph Γϕ ⊂ VℓX ⊕ VℓX is a Galois-stable subspace. Applying

Lemma (16.17) to X2 it follows that there exists an element u ∈ QℓEnd(X2) = M2

(
QℓEnd(X)

)

such that Γϕ = u · VℓX2. But γ :=
(
c
0

0
c

)
∈ M2

(
QℓEnd(X)

)
commutes with u, so γ · Γϕ =

γ · u · VℓX2 = u · γ · VℓX2 ⊆ Γϕ. This means precisely that for every v ∈ VℓX we have

c · ϕ(v) = ϕ(c · v); hence ϕc = cϕ and the theorem is proved. �

By the Bicommutant Theorem it follows that Qℓ

[
Im(ρℓ)

]
, the Qℓ-subalgebra of End(VℓX)

generated by the image of ρℓ, is the commutant of Qℓ ⊗ End(X). It is much more difficult, in

general, to determine the image of the representation ρℓ as a subgroup of GL(VℓX), or even to

determine the algebraic envelope of this image. See ???

Now we prove the finiteness condition Fin(X/k, ℓ) for abelian varieties over a finite field.

In fact, this is relatively easy and we obtain something quite a bit stronger.

(16.19) Proposition. Let q = pm be a prime power. Given an integer g > 0 there are onlyFinitenessFq

finitely many isomorphism classes of abelian varieties of dimension g over Fq.

Proof. If X is an abelian variety of dimension g over Fq then Y := X4× (Xt)4 has dimension 8g

and by Zarhin’s Trick (11.29) Y admits a principal polarization. By Theorem (??), up to

isomorphism there are finitely many abelian varieties over Fq that can be embedded as an

abelian subvariety of Y , and X is one of them. Hence it suffices to show that, given h > 0, there

are (up to isomorphism) finitely many abelian varieties Y over Fq of dimension h such that Y

admits a principal polarization. Moreover, by Proposition (1.14) the isomorphism class of Y as

an abelian variety only depends on the isomorphism class of Y as a variety.

If (Y, µ) is a principally polarized abelian variety then L := (id, µ)∗PY is an ample line

bundle on Y and by ??? L3 is very ample. Let N := 6h− 1. Choosing an Fq-basis of H0(Y,L3),

which has dimension 6h = N + 1, we obtain a closed embedding ι: X →֒ PN with Hilbert

polynomial Φ = 6h · th. Hence Y , viewed as a closed subscheme of PN via ι, gives an Fq-

valued point of the Hilbert scheme HilbΦ(PN ). But HilbΦ(PN ) is a scheme of finite type over Z

(see FGA, no 221 or ??), so it has finitely many Fq-rational points. So there are only finitely

many varieties Y of dimension h that admit the structure of an abelian variety with a principal

polarization, and as explained this implies the proposition. �

Combining Theorem (16.18) and Proposition (16.19), we obtain the Theorem of Tate.
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(16.20) Theorem. Let k be a finite field. Let ℓ be a prime number with ℓ 6= char(k).TateThm

(i) For any abelian variety X over k the representation

ρℓ = ρℓ,X : Gal(ks/k)→ GL(VℓX)

is semisimple.

(ii) For any two abelian varieties X and Y over k the map

Zℓ ⊗HomAV(X,Y )→ HomGal(ks/k)(TℓX,TℓY )

is an isomorphism.

(16.21) Remark. Let us again note thatTateThmRem

HomGal(ks/k)(TℓX,TℓY ) =
{
h ∈ HomZℓ

(TℓX,TℓY )
∣∣ Tℓ(πY )◦h = h◦Tℓ(πX)

}
,

and similarly with Qℓ-coefficients. The reason is that Gal(ks/k) is isomorphic to Ẑ and is

topologically generated by the element ϕ ∈ Gal(k/k) given by ϕ(x) = xq; furthermore, for any

abelian variety X over Fq we have ρℓ,X(ϕ) = Tℓ(πX). If h: TℓX → TℓY is a Zℓ-linear map

then Gh :=
{
γ ∈ Gal(ks/k)

∣∣ ρℓ,Y (γ)◦h = h◦ρℓ,X(γ)
}

is a closed subgroup of Gal(ks/k), so if

Tℓ(πY )◦h = h◦Tℓ(πX) then this means that ϕ ∈ Gh; but because the subgroup generated by ϕ

is dense in Gal(ks/k) this implies that Gh = Gal(ks/k).

With the same argument we also see that VℓX is still semisimple as a representation of

〈ϕ〉 ⊂ Gal(k/k), as the two groups give the same collection of stable subspaces. The subalgebra

Qℓ

[
Im(ρℓ)

]
⊂ End(VℓX) generated by the image of ρℓ,X equals Qℓ[πX ]; see also Exercise (16.4).

If X and Y are abelian varieties over Fq the rank of Hom(X,Y ) can easily be computed

from the characteristic polynomials fX and fY . This is based on the following general result.

(16.22) Lemma. Let K be a field.rffprime

(i) Given polynomials f1, f2 ∈ K[t], define

r(f1, f2) = rK(f1, f2) :=
∑

P

multP (f1) ·multP (f2) · deg(P ) ,

where P runs over all monic irreducible polynomials in K[t] and where multP (fi) denotes the

multiplicity of P as an irreducible factor of fi. Then r(f1, f2) is independent of the field in which

we compute it, i.e., for any field extension K ⊂ L we have rK(f1, f2) = rL(f1, f2).

(ii) Let V1 and V2 be finite dimensional K-vector spaces, and let πi ∈ EndK(Vi) be a

semisimple endomorphism of Vi. We give Vi the structure of a K[t]-module by setting t · v :=

πi(v). Consider the K-vector space

HomK[t](V1, V2) =
{
h ∈ HomK(V1, V2)

∣∣ π2 ◦h = h◦π1

}
.

If fi is the characteristic polynomial of πi then we have dimK

(
HomK[t](V1, V2)

)
= r(f1, f2).

Proof. Consider the situation as in (ii). DefineWi := ⊕P
(
K[t]/(P )

)multP (fi)
, where again P runs

over all monic irreducible polynomials inK[t]. The assumption that the πi are semisimple implies

that Vi ∼= Wi asK[t]-modules. If P and P ′ are monic irreducible polynomials inK[t] with P 6= P ′

then it is easily seen that HomK[t]

(
K[t]/(P ),K[t]/(P ′)

)
= 0. On the other hand, K(P ) :=
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K[t]/(P ) is a finite field extension of K and EndK[t]

(
K[t]/(P )

)
= EndK(P )

(
K(P )

) ∼= K(P ),

which hasK-dimension equal to deg(P ). From this (ii) readily follows. For (i), consider the mod-

ules Vi := ⊕P
(
K[t]/(P )

)multP (fi), and note that HomL[t](V1,L, V2,L) = L ⊗K HomK[t](V1, V2).

Applying (ii) twice (once over K, once over L) gives that rK(f1, f2) = rL(f1, f2). �

Note that we can also calculate r(f1, f2) over any subfield of K that contains all coefficients

of f1 and f2. The actual calculation of r(f1, f2) will of course depend on the field, but the

number that comes out does not.

(16.23) Corollary. Let X and Y be abelian varieties over Fq, with characteristic polynomialsRkHom

fX and fY , respectively. Define r(fX , fY ) as above. Then Hom(X,Y ) has rank r(fX , fY ).

Proof. By Tate’s Theorem (16.20) the rank of Hom(X,Y ) equals the Qℓ-dimension of the space{
h: VℓX → VℓY

∣∣ Vℓ(πY )◦h = h◦Vℓ(πX)
}
. Now apply (ii) of the Lemma. �

Our next goal is to prove a p-adic version of Tate’s Theorem. As discussed in Chapter 10

the p-adic analogue of the Tate-ℓ-module of X is the p-divisible group X[p∞]. The proof of

Theorem (16.20) that we have given does not immediately carry over to the p-adic context. The

main obstacle lies in the fact that X[p∞] is not simply a vector space with some additional

structure, which makes it difficult to apply the results from Algebra that we used in the proof

of Theorem (16.18). To overcome this we can use Dieudonné theory. By ?? we know that for

an abelian variety X over a finite field Fq, the characteristic polynomial of πX acting on the

Dieudonné module M(X) is equal to fX . This already gives enough information to deduce the

p-adic Tate Theorem from the ℓ-adic results by a simple dimension count, as follows.

(16.24) Theorem. Let X and Y be abelian varieties over a finite field k of characteristic p.pTateThm

Then the map

Φ: Zp ⊗HomAV(X,Y )→ HomBT(X[p∞], Y [p∞]
)

is an isomorphism.

Proof. By exactly the same argument as in the proof of Lemma (16.15), it suffices to show that

the map QpHom(X,Y ) → Hom0
(
X[p∞], Y [p∞]

)
is an isomorphism. By Theorem (12.10) this

map is injective, so it suffices to prove that the Qp-dimension of Hom0
(
X[p∞], Y [p∞]

)
is at most

the rank of Hom(X,Y ).

Let K be the fraction field of W (k). Write MQ(X) and MQ(Y ) for the F -isocrystals

associated to X[p∞] and Y [p∞], respectively. The Dieudonné functor MQ gives an isomorphism

Hom0
(
X[p∞], Y [p∞]

) ∼−→ HomF -Iso
(MQ(Y ),MQ(X)
)
. Consider the K-vector space

H :=
{
h ∈ HomK(MQ(Y ),MQ(X))

∣∣ h◦M(πY ) = M(πX)◦h
}
.

By ?? the characteristic polynomial of M(πX) equals fX , and similarly for Y . Hence by

Lemma (16.22) we have dimK(H) = r(fY , fX) = dimQp

(
QpHom(X,Y )

)
.

Let #k = q = pm. We know that πX = FmX/k, and by definition the endomorphism of M(X)

induced by FX/k is FM(X); similarly for Y . Hence HomF -Iso
(MQ(Y ),MQ(X)
)

is a Qp-subspace

of H. We are done if we can show that the K-linear map

K ⊗Qp
HomF -Iso
(MQ(Y ),MQ(X)

)
→ H (5)AVFF:KHomtoH

is injective, because then the Qp-dimension of HomF -Iso
(MQ(Y ),MQ(X)
)

is at most the K-

dimension of H.
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The extension Qp ⊂ K is a cyclic Galois extension of order m, with Gal(K/Qp) gener-

ated by the automorphism σK . (Notation as in ??) Suppose we have elements h1, . . . , hr ∈
HomF -Iso
(MQ(Y ),MQ(X)

)
that are linearly independent over Qp and suppose we have a non-

trivial relation
∑r
j=1 ajhj = 0 with coefficients aj ∈ K. Without loss of generality we may

assume that a1 = 1. We have

0 = F iM(X)
◦

r∑

j=1

ajhj =

r∑

j=1

σiK(aj) · (F iM(X)
◦hi)

=
r∑

j=1

σiK(aj) · (hi ◦F iM(Y )) =
( r∑

j=1

σiK(aj)hj

)
◦F iM(Y ) ,

and because FM(Y ) is injective it follows that
∑r
j=1 σ

i
K(aj)hj = 0. Summing this for i =

0, . . . ,m− 1 we find that
∑r
j=1 traceK/Qp

(aj) · hj = 0, and because the elements hj are linearly

independent over Qp we conclude that traceK/Qp
(aj) = 0 for all j. But a1 = 1 so for j = 1

this is clearly false. This proves that the map (5) is indeed injective, and the surjectivity of the

map Φ follows by looking at the dimensions of the spaces involved. �

Note how close Theorem (16.20) and its companion (16.24) come to the corresponding

statement for complex abelian varieties. There one has an isomorphism

Hom(X,Y )→ HomHS(H1(X,Z),H1(Y,Z)
)
;

see ??. The Tate module TℓX with its Galois action is an analogue of the lattice H1(X,Z) with

its natural Hodge structure.

Note that because we use contravariant Dieudonné theory, we have Zp ⊗ Hom(X,Y )
∼−→

HomDM(M(Y ),M(X)
)
. In particular, Zp ⊗ End(X)

∼−→ EndDM(M(X))opp, the opposite ring

of EndDM(M(X)
)
.

§4. Corollaries of Tate’s theorem, and the structure of the endomorphism algebra.

(16.25) Corollary. Let X and Y be abelian varieties over a finite field k of characteristic p.TateCorIsog

Then the following are equivalent:

(a) X ∼ Y ;

(b1) for some ℓ 6= p we have VℓX ∼= VℓY as representations of Gal(k/k);

(b2) for all ℓ 6= p we have VℓX ∼= VℓY as representations of Gal(k/k);

(c1) X[p∞] ∼ Y [p∞];

(c2) MQ(X) ∼= MQ(Y ) as F -isocrystals;

(d) fX = fY ;

(e1) Z(X; t) = Z(Y ; t);

(e2) for all finite field extensions k ⊂ k′ we have #X(k′) = #Y (k′).

Proof. The implications (a) ⇒ (b2) ⇒ (b1) are clear. Now assume that for some ℓ 6= p we have

a Galois-equivariant isomorphism h: VℓX
∼−→ VℓY . Possibly after replacing h by ℓnh for some

n > 0 we may assume that h(TℓX) ⊆ TℓY , so that

U :=
{
h ∈ HomGal(ks/k)(TℓX,TℓY )

∣∣ h is injective
}
.
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is non-empty. Note that U is ℓ-adically open in HomGal(ks/k)(TℓX,TℓY ) as it is given by the

condition that det(h) 6= 0. But Hom(X,Y ) ⊂ ZℓHom(X,Y ) is ℓ-adically dense, so by Tate’s

Theorem (16.20) we can find an element f ∈ Hom(X,Y ) such that Tℓ(f) is injective. The

kernel of f has to be finite, for otherwise Z := Ker(f)0red would be a non-zero abelian subvariety

of X (note that we are over a perfect field) and since Tℓ(f) is zero on TℓZ ⊆ TℓX this gives a

contradiction. As the existence of the isomorphism h implies that dim(X) = dim(Y ), it follows

that f is an isogeny.

Similarly it is clear that (a) implies (c1) which by ?? is equivalent to (c2). If (c2) holds then

HomDM(M(Y ),M(X)
)

again contains a non-empty open subset of injective maps. By Theo-

rem (16.24), using that Hom(X,Y ) is dense in ZpHom(X,Y ), there exists an f ∈ Hom(X,Y )

such that M(f) is injective, which is equivalent to f [p∞] being an isogeny. Now the same

argument as in the ℓ-adic case shows that f is an isogeny.

Because fX is the characteristic polynomial of Vℓ(πX) for any ℓ 6= p we have (b1) ⇒ (d).

Conversely, because the representations ρℓ are semisimple, (d) implies that VℓX ∼= VℓY as Galois

representations. (Cf. Remark (16.21).)

The equivalence of (d), (e1) and (e2) readily follows from the Weil Conjectures, Theo-

rems (16.4) and (16.7); note that the complex zeroes of fX are precisely the zeroes of Z(X; t)

that have absolute value q1/2, with q = #k. �

(16.26) Corollary. Let X be an abelian variety over a finite field.TateCorEnd0

(i) The center of End0(X) is the subalgebra Q[πX ]. In particular, X is elementary if and

only if Q[πX ] = Q(πX) is a field, and this occurs if and only if fX is a power of an irreducible

polynomial in Q[t].

(ii) Suppose X is elementary, dim(X) = g. Let h = fπX

Q be the minimum polynomial of πX

over Q. Further let d := [End0(X) : Q(πX)]1/2 and e :=
[
Q(πX) : Q

]
. Then de = 2g and

fX = hd.

Proof. (i) It is clear that Q[πX ] is contained in the center of End0(X). To prove that the two

are equal, it suffices to show that Qℓ[πX ] is the center of QℓEnd0(X) for some ℓ 6= p. (If Z is

the center of End0(X) then Qℓ ⊗ Z is the center of QℓEnd0(X).) But if f lies in the center of

QℓEnd0(X) then f is an element of the commutant of QℓEnd0(X), which is Qℓ

[
Im(ρℓ)

]
; cf. the

remark after Theorem (16.18). Now use that Qℓ

[
Im(ρℓ)

]
= Qℓ[πX ], see Exercise (16.4). The

remaining assertions of (i) are clear; see also (ii) of Prop. (16.3).

(ii) We know that fX = hδ for some δ, and comparison of the degrees gives δ = 2g/e. On

the other hand, by Corollary (16.23) the Q-dimension of End0(X) equals eδ2, so δ = d. �

(16.27) Corollary. Let X be an abelian variety of dimension g over a finite field. ThenTateCor2End0

2g 6 dimQ

(
End0(X)

)
6 (2g)2, and X is of CM-type.

Proof. If X is elementary then by (ii) of the previous Corollary we have dimQ

(
End0(X)

)
=

2g · d = (2g)2/e, so indeed 2g 6 dimQ

(
End0(X)

)
6 (2g)2. In this case D := End0(X) is a

central simple algebra of degree d2 over K := Q[πX ], and any such algebra contains a subfield

L ⊂ D with [L : K] = d, so [L : Q] = de. Hence the equality de = 2g implies that X is of

CM-type. For general X the assertions are readily obtained by considering the decomposition

of X up to isogeny as a product of elementary factors. �

(16.28) As a preparation for the next corollary of Tate’s theorem we need a result about theL[t]/h(tm)Prep

structure of certain quotients of Dieudonné rings.
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The situation that we shall be interested in is the following. We are working over a finite

field Fq, where q = pm is a power of a prime number p. Let L be the fraction field of W (Fq).

Further we consider a finite field extension Qp ⊂ K = Qp(̟) with ̟ 6= 0. Let h = f̟Qp
∈ Qp[T ]

be the minimum polynomial of ̟ over Qp, so that K ∼= Qp[T ]/(h). Choose an algebraic closure

K ⊂ K and an embedding i: L →֒ K. The subfield L′ := i(L) ⊂ K is independent of the

choice of i. Consider the ring B := L[t;σ]/
(
h(tm)

)
, which we view as a K-algebra via the

homomorphism K = Qp(̟) → B that sends ̟ to the class of tm. If the residue field of OK
has cardinality pf , let ν := gcd(m, f) = [K ∩ L′ : Qp]. Finally let KL′ be the compositum of

K and L′. To summarize, we have the following diagram of fields, where we denote by K0 ⊂ K
the maximal unramified subfield, and where e = [K : K0] is the ramification index.

Qp

K ∩ L′

L′

K0

K

KL′

L ∼−−−→

ν

m/ν

e

f
m

The field extension K ⊂ KL′ is cyclic of degree m/ν. A generator of the Galois group is the

automorphism τ that via the isomorphism L′⊗K∩L′K
∼−→ KL′ corresponds to the automorphism

σνL′⊗idK , where σL′ is the unique automorphism of L′ that induces the Frobenius automorphism

x 7→ xp on its residue field. Note that this automorphism is not, in general, the arithmetic

Frobenius σKL′/K . (Recall that the latter is, by definition, the unique generator of Gal(KL′/K)

that induces the automorphism x 7→ xp
f

on the residue field of KL′.) The relation between

the two is that τf/ν = σKL′/K , as τf/ν corresponds to σfL′ ⊗ idK on L′ ⊗K∩L′ K, which indeed

induces x 7→ xp
f

on the residue field.

Let ord: K
∗ → Q be the valuation with ord(p) = 1.

(16.29) Lemma. Situation and notation as in (16.28). Then B = L[t;σ]/
(
h(tm)

)
is isomor-L[t]/h(tm)

phic, as a K-algebra, to Mν

(
(KL′/K, τ,̟)

)
, the algebra of ν × ν matrices with coefficients in

the cyclic algebra (KL′/K, τ,̟). In particular, B is a central simple K-algebra with Brauer

invariant
(
ord(̟)/ord(q)

)
· [K : Qp].

Proof. Write (KL′/K, τ,̟) = KL′[ϕ], where the element ϕ satisfies

ϕm/ν = ̟ and ϕ · a = τ(a) · a for all a ∈ KL′.

We have L′ ⊗Qp
K ∼= L[T ]/

(
h(T )

)
, and sending the class of T to the class of tm in B we obtain

an isomorphism

B ∼= (L′ ⊗Qp
K)
[
t;σL′ ⊗ id

] / (
tm − (1⊗̟)

)
. (6)AVFF;BLK[t]

In particular, dimK(B) = m2, which is equal to the K-dimension of Mν

(
(KL′/K, τ,̟)

)
.
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Taking the isomorphism (6) as an identification, consider the homomorphism of K-algebras

j: B →Mν

(
KL′[ϕ]

)
that sends an element x⊗ y ∈ L′ ⊗Qp

K to the diagonal matrix

diag
(
xy, σL′(x)y, . . . , σν−1

L′ (x)y
)
,

and that sends the class of t to the matrix



0 1

0 1

0
. . .
. . . 1

ϕ 0




in which all omitted entries are 0. One checks directly that j gives a well-defined homomorphism

of K-algebras. As the source and target have the same K-dimension, to prove that j is an

isomorphism it suffices to show that it is surjective.

It is clear that the restriction of j to L′ ⊗Qp
K ⊂ B gives an isomorphism L′ ⊗Qp

K
∼−→

(KL′)ν = KL′ × · · · ×KL′, where we place the ν factors KL′ on the diagonal. Further, j(tν)

is the diagonal matrix diag(ϕ, . . . , ϕ). Together, these generate the full diagonal subalgebra

∆ := KL′[ϕ]× · · · ×KL′[ϕ] ⊂Mν

(
KL′[ϕ]

)
. It follows that the image of j also contains

j(t̄) · diag(ϕ(m/ν)−1̟−1, 1, . . . , 1) =




0 1

0 1

0
. . .
. . . 1

1 0



.

Call this matrix A. By taking all expressions diag(0, . . . , 0, 1, 0, . . . , 0) · Ai we get all elemen-

tary matrices, and together with ∆ these generate the whole Mν

(
KL′[ϕ]

)
. So indeed j is an

isomorphism.

For the last assertion we just note that

(KL′/K, τ,̟) ∼= (KL′/K, τf/ν ,̟f/ν) = (KL′/K, σKL′/K ,̟
f/ν) ,

which has Brauer invariant

ord
(
̟f/ν

)

(m/ν)
= f · ord(̟)

m
= ef · ord(̟)

ord(q)
=

ord(̟)

ord(q)
· [K : Qp] .

(Cf. (A.5) and (A.6).) �

With the aid of this lemma we obtain a precise result about the structure of the endomor-

phism algebra of an elementary abelian variety X, viewed as a simple algebra over its centre

Q[πX ].

(16.30) Corollary. Let X be an elementary abelian variety over a field with q = pm elements.End0LocInv

Let K = Q(πX). If v is a place of K then the local invariant of End0(X) in the Brauer

group Br(Kv) is given by

invv
(
End0(X)

)
=





0 if v is a finite place not above p;

ordv(πX)
ordv(q)

· [Kv : Qp] if v is a place above p;

1/2 if v is a real place of K;

0 if v is a complex place of K.
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Note that the line about the local invariant at complex places is included for completeness

only, as the Brauer group of C is trivial.

Proof. Without loss of generality we may assume that X is simple, for if X ∼ Y m then

End0(X) = Mm

(
End0(Y )

)
which has the same local invariants as End0(Y ). Then D :=

End0(X) is a divison algebra with center K := Q(πX). If K admits a real place then D is

necessarily of Type III in the Albert classification (cf. Remark ??), in which case invv(D) = 1/2

for all infinite places of K (which are then all real). See also (16.33) below for further discussion.

If ℓ is a prime number with ℓ 6= char(k) and λ1, . . . , λt are the places of K above ℓ then

Qℓ ⊗Q K = Kλ1
× · · · ×Kλt

with each Kλi
a finite extension of Qℓ. We have a corresponding

decomposition VℓX = Vλ1
X ⊕ · · · ⊕ Vλt

X, with Vλi
X := Kλi

· VℓX a vector space of dimension

d = 2g/[K : Q] over Kλi
. Tate’s theorem, taking into account what was explained in (16.21),

gives that QℓEnd(X) = EndQℓ⊗K(VℓX), so

End0(X) ⊗K Kλi
= QℓEnd(X)⊗Qℓ⊗K Kλi

= EndQℓ⊗K(VℓX)⊗Qℓ⊗K Kλi
= EndKλi

(Vλi
X) ∼= Md(Kλi

) .

Hence indeed the local invariants at the λi are trivial.

It remains to compute the local invariants at the places of K above p. Let h = fπX

Q , and

let h = h1 · · ·hu be its factorization in Qp[t]. The factors hi correspond to the places vi of K

above p, and we have a decomposition Qp⊗K = K1×· · ·×Ku with Ki
∼= Qp[t]/(hi) the vi-adic

completion of K. As Qp ⊗K acts on MQ(X) this induces a decomposition of Qp-vector spaces

MQ(X) = M1 ⊕ · · · ⊕Mu.

Write L for the fraction field of W (k). Let σ be the automorphism of L induced by the

Frobenius automorphism of k, and consider the skew polynomial ring L[F ] = L[F ;σ]. The

isocrystal MQ(X) is a (left) L[F ]-module. We know that πX acts on MQ(X) as Fm, which

is L-linear. Because Fm is a central element in L[F ] the subspaces Mi ⊂ MQ(X) are L[F ]-

submodules, so the decomposition MQ(X) = M1 ⊕ · · · ⊕Mu is a decomposition of isocrystals.

The minimum polynomial of πX = Fm acting on Mi is just the polynomial hi.

By Tate’s Theorem (16.24) we have an isomorphism

Qp ⊗ End0(X)
∼−→ EndL[F ]

(
MQ(X)

)opp
,

and this induces isomorphisms

End0(X) ⊗K Ki =
(
Qp ⊗ End0(X)

)
⊗(Qp⊗K) Ki

∼−→ EndL[F ](Mi)
opp .

As hi(F
m) = 0 on Mi we may view Mi as a module over Bi := L[F ]/

(
hi(F

m)
)
. But by

Lemma (16.28), Bi is a central simple algebra over Ki. If Ni is the unique simple Bi-module

(up to isomorphism) then Mi
∼= Nr

i for some r > 1, and we find

EndL[F ](Mi)
opp = EndBi

(Mi)
opp ∼= Mr(Bi) ,

which is Brauer-equivalent with Bi. Hence the local invariant of End0(X) at the prime vi equals

that of Bi, which we have calculated to be
(
ordvi

(πX)/ordvi
(q)
)
· [Ki : Qp]. This finishes the

proof. �

(16.31) Remarks. (i) To avoid any misunderstanding let us again stress that throughout, byEndFFRem

End0(X) we mean the endomorphism algebra of X over the given finite field. The structure of
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the endomorphism algebra may change under an extension of the ground field; for some concrete

examples see (16.33) below.

(ii) As in Corollary (16.30), suppose X is elementary and let K := Q(πX). Let q = #k, and

define invariants iv by ||πX ||v = q−iv , where || ||v is the normalized absolute value corresponding

to a prime v. (See 0.6.) Then we can also describe the local invariants of the endomorphism

algebra by the rule

invv
(
End0(X)

)
≡ iv mod Z for all primes v of K.

(For the infinite primes use Theorem (16.4); for the primes above p use that q−iv = q
−ordv(πX)
v ,

so iv ·ordv(q) = ordv(πX) ·ordv(qv) = ordv(πX) · [Kv : Qp].) The product formula for normalized

absolute values translates into the sum formula
∑
iv ≡ 0 mod Z in the Brauer group.

(iii) Still in the situation of Corollary (16.30), let x 7→ x̄ be the complex conjugation on

K = Q[πX ], and let K0 = Q[πX + q/πX ] ⊂ K be the fixed field. Then K0 is a totally real

field, and either K0 = K or K is a totally imaginary quadratic extension of K0; see also the

discussion in (16.33) below. Let v be a place of K above p, and let v0 be its restriction to K0.

We know that π̄X = q/πX . It follows that ordv(πX) + ordv̄(πX) = ordv(q) = ordv̄(q). Hence

invv
(
End0(X)

)
= −invv̄

(
End0(X)

)
. Further, if v = v̄, which occurs if the place v0 is either

inert or ramified in the extension K0 ⊂ K, then [Kv : Qp] is necessarily even, and it follows that

invv
(
End0(X)

)
= 0.

(16.32) Corollary. Let X be a simple abelian variety over a finite field k. Let d be thed=lcm(iv)

index of the division algebra D := End0(X) over its center Q[πX ] (so d = [D : Q(πX)]1/2 and

fX = (fπX

Q )d). Then d is the least common denominator of the local invariants iv = invv(D).

Proof. As discussed in (A.4) the index of D equals its period, i.e., the order of its class [D] in the

Brauer group Br(K). As Br(K) →֒∏
v Br(Kv), this order is just the least common denominator

of the local invariants iv . �

(16.33) Let X be a simple abelian variety over k = Fq. Write D := End0(X). Because X is ofQpiReal

CM-type, D is either of Type III or of Type IV in the Albert classification; see Remark ??. We

can see in which case we are by looking at the center K := Q(πX). Indeed, as we have already

seen in the proof of Theorem (16.4), either K is totally real (D of Type III) or K is a CM-field

(D of Type IV).

The real case is very exceptional. Indeed, let h := fπX

Q . As we have just seen, fX = hd

where d is the index of D. If K is totally real then all complex roots of fX are real numbers of

absolute value
√
q. We distinguish two cases:

(1) If q is a square then h = t ± √q, so K = Q and we find that d = 2g/e = 2g. By

Corollary (16.30) we have invp(D) = 1/2 = inv∞(D) and invℓ(D) = 0 at all other places.

Corollary (16.32) then gives d = 2. Hence X is an elliptic curve and D is the unique quaternion

algebra over Q that is non-split at p and∞ and split at all other primes. This algebra is usually

denoted by Dp,∞. By Theorem (15.35) X is supersingular.

We shall prove in ?? that the isogeny classes corresponding to the characteristic polynomials

(t−√q)2 and (t+
√
q)2 both occur. If we extend scalars from k to its quadratic extension k′ = Fq2

then the two isogeny classes coincide, as in both cases the characteristic polynomial over k′ is

(t − q)2. (But over k′ there is also the isogeny class with characteristic polynomial (t + q)2,

which is not defined over k.) Concretely this means that if E is a supersingular curve over k

with characteristic polynomial (t − √q)2, a suitable quadratic twist of E has characteristic

polynomial (t+
√
q)2.
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(2) If q is not a square then h = t2 − q, so K = Q
[√
q
]

= Q
[√
p
]

and we find that d = g.

There is a unique prime p of K above p and invp(D) = 0. So D is the unique quaternion

algebra over K that is non-split at the two infinite places of K and split at all finite primes.

Using Corollary (16.32) we find that d = 2, so g = 2 and X is a simple abelian surface. If we

extend scalars from k to its quadratic extension k′ = Fq2 then X ′ := X ⊗ k′ has characteristic

polynomial fX′ = (t− q)4. In this case we find that End0(X ′) ∼= M2(Dp,∞) and X ′ is isogenous

to Y 2, where Y is a supersingular elliptic curve over k′ with characteristic polynomial (t− q)2.
(So Y realizes one of the two isogeny classes from case (1).) Again we shall see in ?? that the

isogeny class over k with characteristic polynomials t2 − q does occur.

Except in these particular cases, the center K = Q(πX) is always a CM-field. Note that in

case (2) the structure of End0(X) changes when we extend scalars from Fq to Fq2 .

As we have seen in Corollary (16.27), the Q-dimension of End0(X), for X an abelian variety

of dimension g over a finite field, lies between 2g and (2g)2. Let us analyze the two extremal

cases.

(16.34) Corollary. Let X be an abelian variety of dimension g over a finite field k.TateCorExtreme

(i) The following are equivalent:

(a) dimQ

(
End0(X)

)
= 2g;

(b1) End0(X) = Q[πX ];

(b2) End0(X) is commutative;

(c) fX has no multiple root.

(ii) The following are equivalent:

(a) dimQ

(
End0(X)

)
= (2g)2;

(b) Q[πX ] = Q;

(c) fX is a power of a linear polynomial;

(d) End0(X) ∼= Mg(Dp,∞), where Dp,∞ is the quaternion algebra with center Q that has

local invariant 1/2 at p and ∞ and local invariant 0 at all other places;

(e) X is supersingular with End(X) = End(Xk);

(f) X is isogenous to Eg for a supersingular elliptic curve E over k with End(E) =

End(Ek).

Proof. We start with two general remarks. Suppose fX has r distinct complex roots, with

multiplicities ν1, . . . , νr. On the one hand, ν1 + · · ·+ νr = deg(fX) = 2g. On the other hand, by

Lemma (16.22) we may calculate r(fX , fX) over C, and this gives dimQ

(
End0(X)

)
= ν2

1+· · ·+ν2
r .

Next write X ∼ X1 × · · · × Xn where the factors Xi are elementary over k and satisfy

Hom0(Xi,Xj) = 0 for i 6= j. (In the decomposition (1) in Corollary (12.5), take Xi := Y mi

i .)

Write dimQ

(
End0(Xi)

)
= eid

2
i with ei the degree of Q(πXi

) over Q. Then dimQ

(
End0(X)

)
=∑n

i=1 d
2
i ei, whereas by (ii) of Corollary (16.26) we have 2g =

∑n
i=1 diei.

We now prove (i). With the above notation, (ia) means that
∑
νj =

∑
ν2
j , which occurs

precisely if all νj are equal to 1. So (i)(a)⇔ (i)(c). Also (i)(a) means that
∑n
i=1 d

2
i ei =

∑n
i=1 diei;

this occurs precisely if di = 1 for all i, which is equivalent to saying that End0(X) is commutative.

This shows that in (i) we have (a)⇔ (b2). Finally, the equivalence of (b1) and (b2) is immediate

from part (i) of Corollary (16.26).

Next we prove (ii). Condition (a) means that
∑r
j=1 ν

2
j = (

∑r
j=1 νj)

2, which occurs if and

only if r = 1. So (a) ⇔ (c). Further, (a) says that
∑n
i=1 d

2
i ei = (

∑n
i=1 diei)

2, and as for each

index i we have d2
i ei 6 (diei)

2 this only occurs if n = 1 and e1 = 1. It follows that in (ii) we
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have (a) ⇔ (b). (Alternatively, (b) ⇔ (c) readily follows from Corollary (16.26) together with

(ii) of Proposition (16.3).)

The implication (d) ⇒ (a) is clear. If (a)–(c) hold then (d) follows by application of

Corollaries (16.26) and (16.30).

Next assume that (a)–(d) hold. By (d), X ∼ Eg for some elliptic curve, and by The-

orem (15.35) it follows from (c) that E is supersingular. Further, by (a) and the estimates

in (16.27) we have End0
k(X) = End0

k
(X

k
), so also Endk(X) = End

k
(X

k
). (See Exercise (12.2).)

So (f) holds, and it is clear that this implies (e).

Finally assume that (e) holds. If α ∈ Q is a root of fX then α/
√
q is a root of unity.

Indeed, if K is a number field containing α/
√
q then the assumption that all slopes of the

Newton polygon equal 1/2 implies that ordv(α/
√
q) = 0 for all primes v; see (16.9). Hence there

is a finite extension k ⊂ k′, say of degree N , such that the roots αN of f(X⊗k′) are all equal to

qN/2. So over k′ we have (c), hence also (a). But by the assumption that End(X) = End(Xk)

it then follows that (a) also holds over k. �

(16.35) Remark. IfX is a supersingular abelian variety over a finite field k then it follows fromTateCorExtrRem

the proof that already over a finite extension of k the p-divisible group X[p∞] becomes isogenous

to G
g
1/2. This behaviour is a-typical: if X has Newton polygon β and is not supersingular then

in general we need to extend scalars to k to get an isogeny between X[p∞] and Gβ . (Notation

as in ??.)

To make this explicit, take a prime number p and an integer a with p ∤ a and a2 < 4p. Let

f := t2 − at+ p. We shall prove in Theorem (16.41) below that there exists an elliptic curve E

over Fp with fE = f . By Theorem (15.35), E is ordinary. So over Fp we have that E[p∞] is

isogenous to Qp/Zp × Ĝm, and we may ask if such an isogeny can be realised over a finite field.

The answer is no. To see this, let α1 and α2 = ᾱ1 = p/α1 be the roots of f in Q. If EFq
[p∞]

is isogenous to Qp/Zp × Ĝm over Fq, for some q = pm, then in particular the characteristic

polynomial of πmE on the rational Dieudonné module MQ(EFq
) equals t · (t − p). Hence one of

the αi is a root of unity. But there is no root of unity that has minimum polynomial of the form

t2 − at+ p, so indeed we need to extend scalars to Fp in order to get an isogeny between E[p∞]

and Qp/Zp × Ĝm.

(16.36) Remark. The results that we have proven allow us to recover End0(X), for an abelianEnd0StructRem

variety X over Fq, from the characteristic polynomial fX . Before we describe a procedure for

this, let us quickly recapitulate what we know.

If X ∼ Y m1
1 × · · · × Y mn

n is the decomposition of X up to isogeny as in (12.5), so with

each Yi simple over Fq and Yi 6∼ Yj if i 6= j, then we have fX = fm1

Y1
· · · fmn

Yn
, and by (i) of

Corollary (16.26), each fYi
is a power of an irreducible polynomial, say fYi

= hai

i . Then Di :=

End0(Yi) is the division algebra with center Q(πYi
) ∼= Q[t]/(hi) that is uniquely determined

by the local invariants given in Corollary (16.30). Further we have ai · deg(hi) = 2dim(Yi) =

index(Di) · deg(hi), so ai = index(Di). Finally we have End0(X) ∼=
∏n
i=1Mmi

(Di) with πX 7→
(̟1, . . . ,̟n).

These facts make it clear how to reconstruct End0(X), up to isomorphism, from fX . Start

by writing fX = hµ1

1 · · ·hµn
n with hi ∈ Q[t] monic irreducible and hi 6= hj if i 6= j. Define

Ki := Q[t]/(hi), and let ̟i ∈ Ki be the class of t. Next, let Di be the division algebra with
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q-Weil

Weil

q-Weil

conjugate!

center Ki, uniquely determined up to isomorphism, with local invariants iv(Bi) given by

invv(Bi) =





ordv(̟i)
ordv(q)

·
[
(Ki)v : Qp

]
if v is a place of Ki above p;

1/2 if v is a real place of Ki;

0 else.

Then the index of Di divides µi, and if we let mi := µi/index(Di) we have End0(X) ∼=∏n
i=1Mmi

(Di).

Note that if X is simple we in fact only need to know the minimum polynomial of πX over Q

in order to reconstruct End0(X).

(16.37) Example. (i) Suppose X/Fq is a simple abelian variety of dimension g which isOrdCurveExa

ordinary. By (16.33) we know that Q[πX ] has no real embeddings. Comparing Theorem (15.35)

and Corollary (16.30) we find that all local invariants of End0(X) are zero. It follows that

End0(X) = Q[πX ] is a CM-field of degree 2g over Q. This conclusion is in fact valid for simple

ordinary abelian varieties over any field of characteristic p, as can be shown using the Serre-Tate

theory of canonical liftings. See ??.

(ii) Let X = Jac(C) with C the nonsingular complete curve of genus 2 over F3 defined

by the equation y3 − y = x + x−1 + 1. Counting points over F3i for i = 1, . . . , 4 we find that

fX = t4 + t3 − 2 t2 + 3 t+ 9, which is an irreducible polynomial in Q[t]. Using Corollary (16.26)

we find that End0(X) = Q[πX ], a CM-field of degree 4 over Q. By Corollary (15.36), X is

ordinary. After extensions of scalars to F27 we find fX⊗F27
= (t2 + 8 t + 27)2, and it follows

from (i) together with (i) of Corollary (16.26) that XF27
is isogenous to the square of an elliptic

curve. This conflicts with Waterhouse [1], p. 553, Thm. 7.2 and with Milne and Waterhouse [1],

p. 62, lines 15–16. See van der Geer and van der Vlugt [1] for further examples.

§5. Abelian varieties up to isogeny and Weil numbers.

(16.38) Definition. Let q be a power of a prime number. Then a q-Weil number is an algebraicqWeilDef

integer π with the property that |ι(π)| =
√
q for all embeddings ι: Q[π] →֒ C. Two q-Weil

numbers π and π′ are said to be conjugate if they have the same minimum polynomial over Q,

or, what amounts to the same, if there is an isomorphism Q[π]
∼−→ Q[π′] sending π to π′.

(16.39) Let X be an elementary abelian variety over Fq. By Theorem (16.4), the FrobeniusqWeilofAV

endomorphism πX is a q-Weil number. For every embedding ι: Q[πX ] → Q we get a q-Weil

number ι(πX) in Q, and up to conjugacy this number is independent of the choice of ι. So we

may represent the conjugacy class of πX by an actual number in Q. Note that we have assumed

X to be elementary, since we want Q[πX ] to be a field.

It is an easy exercise to show that an algebraic integer π ∈ Q is a q-Weil number if and only

if π = ±√q or π is a root of T 2 − aT + q, where a = π + q/π generates a totally real field Q(a)

in which a2 − 4q is totally negative. (This is Exercise (16.6).) This gives a concrete method for

constructing q-Weil numbers: Take an irreducible monic polynomial g ∈ Z[T ] all whose complex

roots are real and lie in the open interval (−2
√
q, 2
√
q). Let a ∈ Q be a root of g. Then a root

π of T 2 − aT + q is a q-Weil number such that F = Q(π) has no real embeddings into C. For

example, let g = T 6 − 4T 5 − T 4 + 17T 3 − 9T 2 − 16T + 11 ∈ Z[T ]. All six roots are real and lie
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in the interval (−2
√

2, 2
√

2). Therefore, a solution of T 2 − aT + 2 with a a root of g defines an

algebraic integer of degree 12 over Q whose absolute value under any embedding is
√

2, so this

gives a 2-Weil number.

In general, the characteristic polynomial fX contains a little more information than the

conjugacy class of the q-Weil number πX . For instance, πXn gives the same conjugacy class

as πX for all n > 1, whereas fXn = fnX . But for a simple abelian variety X over Fq we

can recover fX from πX , as we have fX = hi with h = fπX

Q the minimum polynomial of πX

over Q and i the index of the division algebra End0(X), which is determined by the conjugacy

class of πX via the method described in (16.36). Combined with the equivalence (a) ⇔ (d) in

Corollary (16.25) we obtain the following lemma.

(16.40) Lemma. Let X and Y be simple abelian varieties over a finite field Fq. Then X and YqWeilConjug

are isogenous if and only if the associated q-Weil numbers πX and πY are conjugate.

Miraculously, every q-Weil number occurs, up to conjugation, as the Frobenius of a simple

abelian variety over Fq, as a result of Honda asserts. Combination with the Theorem of Tate

gives the following description of the isogeny classes of simple abelian varieties over Fq.

(16.41) Theorem of Honda-Tate. Let q be a power of a prime number. For every q-WeilHondaTate

number π there exists a simple abelian variety X over Fq such that πX is conjugate to π.

Furthermore, we have a bijection

{
isogeny classes of simple

abelian varieties over Fq

}
∼−−−→

{
conjugacy classes

of q-Weil numbers

}

given by X 7→ πX .

The inverse of the map X 7→ πX associates to a q-Weil number π a simple abelian variety X

such that fX is a power of the minimum polynomial fπQ of π over Q. In general there may be

no abelian variety with characteristic polynomial fπQ ; see ?? below.

The injectivity of the map X 7→ πX is a consequence of Tate’s Theorem (16.20); see

Lemma (16.40). The proof of surjectivity is based on an explicit knowledge of the reduction

modulo primes of special abelian varieties—namely abelian varieties of CM-type—defined over

a number field. It is done in three steps: (i) We show that π is a q-Weil number if and only if πN

is a qN -Weil number for some N . (ii) We already know how to reconstruct the division algebra

D = End0(X) from π. Then we choose a CM-field L that splits D and construct a complex

abelian variety of CM-type by L, show that it is defined over a number field, and calculate

the Frobenius of its reduction modulo a prime. (iii) We show that by choosing the CM-type

appropriately we get as Frobenius a power of π.

We now carry out the details.

(16.42) Lemma. Let k′ be a extension field of k ∼= Fq of degree N , and let X ′ be a simpleWeilres

abelian variety over k′. If X = Resk′/k(X
′) is the Weil restriction of X ′ to k then fX(T ) =

fX′(TN ). In particular, the qN -Weil numbers πX′ and πNX are conjugate.

Proof. The Tate module Tℓ(X) is the induced module from Gal(k/k′) to Gal(k/k) of Tℓ(X
′)

from which the formula results immediately. �

(16.43) Corollary. If π is a q-Weil number such that πN is conjugate to the Frobenius of apiN
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simple abelian variety over FqN then π is conjugate to the Frobenius of a simple abelian variety

over Fq.

Proof. If X ′ is a simple abelian variety over FqN whose Frobenius πX′ is conjugate to πN , let

X := Resk′/k(X
′), which is an abelian variety (not simple in general) over Fq. By Lemma (16.42)

π is a root of fX and is therefore conjugate to the Frobenius of a k-simple factor of X. �

(16.44) Proposition. Let π be a Weil q-number, F = Q(π) and E the division algebra whichCMsplit

is non-split at the real places of F , split at the complex places and the places not above p and

with q−invv(E) ≡ ‖π‖v (mod 1) for places above p. Then there exists a CM-field L containing F

such that L splits E and [L : F ] = [E : F ]1/2.

Proof. We know that either F is totally real, and then F = Q or F = Q(
√
p) and [E : F ]1/2 = 2,

or F is a CM-field with totally real subfield F0 = Q(π + q/π).

i) Suppose that F is totally real. Then we take L = F (
√−p). This is a CM-field and E

splits over L as the invariant is multiplied by 2 = [L : F ].

ii) Let d = [E : F ]1/2. We take for L0 a totally real field which is an extension of degree

d of F0 and such that for every place v0 of L0 above p the local degree is d; see Exercise ??

for the construction. Then L = FL0 is a CM-field and under the extension the invariant is

multiplied by the local degree [Lv′ : Fv] = [L0 : F0]d, thus killing it. Hence E is split at all

places over p. �

Given a Weil q-number π with F = Q(π) and E a division algebra associated to π (unique

up to isomorphism) we choose a CM-field L that splits E. Recall that an abelian variety X over a

field K is called of CM-type L if we have an embedding L→ End0
K(X) with 2 dim(X) = [L : Q].

(16.45) Proposition. There exists an abelian scheme X defined over the ring of integers ofCMgivespi

a finite extension K of Qp whose generic fibre is of CM-type L and such that the Frobenius of

the special fibre is conjugate to a power πN of π.

Proof. To construct X we have to specify the way L acts on the tangent space at the origin.

If C is a field of characteristic 0 and ρ is complex conjugation on L then we choose a CM-type,

i.e., a subset Φ of HomQ−alg(L,C) such that Φ ∪ Φρ = HomQ−alg(L,C) and Φ ∩ Φρ = ∅. An

abelian scheme X defined over Spec(R) with R ⊂ C is called of type (L,Φ) if the generic fibre

X is of type L and the representation of L on the tangent space of X at the origin decomposes

as the sum
∑
ϕ∈Φ ϕ of characters. By ?? (referentie voor CM AV) we know that there exists an

abelian scheme of type (L,Φ) defined over the ring of integers of a number field in C.

We now take for C an algebraic closure of Qp. We decompose Qp⊗L =
∏
w|pLw, with Lw

the completion of L at the place w. Let Σw = HomQp
(Lw, C) and we identify Σw with its image

in Hom(L,C) and then have Hom(L,C) = ∪w|pΣw. It will now turn out that the reduction of

an abelian scheme of type (L,Φ) up to isogeny is determined by the way the embeddings ϕ ∈ Φ

are distributed over the Σw. We set Φw = Φ ∩ Σw and have Φ = ∪w|pΦw. ¿From (referentie

voor berekening p-deelbare groep) we derive:

(16.46) Lemma. Let X be an abelian scheme of type (L,Φ) defined over the ring of integersRedmodp

OK of a finite extension field K of Qp. Let k0 be the residue field of OK with q0 = #k0 and

let X/k0
= X ⊗ k0. Then the Frobenius πX/k0

can be identified with an element π0 ∈ L ⊂
End0

k0
(X/k0

) and

w(π0)

w(q0)
=

#Φw
#Σw

for every place w over p.
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Now given π, and hence F and E and a CM-field L that splits E we are still free to choose

the CM-type Φ. We claim that we can choose Φ in such a way that for every place w|p of L we

have

w(π)

w(q)
=

#Φw
#Σw

.

To see this, let us denote by v the place of F underlying w and put

nw =
w(π0)

w(q0)
#Σw =

w(π0)

w(q0)
[Lw : Qp] =

w(π0)

w(q0)
[Lw : Fv][Fv : Qp].

Then nw = invw(E⊗FL) ( mod Z) is an integer since L splits E and obviously nw > 0. Moreover

from the identity ππ = q we have nw + nρw = #Σw = #Σρw. We now define a CM-type Φ by

choosing disjoint subsets Φw of cardinality nw such that Φ = ∪wΦw satisfying Φ ∪ ρΦ = Σ and

Φ∩ ρΦ = ∅. Then automatically we have w(π)/w(q) = #Φw/#Σw. By Lemma 16.46 we obtain

an abelian variety defined over a finite field k0 whose Frobenius is conjugate to an element π0 of

L with w(π0)/w(q0) = #Φw/#Σw. The following Lemma finishes the proof of the Honda-Tate

Theorem.

(16.47) Lemma. Given a Weil q-number π and a Weil q0-number π0 in L with w(π)/w(q) =Weilqnulq

w(π0)/w(q0) for all places w|p. Then there exists positive integers N andN0 such that πN = πN0
0 .

Proof. After replacing π and π0 by suitable powers we may assume that q = q0 and hence that

w(q) = w(q0) for all w|p. At the other places π and π0 are units since ππ = π0π0 = q. And at

the infinite place both π and π0 have absolute value q1/2. Therefore, π/π0 has absolute value 1

at every place of L, so π/π0 is a root of unity. �

(16.48) Example. Let q = pm and suppose that n and n′ are integers with 0 6 n < n′,ExaHT

g.c.d.(n, n′) = 1 and n+ n′ = m. Then there exists a simple abelian variety X of dimension m

defined over Fq such that π is a root of π2 + pnπ + pm, cf. Example (‘ExaEndFF’), 3).
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§6. Isomorphism classes contained in an isogeny class.

The results of the preceding sections give a complete description of the isogeny classes of simple

abelian varieties over a given finite field k of cardinality q, via the Weil q-numbers, and a

description of their endomorphism algebras. This leads to two questions: i) Which rings occur

as the endomorphism rings of a simple abelian variety over k? ii) What are the isomorphism

classes of (polarized) abelian varieties defined over k contained in a given isogeny class of abelian

varieties over k? Unfortunately, we have only very partial answers to these questions. They

connect with very interesting research on Shimura varieties. For elliptic curves and for ordinary

varieties over the prime field we have a satisfactory description. We shall indicate these results.

We first need some notions from algebra. Let A be an algebra over Q with identity element 1.

Then by a lattice we mean a free Z-module in A whose rank is equal to dimQ A. A subringR ⊂ A
is called an order if it contains 1 and a lattice. If Λ ⊂ A is a lattice in A then we define the left

(resp. right) order of Λ as {a ∈ A: aΛ ⊂ Λ} (resp. {a ∈ A: Λ a ⊂ Λ}). These are examples of

orders in A.

Note that every element of an order is integral over Z, because....

If X is an abelian variety of dimension g over a finite field k then R = Endk(X) is an order

in the algebra E = End0
k(X). It has the following special property.

(16.49) Lemma. For an abelian variety X over a finite field Fq the endomorphism ringpi+q/pi

Endk(X) is an order containing π and q/π.

Proof. Recall that π ∈ Endk(X) is the ‘mth power’ of relative Frobenius F = FX . Similarly,

the relation FV = V F = p implies that similarly q/π is the m-th power of Verschiebung, see

5.20, hence is contained in Endk(X). �

If X is a simple abelian variety over k with Weil q-number πX then its isogeny class is

determined by the pair (End0
k(X), πX) and we may identify End0

k(X) with a given division

algebra E such that πX corresponds to an element π ∈ E. Any two such identifications coincide

on the center Q(π), hence by the Skolem-Noether theorem (see ??) they differ by an inner

automorphism of E. In particular, the endomorphism ring of X is determined in E up to

conjugation. But if we specify the action of E on the Tate module Vℓ(X) then by 16.20 we can

retrieve Endk(X) inside the algebra E by the conditions that

Endk(X) ⊗ Zl = {a ∈ E: Tℓ(a)Tℓ(X) ⊆ Tℓ(X)} (1)

and

Endk(X) ⊗ Zp = {a ∈ E: aX[p∞] ⊆ X[p∞]} (1′)

since a lattice is determined by its localizations.

The endomorphism ring with the element π determines the isogeny class in the following

precise sense.

(16.50) Lemma. Let X and Y be abelian varieties over k. If α: Endk(Y ) ∼= Endk(X) isIsomEnd

an isomorphism sending πY to πX then there is an isogeny X → Y inducing the isomorphism

Endk(Y ) ∼= Endk(X).

Proof. Since the characteristic polynomials are equal it follows from Theorem ‘TateCor2’

that X and Y are isogenous. Let ϕ: X → Y be an isogeny inducing an algebra isomorphism

ϕ∗: End0
k(Y ) ∼= End0

k(X). By Skolem-Noether this algebra isomorphism differs from the one

induced by α by an inner automorphism of End0
k(Y ) of the form x 7→ ρxρ−1 with ρ ∈ End0

k
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and by multiplying it with a sufficiently large integer we may assume that ρ is an isogeny of Y .

Composing ϕ with this ρ gives the desired isomorphism. �

(16.51) Let G be a commutative group scheme defined over k with an action of the ring R.Homfunctor

For any finitely generated left R-module M we can define a functor on k-algebras by A 7→
HomR(M,G(A)). This functor is representable, because a resolution Ra → Rb →M → 0 gives

rise to an exact sequence 0 → HomR(M,G(A)) → G(A)b → G(A)a by which we can identify

this functor with the kernel of Gb → Ga. Thus HomR(M,G) is a commutative group scheme.

The functor M 7→ HomR(M,G) is a left-exact additive functor from the category of finitely

generated left R-modules to commutative group schemes.

If R is an order in an algebra E then by a left R-ideal in E we mean a left R-submodule

of E which contains a lattice. The condition that a left R-module I in E contains a lattice is

equivalent to the fact that I contains an isogeny and is automatically fulfilled if X is simple and

I 6= (0). Let X be an abelian variety with endomorphism ring Endk(X) = R and let I be a left

R-ideal. By applying HomR(−,X) to the short exact sequence 0→ I → R→ R/I → 0 we find

a long exact sequence that begins like this

0→ HomR(R/I,X)→ X → HomR(I,X)→ Ext1R(R/I,X)→ 0, (2)

where the last term is Ext1R(R,X) = (0) because R is projective, see Atiyah and Macdonald 1.

(16.52) Definition. Let X be an abelian variety with R = Endk(X) and let I be a left R-idealR-occur

in R. We define H(X, I) := HomR(R/I,X) and we view it via the exact sequence (2) as a finite

subgroup scheme of X. Moreover, we put XI := X/H(X, I). This is an abelian variety defined

over k and isogenous to X.

The following lemma provides alternative descriptions of XI .

(16.53) Lemma. Let ϕ: X → XI be the canonical map.kernel

i) We have H(X, I) = ∩α∈IX[α] with X[α] = ker(α).

ii) If α1, . . . , αr generate of I then XI is isomorphic to the image of (α1, . . . , αr) : X → Xr.

iii) For l 6= p we have

Tℓ(ϕ)−1Tℓ(XI) = ∩α∈ITℓ(α)−1Tℓ(X)

iv) The dual of Tℓ(ϕ)−1Tℓ(XI ) in Tℓ(X)∨ is I Tℓ(X)∨.

v) For the Dieudonné modules we have

ϕpM(XI [p
∞]) =

∑

α∈I

αpM(X[p∞]).

Proof. If Rn → R → R/I → 0 is a resolution and r1, . . . , rn are the corresponding generators

of I then we get HomR(R/I,X) = ker{(r1, . . . , rn) : X → Xn} and the statements i) and ii)

become clear. The other statements are a direct consequence of this, use 10.6. �

The Lemma makes it possible to describe the lattice Endk(XI) in E via these local conditions

iii) and v) using the conditions (1) and (1’).

Note that by assumption R/I is finite, and if N annihilates R/I then N also annihilates

Ext1R(R/I,X). Thus by the exact sequence (2) the abelian variety XI is the connected compo-

nent of HomR(I,X). If I and J are isomorphic as left R-modules, then the isomorphism extends

to an isomorphism of E which by Skolem-Noether is scalar multiplication, I = Jλ, i.e., I and J
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belong to the same ideal class of R. By the definition of XI a R-isomorphism between I and J

implies that XI and XJ are isomorphic. But the converse need not hold. It holds if we impose

an extra condition on the ideals.

(16.54) Definition. A left ideal I of R = Endk(X) is called a kernel ideal if I is the annihilatorkerideal

of the subgroup scheme H(X, I), that is, if I = {α ∈ R: αH(X, I) = 0}. The ideal J = {α ∈
R: αH(X, I) = 0} with J = H(X,J) is called the kernel ideal associated to I.

(16.55) Examples of kernel ideals. i) A principal ideal Rλ is a kernel ideal. Any α ∈ R thatExaKerId

vanishes on H(X, I) = ker(λ) factors as α = β λ for some β ∈ R. ii) If I is a kernel ideal then

so is Iλ for any isogeny λ. To see this, consider an element α that annihilates H(X, Iλ). Then

it annihilates ker(λ), in particular it annihilates H(X,Rλ) and since by i) the ideal Rλ is a

kernel ideal it follows that α ∈ Rλ, say α = βλ. Since α annihilates H(X, Iλ) we have that

H(X, Iλ) ⊂ ker βλ. Since λ is an isogeny and thus surjective this implies that β annihilates

H(X, I) i.e., β ∈ I and thus α ∈ Iλ. �

(16.56) Lemma. Let X be a simple abelian variety over a finite field k with R = Endk(X)EndChange

and let I be a left R-ideal. Then Endk(XI ) contains the right order of I and equals it if I is a

kernel ideal.

Proof. Let ϕ: X → XI be the canonical map. An element ρ in the right order of I has the prop-

erty that ρ preserves Tℓ(ϕ)−1Tℓ(XI) = ∩α∈Iα−1Tℓ(X)and similarly
∑
α∈I αM(X[p∞]),hence

belongs to Endk(XI). Suppose that β is an elementpreserving these lattices. Then J = I + Iβ

is a left ideal of R and we have H(X, I) = H(X,J). This shows that if I is a kernel ideal we

have I = H(X,J) = J . �

(16.57) Proposition. Let I and J be kernel ideals of Endk(X). Then XI
∼= XJ if and onlyaction

if I = Jλ for some invertible λ ∈ End0
k(X).

Proof. We already remarked above that XI
∼= XJ if I = Jλ. It remains to show that

an isomorphism XI
∼= XJ implies that I = Jλ for an invertible element of E. By Exercise

16.15 there exists an isogeny ρ ∈ R such that ρ−1(H(X, I)) = N−1
X (H(X,J)). Note that

ρ−1(H(X, I)) = H(X, Iρ) and N−1
X (H(X,J)) = H(X,JN). By 16.55 both Iρ and IN are

kernel ideals, and as annihilator of the same subgroup scheme H(X, Iρ) = H(X,JN) the ideals

Iρ and JN are equal. We find I = JNρ−1. �

(16.58) Proposition. Let X be an abelian variety over a finite field k with endomorphismmaxRoccur

algebra E. Then every maximal order in E occurs as an endomorphism ring of an abelian variety

in the isogeny class of X. Moreover, if R = Endk(X) is a maximal order then so is Endk(XI)

for any left R-ideal I.

Proof. We claim that Endk(XI) contains the right order of I. Indeed, if α ∈ I and j is in the

right order of I then αj ∈ I and one checks that j maps Tℓ(XI) and M(XI [p
∞]) to itself.

Let S be a maximal order of E. Then a multiple N ·S is contained in R for some N ∈ Z>1.

Let I be the left ideal generated by N ·S. Its right order contains S, therefore the endomorphism

ring of XI contains S and equals S since S is maximal.

By Deuring 2, p. 75 (???) or Reiner 1, (21.2) the right order of a left ideal of a maximal

order is maximal. �

(16.59) Proposition. Let X be a simple abelian variety over a finite field k whose endomor-rkH(X,I)

phism ring R = Endk(X) is a maximal order in E = End0
k(X). Then rankH(X, I) = N(I), the

reduced norm of I in E and every left ideal I of R is a kernel ideal.
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Proof. If I = Rλ is a principal ideal then rankH(X, I) = rankX[λ] = degλ and we know by (ref

naar End hfdstk) that degλ = N(Rλ). Given an arbitrary left ideal I we let R′ be its right order.

Then there exists a left R′-ideal J such that IJ = Rλ, see (Deuring [2], p. 106 ???). Moreover,

we may choose N(J) prime to rankH(X, I). We then have N(I)N(J) = N(Rλ) = degλ. The

reader may check in Exercise 16.10 that rankH(X, IJ) = rankH(X, I)rankH(XI , J). Thus we

find that rankH(X, I) divides N(I). Applying the same reasoning to J we find that rankH(X,J)

divides N(J). Together this shows that rankH(X, I) = N(I).

Finally, if I ′ is the kernel ideal associated to I then I ′ ⊇ I and we have rankH(X, I) = N(I ′),

thus N(I ′) = N(I) and it follows that I = I ′. �

(16.60) Remark. Let X be an elliptic curve over k = Fq with R = Endk(X) the ring ofnotXI

integers of an imaginary quadratic field in which p is inert. Then X and X(p) are isogenous via

FX but X(p) is not of the form XI for an ideal I of R. Every ideal is a kernel ideal, but there

is no ideal I with H(X, I) = ker(FX).

(16.61) Proposition. Let X be an ordinary simple abelian variety over a finite field k. Thenordsimple

R = Endk(X) is commutative. If moreover Endk(X) is a maximal order in the fraction field

of R then the set of k-isomorphism classes of abelian varieties in the isogeny class of X with

endomorphism ring R is a torsor over Pic(R).

Proof. By ‘ExaEndFF’ we know that E = End0(X) has no real primes and by ‘EndFF’ the invariant

of E is 0 or ordv(q) above p and zero for the other finite places, hence is an integer. It follows

that E = F is commutative. If R is a maximal order then by 16.57 the class group of R acts.

We need to see that there is one orbit. By the theory of the canonical lift we have for each X

a canonical lift and isogenies lift also. The lattice of a lift is a projective R-module of rank 1.

This gives the bijection. �

§7. Elliptic curves.

We now illustrate the concepts from the earlier sections in the case of elliptic curves. Let X be

an elliptic curve defined over a finite field k of characteristic p. Then multiplication by p factors

as

X
FX−→X(p) V−→X

We now have two possibilities: i) V is separable; ii) V is inseparable. In the first case X is

called ordinary and in the second case supersingular. In the supersingular case we see that

V = FX(p) since both have the same kernel, the unique αp in X(p)[p]. We also see then that pX
gives a k-isomorphism X ∼= X(p2), i.e. the j-invariant satisfies jp

2

= j and then j ∈ Fp2 . For

convenience we give a number of characterizations of ordinary elliptic curves.

(16.62) Proposition. Let X be an elliptic curve over a finite field k = Fq with R = Endk(X)ordchar

and #X(Fq) = q + 1− t. Then the following are equivalent:

i) X is ordinary;

ii) X has p-rank 1, i.e., #X[p](k) = p;

iii) t 6≡ 0 (mod p);

iv) F = Q(π) is an imaginary quadratic field and p splits in F .

Proof. i) ⇒ ii). Since V is étale the group scheme ker(V ) ⊂ X[p]/ ker(FX) is an étale group
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scheme and by V FX = pX it follows that it is of order p. ii) ⇒ iii) We have #X(Fqn) =

qn + 1− αn − αn (with α and α the roots of fX) and for suitable n this is divisible by p. Since

αα = q it follows that αn + αn ≡ α + α (modp) and that t = α + α is prime to p. iii) ⇒ iv).

The discriminant ∆ = t2 − 4q of F is < 0 and a square mod p. iv) ⇒ i) If p = ℘℘′ in the ring

of integers of F then π = ℘n℘′
n′

with n+ n′ = m. Then by Theorem ‘EndFF’ the invariants of

End0
k(X) at ℘ and ℘′ are n/m and n′/m with n+ n′ = m and by ‘pidim’ we have either n = 0

or n′ = 0. Suppose that π = ℘m. Look at the isogeny X → X℘′ . This is a separable isogeny of

degree p because its kernel is different from the connected kernel of X → X℘, hence ker pX is

not connected. �

We now consider isogeny classes of elliptic curves. Isogeny classes of elliptic curves are describedIsogEC

by their Weil q-number π with π2−t π+q = 0, hence by the trace of Frobenius t = q+1−#X(Fq).

The following result of Deuring describes all t that occur.

(16.64) Theorem. The integer t occurs as the trace of an elliptic curve defined over Fq witht-occur

q = pm if and only if t is one of the following:

i) t is prime to p and t2 6 4q;

ii) If m is odd then a) t = 0; b) t = ±√2q and p = 2; c) t = ±√3q and p = 3;

iii) If m is even then a) t = ±2
√
q; b) t = ±√q and p 6≡ 1(mod 3); c) t = 0 and p 6≡ 1(mod 4).

Proof. We have to check which Weil q-numbers π with π2 − tπ + q = 0 give rise to elliptic

curves. If π ∈ Q, then in view of t2 − 4q 6 0 the discriminant vanishes and fX = (T ± √q)2
with and m necessarily even. We get t = ±2

√
q and m even, the case iii a).

So assume now F 6= Q. Then F is an imaginary quadratic field and fX = T 2− tT + q with

t2 < 4q. We have to check when this gives an elliptic curve. The condition is (cf. ‘pidim’) that

m = ord(Pν(0)) for the p-adic factors Pν ∈ Qp[T ].

If p = ℘℘′ splits in F then π = ℘n℘′
n′

with n+n′ = m and the invariants at ℘ and ℘′ of E

are n/m and n′/m. In order to get an elliptic curve we need n = 0 or n′ = 0. This is equivalent

to the condition that t = π + π is prime to p. This gives case i).

If p does not split in F then fX remains irreducible in Qp[T ]. Then there is a unique place

v|p and since ππ = q we have ordv(π) = (1/2)ord(q). It follows that π/
√
q has absolute value

1 at all embeddings, hence is a root of unity in an imaginary quadratic field, hence of order

dividing 4 or 6. The reader may now check using Exercises 16.7, 16.8 that the cases listed give

exactly all the possibilities. �

We illustrate this by a little table listing the isomorphism classes of elliptic curves defined

over k = F3. The elliptic curve is given as y2 = f(x). We also give the j-invariant.

f t 1/#Autk(X) j π

x3 + x2 + 1 −2 1/2 −1 −1±
√
−2

x3 + x2 − 1 1 1/2 1 (1±
√
−11)/2

x3 − x2 + 1 −1 1/2 1 (−1±
√
−11)/2

x3 − x2 − 1 2 1/2 −1 1±
√
−2

x3 + x 0 1/2 0 ±
√
−3

x3 − x 0 1/6 0 ±
√
−3

x3 − x+ 1 −3 1/6 0 (−3±
√
−3)/2

x3 − x− 1 3 1/6 0 (3±
√
−3)/2

We also give a table for the field k = F9 listing the possible traces t and the frequencies
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with which these occur, where we define the frequency as
∑

[X] 1/#AutF9
(X) with the sum over

all the F9-isomorphism classes of elliptic curves defined over F9 with the given trace.

t 0 ±1 ±2 ±3 ±4 ±5 ±6∑
1/#AutF9

1/2 1 3/2 1/6 1 1/2 1/12

Let E be the endomorphism algebra of an isogeny class of elliptic curves defined over Fq withalg-occur

corresponding Weil q-number π and field F = Q(π). If F = Q then t = ±2
√
q, the elliptic curve

X is supersingular and by ‘ExaEndFF’ we have E = Dp, the unique division quaternion algebra

over Q ramified at p and at∞. If F 6= Q then F is an imaginary quadratic field Q(
√
t2 − 4q) and

by ‘TateCor4’ and ‘TateCor5’ we have E = F . The curve X can be ordinary or supersingular

depending on whether t ≡ 0 (mod p) or not. We now determine the possible endomorphism

rings.

Orders in a quadratic number field K are special. They are completely determined by their

disriminant ∆ = Dc2, where c2 is the largest square such that D = ∆/c2 ≡ 0, 1(mod4). Then

D is the discriminant of K and the (positive) integer c, the conductor, is the index of the order

in the ring of integers of the number field. To such an order R we can associate its class group

Pic(R) of isomorphism classes of projective modules of rank 1 or invertible ideals in K. We

write h(R) for the class number #Pic(R).

(16.66) Theorem. Let X be an elliptic curve over a finite field k with E = End0(X) andorder-occur

Weil number π. If F = Q(π) then the following orders occur as endomorphism ring of an elliptic

curve defined over k in the isogeny class of X:

(i) ordinary case E = F : every order containing π;

ii) supersingular case with E = Dp: every maximal order;

iii) supersingular case with E = F : every order containing π whose conductor is prime to p.

Proof. i) If X is ordinary with endomorphism algebra E then Z[π] is maximal at p since the

derivative of fX at π is 2π−b and this is prime to p. Let now R be an arbitrary order containing

π. Then possibly R 6= Endk(X), but then there are only finitely many primes l 6= p, say l1, . . . , lr
such that Rl 6= Endk(X)l. Choose a lattice L1 in Vl1(X) that contains Tl1(X) and which has

order Rl1 . Such a lattice exists since Vℓ(X) is free of rank 1 over Fl. Since R contains π this

lattice is Galois invariant. We take X1 to be the quotient of X by the finite subgroup L1/Tl1(X).

Then we have Tℓ(X) = Tl(X1) for all l 6= l1 and Endk(X1) = Rl1 .Repeating this procedure gives

us an elliptic curve with endomorphism ring R.

(ii) If R is an order in a finite dimensional Q-algebra E then R is maximal if and only if

R ⊗ Zp is maximal in E ⊗ Qp for all prime numbers p; see Reiner 1, (11.2). Now assume that

X is supersingular and E = Dp is non-commutative. For all ℓ 6= p we have E ⊗ Qℓ
∼= M2(Qℓ)

and R is conjugate to M2(Zℓ), hence maximal at l 6= p. We now look at the case l = p. By

16.58 we know that the maximal order occurs for an elliptic curve defined over Fq contained

in the isogeny class. Since we only look at l = p we may restrict ourselves to p-order isogenies

defined over k. These can be factored as a composition of Frobenii F . If we apply a k-isogeny

F r : X → X(pr) then F r induces an isomorphism on the endomorphism rings via α 7→ α(pr).

This implies the maximality at p.

iii) At l 6= p the argument of i) shows that we can get any order in this isogeny class.

Consider now the case l = p. After a quadratic extension of the base field we get E = Dp and

the order is maximal. At p the algebra Dp remains a division algebra and as such has a unique

maximal order containing all integral elements. This order intersects any subfield in its maximal
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order. Clearly this intersection is EndFq
(X). �

We illustrate the theorem by listing representatives y2 = f(x) for the isomorphism classes of

elliptic curves defined over F7 with the corresponding Weil 7-numbers and their endomorphism

rings with the conductor c. Note that R need not be equal to Z[π].

f t 1/#Autk(X) j π c h(R)

x3 + 1 −4 1/6 0 −2±
√
−3 1 1

x3 + 2 −1 1/6 0 (−1± 3
√
−3)/2 1 1

x3 + 3 −5 1/6 0 (−5±
√
−3)/2 1 1

x3 + 4 5 1/6 0 (5±
√
−3)/2 1 1

x3 + 5 1 1/6 0 (1± 3
√
−3)/2 1 1

x3 + 6 4 1/6 0 2±
√
−3 1 1

x3 + x 0 1/2 6 ±
√
−7 2 1

x3 + x+ 1 3 1/2 1 (3±
√
−19)/2 1 1

x3 + x+ 3 2 1/2 5 1±
√
−6 1 2

x3 + x+ 4 −2 1/2 5 −1±
√
−6 1 2

x3 + x+ 6 −3 1/2 1 (−3±
√
−19)/2 1 1

x3 + 3x 0 1/2 6 ±
√
−7 1 1

x3 + 3x+ 1 −4 1/2 2 (−2±
√
−3) 2 1

x3 + 3x+ 2 −1 1/2 3 (−1± 3
√
−3)/2 3 1

x3 + 3x+ 3 2 1/2 4 1±
√
−6 1 2

x3 + 3x+ 4 −2 1/2 4 −1±
√
−6 1 2

x3 + 3x+ 5 1 1/2 3 (1± 3
√
−3)/2 3 1

x3 + 3x+ 6 4 1/2 2 −2±
√
−3 2 1

(16.67) Proposition. Let X be an elliptic curve over a finite field k with R = Endk(X).classgr

Then every non-zero left R-ideal is a kernel ideal for every elliptic curve Y with Endk(Y ) ∼= R.

Proof. If R is non-commutative then R is a maximal order and by 16.59 every left R-ideal is

a kernel ideal. So assume now that R is commutative. Then R is an order in an imaginary

quadratic field and the ideals of R with order R are exactly the invertible ideals. Consider for

a left ideal I the canonical map ϕ: X → XI . For l 6= p the dual of Tℓ(ϕ)−1(Tℓ(X)) is I Tℓ(X)∨

and the l-part of H(X, I) is given by Tℓ(X)∨/I Tℓ(X)∨. But Tℓ(X)∨ is free of rank 1 over Rl
and therefore at l the ideals I and the annihilator of H(X, I) coincide. At p the order R is

maximal, and the Dieudonné module is a sum of free modules.

(16.68) Theorem. Let X be an elliptic curve X defined over k = Fq with R = Endk(X)EllEnd

and E = End0
k(X). Let I(X,R) be the set of k-isomorphism classes of elliptic curves over k

contained in the k-isogeny class of X with endomorphism ring R.

i) If X is ordinary then I(X,R) is a torsor over the ideal class of R.

ii) If X is supersingular and E = F is commutative then the ideal class group of R acts freely

on I(X,R) with 2 orbits if p is inert in R and 1 orbit else.

iii) If X is supersingular and E = Dp is non-commutative then #I(X,R) is 1 or 2. It equals 1

if and only if the prime ideal over p in R is principal.

Proof. i) Using the construction X 7→ XI we see that the ideal class group of R acts freely. We

need to see that there is one orbit. One way to see this is to use the canonical lift. The canonical

lift of an elliptic curve Y in I(X) is a complex elliptic curve with endomorphism ring R. By the

theory of complex multiplication we know that these are in 1− 1 correspondence with the class
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group of R; for each such curve the lattice is a projectice R-module of rank 1. Alternatively,

if X → X/G is an isogeny of X and X/G → X the dual map then Tℓ(X/G) corresponds to a

sublattice of Tℓ(X). One now checks that every lattice comes from an ideal.

ii) If X is supersingular with E = F commutative then the class group acts freely on the

set of elliptic curves in this isogeny class with endomorphism ring R. If X → Y is a separable

isogeny then I claim that Y = XI for some invertible ideal I. Indeed, at l 6= p the isogeny is

given by an overlattice of Tℓ(X), or dually by a sublattice of the dual Tℓ(X)∨. But sincethe

dual is free of rank 1 over Rl the sublattice is of the form IlTℓ(X)∨ for some local ideal Il. At

p it suffices to consider inseparable isogenies and these are compositionsof Frobenii. Note that

p ramifies or is inert. If (p) = ℘2 thenX(p) = X℘ and we find just one orbit. If p is inert,then

there is no I such X(p) = XI , hence there are exactly 2 orbits. iii) Finally, suppose that E is

non-commutative. We must show that there is one orbit. Note that R is maximal. Let Y be an

elliptic curve with Endk(Y ) = R. This induces by 16.50 an isogeny of X with Y given by the

ideal I = Rϕ. By 16.56 this ideal is a two-sided ideal. Two-sided ideal in R are classified, see

Deuring [1], p. 263 (???). They are of the form nR or n℘ with ℘2 = (p). These represent one

class if and only if ℘ is principal. �

(16.69) This theorem makes it possible to count the number N(t) of isomorphism classes ofcounting

elliptic curves defined over k = Fq contained in a fixed isogeny class given by t. For example,

if t 6≡ 0(modp) and t2 < 4q then N(t) =
∑
R h(R), where the sum is over the orders R with

Z[π] ⊆ R ⊆ OF with OF the ring of integers of the imaginary quadratic field F = Q(π). See

Exercise 16.11 for the precise formulas, and see also Schoof [1]. Actually, always in mathematics

it is better to count the objects with their natural weight which is 1 over the order of the

automorphism group of the object. In the case at hand, we have to count an elliptic curve

X with a weight equal to 1/#Autk(X). Therefore, we introduce a modified class number, the

Hurwitz-Kronecker class number.

(16.70) Definition. The Hurwitz-Kronecker class number H(∆) is the number of SL(2,Z)-Hurwitz-K

equivalence classes of positive binary integral quadratic forms ϕ = aX2 + bXY + cY 2 with

discriminant −∆, each class [ϕ] being counted with weight 2/#Aut(ϕ), with Aut(ϕ) the group

of orientation preserving automorphisms of ϕ. Equivalently, we let H(∆) =
∑
c∈Zgeq1

ĥ(−∆/c2)

with ĥ(N) the class number of the order R with discriminant N divided by 2/#Aut(R). Fur-

thermore, we set H(0) = −1/12.

We give a small table illustrating the Hurwitz-Kronecker class number.

n 0 3 4 7 8 11 12 15 16 19
H(n) −1/12 1/3 1/2 1 1 1 4/3 2 3/2 1

(16.71) Proposition. Let t be an integer with t2 < 4q and t 6≡ 0(modp). The number ofClassNumber

isomorphism classes of elliptic curves X defined over Fq weighted with 1/#AutFq
(X) with trace

of Frobenius t equals (1/2)H(4q − t2), where H(∆) is the Hurwitz-Kronecker class number of

discriminant ∆.

Proof. Let t be a number prime to p occurring as the trace of Frobenius of an elliptic curve X

over Fq. Then each elliptic curve over Fq in the isogeny class of X can be lifted canonically and

after choosing an embedding W (Fq) into C we get a complex elliptic curve and an associated

lattice with Endk(X) as endomorphism ring. In particular, each automorphism can be lifted

too. We thus find a bijection between the isomorphism classes containedin the isogeny class and
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isomorphism classes of Endk-lattices. �

The reader will notice that the weights of all elliptic curves with the same j-invariant add

up to 1. This is an instance of the following phenomenon.

(16.72) Theorem. Let Y be a variety defined over the finite field k such that its absolutemassofgerb

automorphism group Autk(Y ) is finite. Then we have the formula:

∑

Y ′

1

#Autk(Y ′)
= 1,

where the sum is over representatives Y ′ of the k-isomorphism classes contained in the k-

isomorphism class of Y .

Proof. If α : Y → Y ′ is an k-isomorphism and γ ∈ G = Gal(k/k) then α−1 · αγ is an k-

automorphism of Y . The map which associates to γ ∈ G the automorphism aγ = α−1 · αγ
defines a cocycle on G with values in the (possibly non-abelian) group A = Autk(Y ), that is,

we have the relation aγδ = aγ · aγδ . It is well-known that this gives a bijection between the

set of k-isomorphism classes contained in the k-isomorphism class of Y and the cohomology set

H1(G,A). Since G is essentially cyclic, in the sense that G is topologically generated by the

Frobenius element we can use continuous cohomology. Therefore, a cocycle γ 7→ aγ ∈ Z1(G,A)

is given by the image of F , i.e., it is determined by giving an (arbitrary) element of A.Two

cohomologous cycles thus correspond to elements that differ by the actionof A on itself given by

a 7→ ε−1 · a · εF for ε ∈ A. The orbits correspond to the cohomology classes in H1(G,A).The

stabilizer of an element aF is in 1− 1-correspondence with the setAutk(Y
′). Indeed, we have a

bijection Autk(Y )←→ Autk(Y
′) via ρ 7→ σ = α · ρ · α−1, where α: Y → Y ′ is a k-isomorphism

of Y with Y ′. So we get

ρ−1aFρ
F = ρ−1α−1αF ρF = α−1σ−1σFαF

and this equals aF = α−1αF if and only if σF = σ, i.e., σ ∈ Autk(Y
′). Counting the orbits now

gives

#A =
∑

Y ′

#A

#Autk(Y ′)
,

and by division by #A the desired formula
∑
Y ′ 1/#Autk(Y

′) = 1. �

(16.73) Counting the number of abelian varieties over a finite field of cardinality q can beApplic

used to obtain information about automorphic forms. We give a simple example. For a pair

of integers (t, n) we define Pk(t, n) for positive even k as the coefficient of xk−2 in the power

series development of (1 − tx + nx2)−1. Equivalently, if we factor this quadratic polynomial

(1− tx+ nx2) = (1− ρx)(1− ρx) then

Pk(t, n) =
ρk−1 − ρk−1

ρ− ρ .

and equals the trace of the k − 2th symmetric power of diag(ρ, ρ).

One place where the class numbers that we met naturally occur is the trace formulafor the

action of the Hecke operators on the space of modular forms on SL(2,Z). The following theorem

and an elementary proof can be found in 2.
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(16.74) Theorem. Let k > 4 be an even integer and n a positive integer. Then the trace ofTraceHecke

the Hecke operator T (n) on the space Sk of cusp forms of weight k on SL(2,Z) is given by

TrT (n) = −1

2

∑

t∈Z

Pk(t, n)H(4n − t2)− 1

2

∑

dd′=n

min(d, d′)k−1.

Using 16.68 and 16.71 we can rewrite this now purely in terms of elliptic curves over finite

fields.

(16.75) Theorem. Let p be a prime. The trace of the Hecke operator T (p) on the space ofLocalSystem

cusp forms of even weight k ∈ 2Z with k > 4 on SL(2,Z) is given by

TrT (p) + 1 =
∑

E/Fp,up to ∼=Fp

−TrSymk−2(Tℓ(π))

#AutFp
(E)

,

where the sum is over the Fp-isomorphism classes of elliptic curves defined over Fp.

Example. We have P12(t, p) = −p5 + 15 p4t2 − 35 p3t4 + 28 p2t6 − 9 pt8 + t10. Noting that

P12(t, p) = P12(−t, p) and P12(2, 3) = −263, P12(1, 3) = 253 and P12(0, 3) = P12(3, 3) = −243

and using the table we get TrT (3) = 252 for k = 12. This fits since τ(3) = 252 is the third

Fourier coefficient of the generator ∆ =
∑∞
n=1 τ(n)qn of S12.

One should see this formula as an instance of a Lefschetz trace formula. The trace on

cohomology is calculated by counting fixed points of Frobenius. ...

§8. Newton polygons of abelian varieties over finite fields.

Given an abelian variety X over a finite field Fq with q = pm we can look at the Newton

polygon of the characteristic polynomial fX = T 2g + . . . + pmg =
∏2g
i=1(T − αi) of Frobenius.

To interpret this geometrically we consider the Witt ring W (Fq) = Zp(ζq−1) (=unique complete

discrete valuation ring which is absolutely unramified and has Fq as its residue field). Suppose

the αi lie in a ring W (Fq)[p
1/e] for some e > 1. We write

ord(αi) = mci with 0 6 ci 6 1.

Moreover, we set

rc = #{αi: ord(αi) = c} and nc = crc,mc = rc − nc.

The the following theorem of Manin (cf [Ma]) explain the geometric significance of the numbers

ci :

(16.76) Theorem. The formal group of the abelian variety A is of the formManinThm

r0G1,0 +
∑

0<c< 1
2

(Gnc,mc
+Gmc,nc

) + 1
2r 1

2
G1,1.
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Example. (cf [Ta]) Let q = pm and choose integers n and n′ with 0 6 n < n′ and m = n+ n′.

Let π be a root of π2 + pnπ + pm = 0 . Then π is a imaginary quadratic Weil number with

respect to q and p splits as p = ℘℘′ in Q(π). A corresponding abelian variety A (by (11.16) has

dimension m and the invariants of E0 are n/m and n′/m. One can show that A remains simple

over Fq. We find that the formal group is Gn,n′ ×Gn′,n. The formal group G1,1 can be obtained

from the Weil number
√−p. (So all these formal groups are algebraic.)

§9. Ordinary abelian varieties over a finite field.

Recall the definition of ‘ordinary abelian variety’.

(16.77) Definition-Proposition. An abelian variety X of dimension g defined over a finiteOrdAVFF

field k of characteristic p is called ordinary if one of the following equivalent conditions is fulfilled.

i) The p-rank of X is g, i.e.,#X[p](k) = pg.

ii) Verschiebung V : X(p) → X is an étale map.

iii) The induced action F ∗: H1(X(p), OX(p))→ H1(X,OX ) is invertible.

iv) ker(F ) is a multiplicative group scheme.

v) Half of the 2g roots of the characteristic polynomial fX of Frobenius π are p-adic units.

If one looks at the Newton polygon of the characteristic polynomial fX then on the one end

of the spectre one finds the supersingular abelian varieties and at the other end the ordinary

abelian varieties. These abelian varieties show the strongest resemblance to abelian varieties in

characteristic zero. For example, the endomorphism rings of simple ordinary abelian varieties

similar to those of complex abelian varieties.

(16.78) Proposition. Let X be a simple ordinary abelian variety over a finite field k withEndOrdAV

corresponding Weil number π. Then F = Q(π) has no real primes and End0
k(X) = F is

commutative. Moreover, fX is irreducible.

Proof. As we saw in ‘ExaEndFF’ the occurrence of a real prime of F implies that X is a

supersingular elliptic curve or an abelian surface that over a quadratic extension k′ of k becomes

a power of a supersingular elliptic curve over k′. Therefore F is a CM-field. By ππ = q we see

that in ‖π‖v = q−iv the exponent iv is an integer for all v|p. By Theorem ‘EndFF’ it follows that

Endk(X) = F , hence is commutative. The irreducibility of fX follows immediately. �

If X is an ordinary abelian variety of dimension g over the finite field k then the Tate

module Tp(X) = Hom(Qp/Zp,X(k)) is non-canonically isomorphic to Zgp. We shall denote it

here by T ′p(X) and we use the notation T ′′p (X) for the dual of T ′p(X
t), i.e.,

T ′′p (X) := HomZp
(T ′p(X

t), Tp(Gm)),

where we may write Zp(1) for the Tate module of the multiplicative group Gm. We thus

obtain two free rank g lattices over Zp associated to X. We put V ′p(X) = T ′p(X) ⊗ Qp and

V ′′p = T ′′p (X)⊗Qp.

Ordinary abelian varieties can be lifted in a canonical way to characteristic zero. Indeed,

recall there is a general Serre-Tate theorem which says the following.
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Let R be any artinian local ring with algebraically closed residue field k of characteristic p.

Then the functor

{abelian schemes over R} −→

−→ { ab. schemes over k plus lifting of their p− divisible groups to R}

given by

X/R 7→ (X ⊗R k,X[p∞])

is an equivalence of categories, see [ ]. So to lift an abelian variety X/k to R we must lift its

p-divisible group. For an ordinary abelian variety the p-divisible group is canonically a product

X[p∞] = X̂ × (Tp(X)⊗Zp
(Qp/Zp)) (14)

of its connected and étale part. We can lift both factors separately:

X̂ = (µp∞)g, Tp(X) = (Qp/Zp)
g

and take the product again. A general lift of (*) will combine both factors, more precisely, given

a lift of (14) we find a pairing

X̂ × Tp(Xt)→ Ĝm.

For an ordinary abelian variety X the canonical lift X̂ is the unique lift to the Witt ring

W = W (k) such that each endomorphism of X lifts to an endomorphism of X̂.

(16.79) Lemma. Let X be an ordinary abelian variety over k. Then the finite subgroupOrdAIsog

schemes of X are in 1− 1 correspondence with the sublattices R ⊂ Λ(X) such that

R⊗ Zp = ((R ⊗ Zp) ∩ V ′p + ((R ⊗ Zp) ∩ V ′′p ).

In particular, ker(F ) corresponds to the sublattice Λ(p) of Λ(X) which is p-isogenous to Λ and

satisfies ..

Using this Deligne has given a characterization of the category of ordinary abelian varieties

over Fq. Let ϕ: W → C be a chosen embedding.

(16.80) Theorem. The functor X 7→ (Λ(X), F ), with Λ(X) = H1(Â ⊗ϕ C,Z) and F theOrdinaryFF

endomorphism induced by Frobenius on Λ(X), is an equivalence of categories between the cat-

egory of ordinary abelian varieties over Fq and the category of free Z-modules of finite type

satisfying the following conditions

i) F is semi-simple with eigen values of absolute value q1/2,

ii) There is a decomposition Λ(X) ⊗ Zp = T ′p ⊕ T ′′p of Zp[F ]-modules of the same dimension

such that F |T ′p is invertible, while F |T ′′p is divisible by q.

Proof. If X is an abelian variety over k = Fq then the operator F on Λ(X) is semi-simple and

has eigenvalues of absolute value q1/2 by the Hasse-Weil Theorem ‘Hasse-Weil’.

We now first show that the functor is fully faithful, i.e., that for two abelian varieties X1

and X2 defined over k the natural map

ψ: Homk(X1,X2)→ HomF (Λ(X1),Λ(X2))

is an isomorphism. After tensoring with Zl we obtain a map

ψl: Homk(X1,X2)⊗ Zl → HomF (Λ(X1),Λ(X2))⊗ Zl,
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and the latter RHS can be identified with HomF (Tℓ(X1), Tℓ(X2)).By Tate’s Theorem 16.20 it

follows that ψl ⊗Qis an isomorphism for l 6= p. Since Homk(X1,X2) is torsion-free we conclude

that ψ is injective. We shall show that the co-kernel of ψ is torsion-free by showing that if

ϕ: X1 → X2 is a homomorphism such that the induced map Λϕ: Λ(X1) → Λ(X2) is divisible

by a natural number n then ϕ is also divisible by n in Endk(X1,X2). If Λϕ is disible by n then

the induced map on the canonical lifts (Xi/k)C is also divisible by n, hence also the induced

map ϕ̃ between the corresponding generic fibres of the p-divisible groups Xi[p
∞]. But the kernel

of multiplication by n is a flat group scheme over the Witt ring W (k) it follows that ϕ̃ is also

divisible by n, and so is ϕ. This proves that the functor is fully faithful.

The functor Λ induces a functor ΛQ from the category of abelian varieties over k up to

isogeny to the category V of Q-vector spaces of finite dimension with a semi-simple operator

F such that its eigenvalues are of absolute value q1/2 and half of these are p-adic units. Now

then Theorem of Honda and Tate 16.41 shows that ΛQ is essentially surjective: if (V, F ) is

a simple object in the category V then there exists an abelian variety X over k such that the

characteristic polynomial FX of Frobenius is a power of that of F . Clearly, X is ordinary then and

(Λ(X)⊗Q, F ) is a sum of copies of (V, F ). The fact that our functor is fully faithful now implies

X is up to isogeny a power of an abelian variety Y defined over k with (Λ(Y )⊗Q, F ) = (V, F ).

Exercises.

(16.1) Let C be a smooth irreducible projective curve defined over a finite field k. Prove theEx:ZetaCurve

identity of formal series

exp

[
∞∑

n=1

#C(Fqn)
tn

n

]
=
∞∑

n=0

Dnt
n,

with Dn the number of effective divisors of degree n on C which are defined over k.

(16.2) Let C be a smooth irreducible projective curve defined over a finite field Fq. UseEx:Ihara

#C(Fq) 6 #C(Fq2) and Cauchy-Schwartz for the roots αi of fJac(C) to prove that

#C(Fq) 6 q + 1 =
[(√

(8q + 1)g2 + 4(q2 − q)g − g
)
/2
]
.

Conclude that for g > (q −√q)/2 this is a better bound than the Hasse-Weil bound.

(16.3) Let X be a supersingular elliptic curve defined over the prime field Fp. Prove thatEx:EndSSEll

End(X) 6= End(XFp
).

(16.4) Let X be an abelian variety over a finite field k. Let ℓ be a prime number, ℓ 6= char(k),Ex:QlImrho

and consider the ℓ-adic representation ρℓ: Gal(k/k)→ GL(VℓX).

(i) Show that the map ρℓ is continuous, where we give the Galois group the Krull topology and

GL(VℓX) the ℓ-adic topology.

(ii) Show that Im(ρℓ) is the closure of the subgroup 〈πX〉 ⊂ GL(VℓX) generated by πX .

(iii) Show that Qℓ

[
Im(ρℓ)

]
, the Qℓ-subalgebra of End(VℓX) generated by the image of ρℓ, equals

Qℓ[πX ], the subalgebra generated by Vℓ(πX).

(16.5) Let X be a simple abelian variety with characteristic polynomial fX . Prove that theEx:IrrCrit

following are equivalent.

(i) fX is irreducible.
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(ii) F has no real primes and for all v|p we have invv(E) = 0 in Q/Z.

(iii) End0
k(X) is commutative.

(16.6) Prove the assertion stated in (‘qWeilnrs’): An algebraic integer π ∈ Q is a q-WeilEx:qWeilnr

number if and only if either q = ±√q or π is a root of T 2 − aT + q where a is an algebraic

integer such that Q[a] is a totally real field in which a2 − 4q is totally negative.

(16.7) Let q = pm be an odd power of a prime, b ∈ Z with b2 − 4q < 0 and F = Q(
√
b2 − 4q).Ex:QuadrFields1

Prove that p ramifies or splits in F . Prove moreover that p ramifies if and only if i) b = 0 or ii)

b = ±p(m+1)/2 and p = 2 or 3.

(16.8) Let q = pm be an even power of a prime, b ∈ Z with b2 − 4q < 0 and F = Q(
√
b2 − 4q).Ex:QuadrFields2

1) Prove that p stays prime if and only if i) b = 0 and p ≡ 3 (mod 4), or ii) b = ±√q and

p ≡ 2 (mod 3).

ii) Prove that p ramifies if and only if i) b = 0 and p = 2, or ii) b =
√
q and p = 3.

(16.9) Let π be the Weil q-number of an elliptic curve X over Fq. Show that some power of πEx:pimacht=p

is equal to a power of p if and only if X is supersingular.

(16.10) Let X be an abelian variety over a finite field k, and let R := End(X). Let I be a leftEx:IJ

ideal of finite index of R and let J be a left ideal of finite index in End(XI). Prove that we may

view IJ as a left ideal of R and that XIJ
∼= (XI)J canonically.

(16.11) Let t ∈ Z and let N(q, t) be the number of Fq-isomorphism classes of elliptic curvesEx:Schoof

over Fq with trace of Frobenius t (equivalently with #X(Fq) = q+1− t). Define a class number

by H ′(∆) =
∑
d h(∆/d

2), where the sum is over d ∈ Z>0 such that ∆/d2 is integral and ≡ 0 or

1 mod 4). Prove the following formulas for N(q, t).

i) N(q, t) = H ′(t2 − 4q) if t 6≡ 0(modp).

ii) N(q, 0) = H ′(−4p) if q is a not a square.

iii) N(q, 0) = 1− (−4
p ) if q is a square.

iii) N(q,±√p q) = 1 if p = 2 or p = 3 and q is not a square.

iv) N(q,±√q) = 1− (−3
p ) if q is a square.

v) N(q,±2
√
q) = 1

12

(
p+ 6− 4(−3

p )− 3(−4
p )
)

if q is a square.

vi) N(q, t) = 0 otherwise.

(16.12) 1) Show that
∑

[X] 1/#AutFq
(X) = q, where the sum is over all Fq-isomorphism classesEx:q

of elliptic curves defined over Fq. 2) Let p be a prime. Prove the Hurwitz class number relation∑
tH(4p − t2) = 2p, where the sum is over all t ∈ Z with t2 < 4p and 4p− t2 ≡ 0(modp).

(16.13) Prove the following formula for the trace of the Hecke operator on the space of cuspEx:Trace(Tp2)

forms of even weight k > 4 on SL(2,Z).

TrT (p2) + pk−1 =
∑

X/Fp2 ,up to ∼=Fp2

−TrSymk−2(Tℓ(π))

#AutFp2 (X)
,

where the sum is over the Fp2-isomorphism classes of elliptic curves X defined over Fp2 .

(16.14) Check the following table of frequencies for elliptic curves over F49. Here the frequencyEx:F49

f(t) is defined as f(t) =
∑

[X] 1/#AutF49
(X) with the sum over all [X] with #X(F49) = 50− t

for k = F49.
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t 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12 ±13
f 1/2 2 11/3 1 3 5/2 3 2 1 3 7/6 1 2/3 1/4

exercise for endo-chapter

(16.15) Let X be an abelian variety defined over a field k and let G1 and G2 be two finiteEx:G1G2

subgroup schemes of X defined over k. Suppose that X/G1
∼= X/G2. Prove that there exists

an isogeny ρ ∈ Endk(X) of X and an integer N ∈ Z>1 such that ρ−1(G1) = N−1
X (G2).

Notes. Although Galois introduced finite fields in the 1830’s it took a long time time before curves and abelian

varieties over finite fields were seriously studied. Artin in his 1924 thesis considered the zeta function for hyper-

elliptic curves over a finite field Fq , defined by an Euler product as an analogue of the Dedekind zeta function for

number fields and proved that after the substitution t = q−s one obtains a rational function ZC(t) which satisfies

a functional equation. Artin formulated an analogue of the Riemann hypothesis, namely that the zeros of ZC(t)

have absolute value q−1/2. In 1931 F.K. Schmidt reformulated ZC(t) as the generating series as in ‘GenSer’ and

deduced the functional equation from the Riemann-Roch theorem. Around 1932 Hasse observed the Riemann

hypothesis proposed by Artin implies a bound on #C(Fq). Two years later he proved that bound for elliptic

curves making use of correspondences and endomorphisms. Deuring observed that in order to extend Hasse’s

proof to higher genus one needed a theory of correspondences in arbitrary characteristic. Weil developed such a

theory and proved the Riemann hypothesis of Artin in 1940 by deducing it from an inequality on correspondences
(the positivity of the trace) due to Castelnuovo and Severi. These results inspired Weil later to make his famous

conjectures about the zeta function of a complete smooth variety over a finite field.

An elementary proof of the Hasse-Weil Theorem for curves bound using only Riemann-Roch was given

much later by Stepanov, see Bombieri 1. Serre’s improvement of the Hasse-Weil bound in Serre 5 stems from

1983. Improvements of the Hasse-Weil bound for curves in case g is large with respect to q are due to Ihara and

Drinfeld and Vladuts, see Exercise 16.2 and Vladuts and Drinfeld [1].

The central theorem relating homomorphisms of abelian varieties to the Galois-equivariant homomorphisms

between their Tate modules is due to Tate [1], who in his proof generalized an argument of Deuring following a

suggestion by Lichtenbaum. The extension to the case l = p was promised in an Inventiones paper, toujours a

paraitre. A proof was given in Milne and Waterhouse [1]. They also wrote down Tate’s proof for the invariants

of the endomorphism ring in the Brauer group which Tate indicated in Tate [1]. Honda proved in Honda [1] that
every Weil q-number occurs as the conjugate of Frobenius for a simple abelian variety over Fq . Together with

Tate’s theorem it put the isogeny classes of abelian varieties over Fq in bijection with the Weil q-numbers.

Deuring classified the endomorphism rings of elliptic curves in Deuring 1 but he looked at End
k
(X). Wa-

terhouse extended some of Deuring’s results to higher dimension in 1. The construction of abelian varieties

isogenous to a given one by using ideals of the endomorphism ring is due to Shimura and Taniyama 1. Serre gave

a different interpretation of it in 3 and 4.

The description of the category of ordinary abelian varieties over a finite field given above is due to Deligne

2.
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Appendix A. Algebra.

References are given at the end of the appendix.

(A.1) All rings considered here are assumed to have an identity element, and homomorphismsRingsGeneral

f : R1 → R2 are required to send 1 ∈ R1 to 1 ∈ R2.

As we shall consider noncommutative rings, we need to distinguish between left and right

modules. We adopt the convention that “module” means “left module”, unless we explicitely

call it a right module. Note, however, that unless stated otherwise, by an ideal in a ring we shall

mean a two-sided ideal.

If A is a ring then Aopp denotes the opposite ring and Z(A) denotes the center of A. Further,

for a nonnegative integer r we denote by Mr(A) the ring of r× r matrices with coefficients in A.

Let A be a ring, M a left A-module. We say that M is an irreducible (or simple) A-

module if M 6= {0} and M has no A-submodules other than {0} and M . We say that M is a

semisimple A-module if every A-submodule of M is a direct summand. This is equivalent to

the condition that M is a direct sum of a collection of simple A-modules. Note that the zero

module is semisimple but not simple; by convention it is the direct sum of the empty collection

of A-modules.

A nonzero ring A is called simple (as a ring) if {0} and A are the only two-sided ideals

in A. A ring A is called semisimple if every left A-module is semisimple. This is equivalent to

the condition that A is semisimple as a left module over itself. A semisimple ring A has finitely

many minimal nonzero ideals; call these A1, . . . , Ar. Each Ai, viewed as a ring, has an identity

element making it a simple ring, and A is isomorphic to the product A1 × · · · × Ar. So every

semisimple ring is a product of finitely many simple rings. Conversely, every finite product of

simple rings is semisimple.

If A is a semisimple ring then every left ideal I ⊂ A (resp. right ideal J ⊂ A) is generated

by an idempotent, i.e., there is an idempotent e ∈ A with I = Ae (resp. J = eA). Indeed,

because A is semisimple as a left (resp. right) module over itself there exists a left ideal I ′ (resp.

right ideal J ′) such that A = I ⊕ I ′ as left A-modules (resp. A = J ⊕ J ′ as right A-modules);

writing 1 = e+ e′ one easily finds that e is an idempotent and I = Ae (resp. J = eA).

If A is a simple ring then up to isomorphism there is a unique simple A-module. It follows

from the previous that over a semisimple ring there are finitely many simple modules, up to

isomorphism; one corresponding to each simple factor Ai.

Let A be a simple ring, M a simple A-module. Then A, viewed as a left module over itself,

is of finite length r; hence it is isomorphic to Mr. The ring D := EndA(M)opp is a division

algebra and M has dimension r as a right module over D. For a ∈ A write aM ∈ EndD(M) for

the map m 7→ am. By the Bicommutant Theorem, see (A.2) below, the homomorphism a 7→ aM
gives an isomorphism of the ring A with the ring EndD(M), and the latter ring is isomorphic

to the ring Mr(D) of r × r matrices over D. So the conclusion is that every simple ring A is

isomorphic to a matrix ring over a division algebra. In particular, Z(A) = Z(D) is a field.

Conversely, if D is a division algebra and r is a positive integer, Mr(D) is a simple ring.

The unique simple module over this ring is given by Dr with its natural structure of a left

Mr(D)-module.

App.Algebra, 8 februari, 2012 (635)
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It follows from the previous results that if A is a simple ring, so is Aopp.

(A.2) Bicommutant Theorem. Let A be a semisimple ring, and let M be an A-moduleBicommThm

of finite type. Let C := EndA(M), and consider M as a left module over C by the rule

c ·m = c(m) for c ∈ C and m ∈M . Then the map A→ EndC(M) that sends a ∈ A to the map

aM ∈ EndC(M) given by m 7→ am is an isomorphism.

(A.3) Skolem-Noether Theorem. Let A be a simple algebra with center K. Let B and B′ beSkolNoeth

simple K-subalgebras of A of finite dimension over K. Then for every isomorphism ϕ: B
∼−→ B′

of K-algebras there is an inner automorphism ψ of A with ϕ = ψ|B.

In particular, if A is a simple algebra of finite dimension over its centre K then all auto-

morphisms of A over K are inner, so AutK(A) = Inn(A) ∼= A∗/K∗.

(A.4) Let K be a field. By a K-algebra we mean a ring A together with a homomorphism K →BrauerGr

Z(A), called the structural homomorphism. A K-algebra A is called a central simple algebra

over K if A is a simple ring and the structure homomorphism K → Z(A) is an isomorphism.

As we have seen, any such A is of the form Mr(D) for some division algebra D with center K.

Let D be a division algebra with center K such that dimK(D) < ∞. If K ⊂ K is an

algebraic closure of K then K ⊗K D ∼= Mn(K) for some n ∈ N. It follows that any central

simple K-algebra A of finite K-dimension is a K-form of a matrix algebra; by this we mean that

K ⊗K A is isomorphic to a matrix algebra Mm(K) over K. In particular, dimK(A) = m2 is a

square. The integer m is called the degree of A. Conversely, any K-form of a matrix algebra is

central simple over K.

Let A and A′ be two central simple K-algebras of finite K-dimension. We call A and A′

Brauer equivalent if there exist a central simple K-algebra D and two natural numbers r and

s such that A ∼= Mr(D) and A′ ∼= Ms(D) as K-algebras. This is equivalent to the condition

that there exist positive integers t and u such that Mt(A) ∼= Mu(A
′) as K-algebras. The Brauer

group of K, denoted Br(K), is defined as the set of equivalence classes of central simple K-

algebras of finite K-dimension. It has the structure of a commutative group, with group law

defined by [A] · [A′] := [A⊗K A′].

If A is a central simple K-algebra of finite K-dimension then the same is true for Aopp, and

the class of Aopp is the inverse of the class of A. This corresponds to the fact that A⊗K Aopp ∼=
Mn2(K) if dimK(A) = n2.

Let D be a division algebra with center K with dimK(D) < ∞. By definition, the index

of D is its degree. If A is a central simple K-algebra with A ∼= Mr(D) for some r then by

definition index(A) := index(D), and so deg(A) = r · index(A). The order of [A] in Br(K) is

called its period. It is always true that the period divides the index, but in general the two need

not be equal. However, if K is a number field or a local field then the period of a central simple

K-algebra equals its index.

Let K ⊂ L be a field extension. If A is a central simple K-algebra then AL := L ⊗K A

is a central simple algebra over L. Sending [A] to [AL] gives a well-defined homomorphism

hK,L: Br(K) → Br(L). We say that L splits A, or that L is a splitting field for A, if AL is

isomorphic, as an L-algebra, to a matrix algebra Mn(L), or, equivalently, if the class [A] is in

the kernel of the homomorphism hK,L. If A ∼= Mn(D) for some division algebra D then A and D

have the same splitting fields. Further, if L ⊂ D is any maximal subfield containing K then L

is a splitting field for D, and [L : K] = index(D). Conversely, if K ⊂ L is a finite field extension
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then L splits the central simple algebra A if and only if there is an A′ that is Brauer-equivalent

with A such that L is isomorphic to a maximal subfield of A′. If this holds then [L : K] is a

multiple of index(A), and in fact A′ can be chosen such that [L : K] equals the degree of A′.

The Brauer group of a field can also be studied via Galois cohomology. In fact, if K ⊂ Ks

is a separable algebraic closure then Br(K)
∼−→ H2

(
Gal(Ks/K),K∗s

)
. If K ⊂ L is a Galois

extension with L ⊂ Ks then the image of H2
(
Gal(L/K), L∗

)
in Br(K) equals Br(L/K) :=

Ker
(
hK,L: Br(K)→ Br(L)

)
, the subgroup of classes that are split by L.

(A.5) Let K ⊂ L be a Galois extension of finite degree m such that Gal(L/K) is cyclic. LetCyclAlg

σ ∈ Gal(L/K) and let y be an element of K∗. Consider the ring L[t;σ] of polynomials in the

variable t with coefficients in L and with ring multiplication satisfying t · a = σ(a) · t for all

a ∈ L. (Cf. ??) The polynomial tm − y lies in the centre of this ring, so it generates a 2-sided

ideal. The cyclic algebra associated to chosen data, notation (L/K, σ, y), is defined to be the

K-algebra L[t;σ]/(tm − y). So, more informally, (L/K, σ, y) can be described as the ring that is

obtained by adjoining to L an element t subject to the relations t · a = σ(a) · t and tm = y.

It can be shown that (L/K, σ, y) is a central simple K-algebra of degree m, and that L

is a maximal subfield of A. In particular L is a splitting field. Conversely, if A is any central

simple K-algebra of degree m that contains a subfield isomorphic to L (as a K-algebra), then

A is isomorphic to (L/K, σ, y) for some y ∈ K∗.
We have (L/K, σ, y) ∼= (L/K, σ, y′) if and only if y′/y ∈ NormL/K(L∗). Further, if ν ∈ Z is

relatively prime with m then (L/K, σ, y) ∼= (L/K, σν , yν). Fixing a generator σ for Gal(L/K)

it follows that Br(L/K) ∼= K∗/Norm(L∗).

(A.6) If K is a finite field extension of Qp for some p then we have Br(K) ∼= Q/Z. To avoidBrNumbField

confusion (especially about signs), let us make the isomorphism that we use explicit. Given

a natural number n, let K ⊂ L be the unramified extension of degree n, which is unique

up to isomorphism. Let q = pm be the cardinality of the residue field of K. The Galois

group Gal(L/K) is cyclic of order n and there is a unique generator σL/K that induces the

automorphism x 7→ xq on the residue field of L. We refer to σL/K as the arithmetic Frobenius

of the extension K ⊂ L. Concretely, if K0 ⊂ K is the maximal absolutely unramified subfield

then K0 is isomorphic to the fraction field of W (Fq) and L ∼= W (Fqn)⊗W (Fq)K. Under such an

isomorphism σL/K corresponds to σm ⊗ idK , where now σ is the automorphism of W (Fq) that

is induced by the Frobenius automorphism x 7→ xp of Fq.

Now we take the automorphism Br(K)
∼−→ Q/Z such that the Brauer class of a cyclic

algebra (L/K, σL/K , y) is mapped to the class of ord(y)/n in Q/Z. Note that the isomorphism

we use is minus the isomorphism found in some literature; cf. Serre [2], Chap. X, § 5, Exerc. 1

for instance.

Next we consider a number field K. The determination of its Brauer group also involves the

Brauer groups of all completions of K. If v is a non-archimedean place of K with completion Kv

(a p-adic field) then as just discussed we have Br(Kv)
∼−→ Q/Z. If v is an infinite place then the

completion Kv is either R or C. We have Br(C) = 0 and Br(R) ∼= 1
2
Z/Z. So all local Brauer

groups can be identified with subgroups of Q/Z. (This is the reason for writing Br(R) as 1
2Z/Z.)

If A is a central simple K-algebra of finite K-dimension then Kv ⊗K A is a central simple Kv-

algebra, and we write invv(A) ∈ Q/Z for the corresponding class. Here it is of course understood

that invv(A) = 0 if Kv = C and invv(A) ∈ 1
2
Z/Z if Kv = R. Then the map A 7→

(
invv(A)

)
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gives an isomorphism

Br(K)
∼−→
{
(iv) ∈

⊕

v

Br(Kv)
∣∣∣
∑

v

iv = 0
}
, (1)

AppAlg:Br(K)

where the sum runs over all places v of K.

(A.7) Let A be a central simple algebra over a field K. Choose a splitting field K ⊂ L for A andRedCharPol

choose an isomorphism of L-algebras ϕ: L ⊗K A
∼−→ Mn(L). If a ∈ A then the characteristic

polynomial det
(
T − ϕ(1 ⊗ a)

)
∈ L[T ] of the matrix ϕ(1 ⊗ a) has coefficients in K and is

independent of the choices of the splitting field and the isomorphism ϕ. We call this polynomial

the reduced characteristic polynomial of a over K and denote it by PrdA/K,a ∈ K[T ]. Write

PrdA/K,a = Tn − s1Tn−1 + s2T
n−2 + · · ·+ (−1)nsn

with si ∈ K. Then TrdA/K(a) := s1 is called the reduced trace of a over K and NrdA/K(a) := sn
is called the reduced norm of a over K.

Let λa: A → A be the left multiplication by a, i.e., the map given λa(b) = ab. Then λa is

a K-linear endomorphism of A. Its characteristic polynomial P (λa) := det(T − λa) ∈ K[T ] is

related to the reduced characteristic polynomial by

P (λa) = (PrdA/K,a)
n .

In particular, det(λa) =
(
NrdA/K(a)

)n
and traceK(λa) = n · TrdA/K(a).

If F ⊂ K is a subfield with [K : F ] < ∞ then we define the reduced trace and norm of a

over F by

TrdA/F (a) := traceK/F
(
TrdA/K(a)

)
and NrdA/F (a) := NormK/F

(
NrdA/K(a)

)
.

For a1, a2 ∈ A we have TrdA/F (a1a2) = TrdA/F (a2a1) and NrdA/F (a1a2) = NrdA/F (a1) ·
NrdA/F (a2).

(A.8) By an involution of a ring A we mean an anti-homomorphism σ: A → A such thatInvol

σ ◦σ = idA. Note that σ can also be viewed as a homomorphism A→ Aopp. We also note that

in some literature this is called an anti-involution. We shall usually denote an involution as a

map a 7→ a∗ or a 7→ a†.

Let A be a central simple algebra over a field K. Let σ: a 7→ a∗ be an involution on A. We

say that the involution σ is of the first kind if it is the identity on the center, i.e., x∗ = x for all

x ∈ K, and that σ is of the second kind otherwise. In the latter case, σ gives an automorphism

of order 2 of K and we write K0 := {x ∈ K | x∗ = x} for its fixed field.

As an example, suppose that A is a quaternion algebra over K, i.e., a division algebra with

center K and dimK(A) = 4. Then the map a 7→ a∗ := TrdA/K(a) − a is an involution of the

first kind on A, called the canonical involution.

Consider a central simple algebra A over a number field K. A necessary and sufficient

condition for an involution of the first kind to exist, is that A ∼= Aopp as K-algebras. This is

equivalent to the condition that invv(A) ∈ {0, 1/2} for all places v of K. If invv(A) = 0 for

all v then A is a matrix algebra over K and transposition of matrices gives an example of an

involution of the first kind. Assume now that invv(A) ∈ {0, 1/2} for all v and that there is at

least one v with invv(A) = 1/2. (In fact, it follows from (1) that there are then at least two
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places v with invv(A) = 1/2.) Then A is isomorphic to a matrix algebra over a quaternion

algebra, say A ∼= Mr(D).

(A.9) Let K be a field. Let A be a central simple K-algebra of finite K-dimension. Let a 7→ a∗HermForms

be an involution on A. Finally, let ε ∈ {−1, 1}.
Let V be a finitely generated A-module. By an ε-hermitian form on V with respect to the

involution ∗, we mean a bi-additive map

h: V × V → A

such that

(1) h(av, bw) = a · h(x,w) · b∗ for all a, b ∈ A and v, w ∈ V ;

(2) h(w, v) = ε · h(v,w)∗ for all v, w ∈ V .

A 1-hermitian form is often simply called hermitian; a −1-hermitian form is also called a skew-

hermitian form.

If V is a finitely generated A-module then V ∨ := HomA(V,A) has the same K-dimension

as V . To see this we can easily reduce to the case where V is simple, i.e., V ∼= A/I for some left

ideal I ⊂ A. As discussed in (A.1) there are idempotents e and e′ with 1 = e+e′ and I = Ae; this

gives V ∨ ∼= {a ∈ A | ea = 0} = e′A ∼= eA\A. Now consider the subfield K0 = {x ∈ K | x∗ = x}
of K, and note that we have a K0-linear bijection A/Ae

∼−→ eA\A by a mod Ae 7→ a∗ mod eA.

Hence dimK(V ) = dimK(V ∨).

We give V ∨ the structure of a left A-module structure by the rule (a ·ϕ)
(
v
)

= ϕ(v) · a∗, for

ϕ ∈ V ∨ and a ∈ A. There is a natural homomorphism of A-modules κ: V → (V ∨)∨, sending

v ∈ V to the evaluation map evv: V
∨ → A. The map κ is readily seen to be injective, so for

dimension reasons it is in fact an isomorphism.

An ε-hermitian form h on V gives rise to a homomorphism of A-modules ĥ: V → V ∨ by

v 7→ h(v,−). The form h is called nondegenerate if ĥ is injective, i.e, if for every v ∈ V there

exists an element w ∈ V such that h(v,w) 6= 0. If h is nondegenerate then, again by a dimension

count, ĥ is an isomorphism. Hence we can define an involution f 7→ f † on EndA(V ) by the

rule f † = ĥ−1
◦f∨ ◦ ĥ, where we write f∨: V ∨ ← V ∨ for the dual of the map f : V → V . By

construction we have the relations

h(f †v,w) = h(v, fw) and h(fv,w) = h(v, f †w)

for all v, w ∈ V .

(A.10) Proposition. Let A be a central simple algebra of finite dimension over a field K. LetFormsInvolCorr

a 7→ a∗ be an involution on K. Let V be a finitely generated A-module.

(i) Suppose ∗ is of the first kind. Then the map that associates to an ε-hermitian form h

on V the involution f 7→ f † = ĥ−1
◦f∨ ◦ ĥ on EndA(V ) gives a bijection





nondegenerate

±-hermitian forms on V

up to homothety




∼−→
{

involutions of the first kind

on EndA(V )

}
.

(ii) Suppose ∗ is of the second kind. Then the map that associates to an ε-hermitian form h

on V the involution f 7→ f † = ĥ−1
◦f∨ ◦ ĥ on EndA(V ) gives a bijection





nondegenerate

hermitian forms on V

up to homotheties in K∗0




∼−→





involutions † of the second kind

on EndA(V )

with f † = f∗ for all f ∈ K



 .
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The hermitian forms on V that we consider here are of course understood to be hermitian

with respect to the given involution ∗ on A. Note that in (ii) we only consider +1-hermitian

forms. This is no restriction of generality, since by choosing an element α ∈ K with α∗ = −α
we obtain a bijective correspondence h 7→ α · h between hermitian and skew-hermitian forms.

(A.11) Let (K,>) be an ordered field. (The most relevant examples for us are K = Q andPosInvol

K = R.) Let A be a finite dimensional semisimple K-algebra. An involution a 7→ a∗ on A is

called a positive involution if TrdA/K(aa∗) > 0 for all nonzero a ∈ A.

Let V be an A-module, and consider a hermitian form h: V × V → A with respect to

the involution ∗. Then the form h is said to be positive definite (over the ordered field K) if

TrdA/Kh(v, v) > 0 for all nonzero v ∈ V .

(A.12) Proposition. Let A be a finite dimensional semisimple R-algebra. Let a 7→ a∗ be anPosInvolProp

involution on A. Then the following properties are equivalent.

(1) The involution ∗ is positive.

(2) There exists a finitely generated faithful A-module V and a positive definite hermitian form

h: V × V → A with respect to ∗.
(3) For every finitely generated A-module V there exists a positive definite hermitian form

h: V × V → A with respect to ∗.

References for Appendix A.

(A.1)–(A.3): Bourbaki [1], Chap. 8, Lam ..., Lang ... ?? (NOG AANVULLEN)

(A.4)–(A.6): Serre [2], Pierce [1], ...

(A.7): Bourbaki [1], Chap. 8, § 12.

(A.8): Knus, Merkurjev, Rost and Tignol [1]

(A.11)–(A.12): Kottwitz [1], § 2.
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1. Groupes Algébriques, Tome I , Masson & Cie, Paris/North-Holland, Amsterdam, 1970.

C. Deninger, J. Murre

1. Motivic decomposition of abelian schemes and the Fourier transform, J. reine angew. Math. 422 (1991),

201–219.

M. Deuring
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1. Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique p > 0. VII., Math. Ann. 134 (1957),
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for curves, 9

right translation, 6

Rigidity lemma, 12

Rosati involution, 188

semilinear map, 248

semisimple

module, 311

ring, 311
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trivial, 175
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geometric, 1
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iterated, 80

Weierstrass equation, 81

Weil conjectures, 273
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Weil number, See q-Weil number

Zeta function, see also Weil conjectures
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