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Introduction

In this paper we present a formula for the number of isomorphism classes of p-rank
zero étale double covers of genus 2 curves over an algebraically closed field of charac-
teristic p > 2. The formula is a byproduct of our search for complete subvarieties of
moduli spaces of curves. Many moduli spaces are not complete because the objects that
they parametrize can degenerate. Examples are the moduli spaces of polarized abelian
varieties and the moduli spaces of curves. For a given quasi-projective variety knowledge
of the maximum dimension of a complete subvariety gives information on its geometry
and cohomology and it is a kind of measure how far the variety in question is from being
a‰ne. Moreover, in the case of a moduli space it tells us when complete families must de-
generate.

For the moduli space Mg n k of curves of genus gf 2 over a field k one has the up-
per bound g� 2 for the dimension of a complete subvariety due to Diaz in characteristic 0
and Looijenga in general, but it is not known how good this bound is. For the moduli space
Ag n k of principally polarized abelian varieties of dimension g over k one has an upper
bound for the dimension of a complete subvariety (dime gðg� 1Þ=2) and it is known that
this bound is sharp if the characteristic of k is positive. Recently, Keel and Sadun [KS],
Cor. 1.2, proved that in characteristic 0 the bound is not sharp for gf 3. In characteristic
p > 0 the bound is attained by the complete subvariety of abelian varieties of p-rank 0.
This suggests to look at the moduli space of curves in positive characteristic and to impose
conditions on the p-rank of their Jacobians in order to find complete subvarieties. In char-
acteristic p > 2 we get a subvariety of Mg n k by considering curves C of genus g together
with an étale double cover C 0 whose p-rank is 0; its expected dimension is g� 2. Unfortu-
nately, this doesn’t yield a complete subvariety in general, because there are components
that are not complete. We hope that for almost all primes p there are complete components
and then these are necessarily of dimension g� 2 and show that Diaz’s bound is sharp.
This necessitates a careful analysis of the components which we haven’t carried out yet. We
did the analysis for genus 2, where we have a formula for the number of pairs ðC 0;CÞ for
which the p-rank of C 0 is zero. The number is zero for p ¼ 3, but positive for pf 5. One of
our main tools is the use of tautological classes.



The contents of this paper are as follows. We prove that in characteristic p > 0 the
locus of stable curves of p-rank e f is pure of codimension g� f in Mg n k. Then we con-
sider the Prym map and analyze it using tautological classes. We study the locus of curves
with an étale double cover of p-rank 0 in some detail. In particular, in genus 2 we obtain
a formula for the number of such curves. We end with several examples illustrating our
formula.

We shall use the following notation throughout this paper. For nonnegative integers g

and n such that 2g� 2þ n > 0, we denote by Mg;n the moduli space of n-pointed curves of
genus g, by Mg;n the Deligne-Mumford compactification of Mg;n, and by ~MMg;n the moduli
space of stable n-pointed curves of genus g whose dual graph is a tree; often these curves are
referred to as curves of compact type. All these moduli spaces are smooth algebraic stacks
defined over Z. We recall that on an n-pointed curve the n points are distinct, ordered,
nonsingular points. We can view ~MMg;n as an open substack of Mg;n and Mg;n as one of ~MMg;n.

When n ¼ 0 (thus gf 2), we write Mg;Mg, and ~MMg. We have Mg ¼Mg W
S½g=2�

i¼0

Di, where D0

denotes the divisor of irreducible nodal curves and their degenerations and Di for i > 0 de-
notes the divisor of reducible curves with components of genus i and g� i, and their degen-
erations. Moreover, we have Mg � ~MMg ¼ D0. By Ag we denote the moduli space of prin-
cipally polarized abelian varieties of dimension g and by A�

g the Satake compactification
constructed by Faltings.

In the following we shall work over an algebraically closed field k and we shall often
write Mg (Mg; ~MMg, etc.) instead of Mg n k (Mg n k, ~MMg n k, etc.). Since the stacks Mg;n and
Ag are smooth, the codimension of an intersection is at most the sum of the codimensions.
We use this fact without comment in §2 and §4.

If k is of characteristic 32 then we denote by RMg (resp. R ~MMg) the moduli space of
pairs ðC 0;CÞ of connected étale double covers C 0 ! C of a genus g curve C, with C non-
singular (resp. of compact type). The curves C 0 have genus 2g� 1. Such covers correspond
exactly to points of order 2 in the Jacobian of C.

§1. Complete subvarieties and tautological classes

It is a well-known result of Diaz [D1], Thm. 4, that a complete subvariety of the
moduli space Mg n k of curves of genus gf 2 has dimensione g� 2 (the extension to pos-
itive characteristic is due to Looijenga [L], p. 412). But for gf 4 it is not known whether
this bound is sharp. A similar question occurs for the moduli space Ag n k of principally
polarized abelian varieties of dimension g. It is known by [G], Cor. 2.7, that a complete
subvariety of Ag n k has codimension at least g (we recall the proof below). However, here
one knows that in characteristic p > 0 the moduli space Ag n Fp contains a complete co-
dimension g subvariety, namely the locus of abelian varieties of p-rank zero, cf. [Ko], Thm.
7. As to characteristic 0, Keel and Sadun [KS], Cor. 1.2, recently showed that Ag nC does
not contain a codimension g complete subvariety for gf 3, as had been conjectured by Oort
[O3], 2.3G. Thus the maximum dimension of a complete subvariety of Ag n k depends on
the characteristic of k! (It is not known what the maximum dimension of a complete sub-
variety of Ag nC is for g > 3.)
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Recall the definition of the tautological ring associated to Ag. The moduli space Ag

carries a tautological bundle, the Hodge bundle E. It is defined by specifying for every prin-
cipally polarized abelian scheme X over S with zero-section s a rank g vector bundle on S:
s�W1

X=S. The Chern classes li ¼ ciðEÞ of this bundle are called tautological classes and they
generate a Q-subalgebra T �ðAgÞ of the Chow ring A�ðAgÞnQ, called the tautological
subring.

It is shown in [G], Thm. 2.1, that the relations ch2kðEÞ ¼ 0 hold Ek f 1 in T �ðAgÞ,
hence T �ðAgÞ is a quotient of Tg, the cohomology ring of the compact dual of the Siegel
upper half space:

Tg ¼ Q½l1; . . . ; lg�=
�
ch2ðEÞ; . . . ; ch2gðEÞ

�
:

Note that the vanishing of the first g even ch2k implies the vanishing of all even ch2k (and in
fact also the vanishing of the odd ch2kþ1 for all k f g).

Hence Tg is a complete intersection ring with socle in degree
gþ 1

2

� �
. In [G], Prop.

2.2, it is proved that lg ¼ 0 in T �ðAgÞ, so T �ðAgÞ is a quotient of Tg�1. It then follows that
there are no further relations: combine the fact that the p-rank zero locus V0 in Ag n Fp

is a complete subvariety of pure codimension g (dimension
g

2

� �
) with the ampleness of

l1 on Ag n Fp due to Moret-Bailly [M-B], p. 181 (so l
g
2ð Þ

1 3 0 in every characteristic, and a
generator of the socle of Tg�1 doesn’t vanish on Ag). To summarize the above:

T �ðAgÞGTg�1:

This implies that l
g
2ð Þþ1

1 ¼ 0 and hence that a complete subvariety of Ag has codimension at
least g.

For a more complete discussion see [FL], §11, and [GO], §3, but note that Thm. 3.4 in
[GO] is at present only a conjecture, unfortunately.

§2. Subvarieties of the moduli space of curves defined by the p-rank

We are interested in the loci of curves whose p-rank is 0. For a smooth curve C of
genus g over an algebraically closed field k of characteristic p > 0 we define the p-rank f of
C as the p-rank of its Jacobian J: if J½p� denotes the kernel of multiplication by p on J then

KJ½p�ðkÞ ¼ p f :

We have 0e f e g. Alternative definitions of this p-rank are: the semisimple rank of the
s-linear operator F induced by the relative Frobenius on H 1ðJ;OJÞ (or on H 1ðC;OCÞ);
or dually, the semisimple rank of the s�1-linear Cartier operator V on H 0ðJ;W1

JÞ (or on
H 0ðC;W1

CÞ).

To extend this definition to stable curves we consider a family C ! B of stable curves
of genus g over an irreducible base scheme B. We let oC=B be the relative dualizing sheaf
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and write E ¼ p�ðoC=BÞ for the Hodge bundle, a locally free sheaf of rank g. On it we have
the relative Cartier operator V : E! E. For a point b A B the p-rank of the fibre Cb is de-
fined as the semisimple rank of V on the fibre Eb. Equivalently, we can look at the action of
the relative Frobenius on R1p�OC . A result of Grothendieck (see [Ka], Th. 2.3.1) says that
the p-rank is lower semi-continuous on B.

The following lemma is a variant of a lemma of Oort, see [O1], 1.6. The proof is
similar to that of Oort and is omitted.

(2.1) Lemma. Let B be an irreducible scheme over k and C ! B a stable curve over

B. Let f be the p-rank of the generic fibre Ch. Let W HB denote the closed set over which

the p-rank of the fibre is at most f � 1. Then either W is empty or W is pure of codimension 1
in B. r

(2.2) Definition. We define the locus Vf ðMgÞ as the locus of curves with p-rank e f

in Mg; similarly, we define Vf ðR ~MMgÞ as the locus of pairs ðC 0;CÞ for which the p-rank of C 0

is e f . We denote by RV0ð ~MMgÞ the locus of pairs ðC 0;CÞ for which the p-rank of C is 0.
Similarly, we denote by Vf ðAgÞ the locus of principally polarized abelian varieties of di-
mension g with p-ranke f .

We have the following result.

(2.3) Theorem. The locus Vf ðMgÞ is pure of codimension g� f in Mg.

Proof. We apply Lemma 2.1 just as in [Ko], p. 164: Fix r < g. Let Cr be any com-
ponent of VrðMgÞ. Let Crþ1 be a component of Vrþ1ðMgÞ containing Cr. Note that a priori
it is possible that Cr ¼ Crþ1. We obtain a sequence CrLCrþ1L � � �LCg ¼Mg. The lemma
tells us: for r 0 ¼ r; rþ 1; . . . ; g� 1, if Cr 03Cr 0þ1, then Cr 0 has codimension one in Cr 0þ1. We
conclude: the codimension of Cr is at most g� r.

Now let r ¼ 0. As is well-known, C0 is a complete subvariety of ~MMg (the p-rank of
a generalized abelian variety is at least its torus rank). On the other hand, we have Diaz’s
upper bound 2g� 3 for the dimension of such a complete subvariety; see Lemma 2.4 below.
It follows that C0 has codimension g: the case f ¼ 0 of the theorem.

If every Cr would contain a C0, we would now be done. Since we don’t know how
to establish this, we proceed di¤erently. We prove that every Cr has codimension g� r

in Mg by induction on r. The case r ¼ 0 has been established, so assume r > 0. Since
codimðCrÞe g� re g� 1, the component Cr cannot be complete in ~MMg, hence inter-
sects D0. The intersection consists of points corresponding to curves of genus g� 1 and
p-ranke r� 1 with two points identified. The dimension of the intersection is at most
2ðg� 1Þ � 3þ ðr� 1Þ þ 2 ¼ 2g� 4þ r: this is obvious for g ¼ 2 and follows for gf 3 by
induction. Hence the dimension of Cr is 2g� 3þ r. r

Remark. It is not clear whether Vf ðAgÞ intersects the Torelli image of ~MMg trans-
versally. Also, is for example V0ðMgÞ irreducible for gf 4?

The theorem we just established is the analogue for the moduli space of curves of a
result of Koblitz [Ko], Thm. 7, for the moduli of principally polarized abelian varieties and
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of the main result of Norman and Oort [NO], Thm. 4.1, for abelian varieties with arbitrary
polarization.

The following result was already observed by Diaz [D2], p. 80.

(2.4) Lemma. The dimension of a complete subvariety of ~MMg;n is at most 2g� 3þ n.

Proof. This is trivial for ge 1. For gf 2, it su‰ces to prove this for n ¼ 0. By the
Diaz-Looijenga bound g� 2 for the dimension of a complete subvariety of Mg, we may
assume that the complete subvariety Y meets some Di, with 0 < ie g=2. Then by induction
dim Y e 1þ ð2i � 2Þ þ

�
2ðg� iÞ � 2

�
¼ 2g� 3. r

(2.5) Lemma. Let X be a complete subvariety of ~MMg of dimension 2g� 3. Then X

contains points corresponding to chains of g elliptic curves. In particular, X intersects every

component of the boundary ~MMg �Mg.

Proof. Since X is of maximal dimension, the inequalities in the proof of Lemma
2.4 are equalities. Some geometric consequences of this will be exploited here. We prove
the statement by induction on g; the case g ¼ 2 is clear, so assume gf 3. We know that
X meets Di for some i with 0 < ie g=2. The inverse image of X XDi in ~MMi;1 � ~MMg�i;1 is
pure of dimension 2g� 4. Let Z be a component. Let Ai;1 be the projection on the first
factor and let Bg�i;1 be the projection on the second factor. Then dim Ai;1 ¼ 2i � 2 and
dim Bg�i;1 ¼ 2ðg� iÞ � 2. It follows that Z ¼ Ai;1 � Bg�i;1. When i ¼ 1, the factor A1;1 cor-

responds to a single elliptic curve. The image Bg�1 in ~MMg�1 and, for if 2, the images Ai and
Bg�i in ~MMi resp. ~MMg�i contain points corresponding to smooth curves; this follows again
from maximality. Hence Ai;1 is the inverse image of Ai for if 2 and Bg�i;1 is the inverse
image of Bg�i for all i. Now use induction: pick points in Ai (for if 2) and Bg�i corre-
sponding to chains of elliptic curves, and (for any i) pick points in Ai;1 and Bg�i;1 corre-
sponding to marked points on extremal components of the chains. Gluing gives a chain of g

elliptic curves. r

Remark. The proof above is very similar to the way Keel and Sadun deduce from

[KS], Cor. 1.2, that a complete X of dimension 2g� 3 in ~MMg doesn’t exist in characteristic 0
for gf 3.

Let Hg be the hyperelliptic locus in Mg and ~HHg the hyperelliptic locus in ~MMg, that
is, the closure of Hg in ~MMg. In what follows, we assume that the characteristic is di¤erent
from 2. Then the theory of admissible covers [HM], §4, can be used to describe the stable
hyperelliptic curves.

For gf 1, let ðD; b1; . . . ; b2gþ2Þ be a stable ð2gþ 2Þ-pointed curve of genus 0. The
dual graph of D is a tree. Define a node of D to be even (resp. odd) if the number of marked
points on either side of the node is even (resp. odd). There exists a unique admissible cover
A of degree 2 of D. The inverse image of a component of D is the unique double cover of
that component that is ramified exactly over the marked points and the odd nodes on that
component. (The double cover is disconnected exactly when the component contains no
marked points and only even nodes.) The 2gþ 2 Weierstrass points on A are by definition
the inverse images of the 2gþ 2 marked points. The admissible cover is a nodal curve. It
may contain smooth rational components that meet the rest of the curve in only 2 points.
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(Observe that these necessarily cover a component of D with 2 marked points and 1 node.)
A stable hyperelliptic curve of genus gf 2 is by definition the stable curve of genus g ob-
tained from the admissible cover by contracting those components. The Weierstrass points
on a stable hyperelliptic curve are the images of the Weierstrass points on the admissible
cover. Only the Weierstrass points on contracted components become singular points.
When g ¼ 1, we remember the Weierstrass points and consider the admissible covers as
stable 4-pointed curves of genus 1.

A stable hyperelliptic curve is of compact type if and only if all the nodes of the stable
ð2gþ 2Þ-pointed curve D of genus 0 are odd. No components are contracted and these
curves may be identified with the admissible covers. Therefore ~HHg, considered as a coarse
moduli space, may be identified for gf 1 with the quotient of an open set in M0;2gþ2 (the
complement of the ‘even’ boundary divisors) by the natural action of the symmetric group
on 2gþ 2 letters.

(2.6) Lemma (Characteristic3 2). A complete subvariety of ~HHg has dimension at

most g� 1. If Z is a complete subvariety of dimension g� 1 then Z XHg 3j.

Proof. By induction on g, the case g ¼ 1 being trivial. Assume g > 1 and let Z

be a positive-dimensional complete subvariety of ~HHg. Then Z XDi 3j for some i with

0 < ie g=2, since Hg is a‰ne. Denote by W ~HHi H ~HHi;1 the locus where the marked point
is a Weierstrass point. There exists a finite and surjective map W ~HHi �W ~HHg�i ! Di X ~HHg.
Hence dim Z e 1þ ði � 1Þ þ ðg� i � 1Þ ¼ g� 1. If equality holds then Z is not contained
in the boundary. r

In characteristic 0 a complete subvariety of ~MMg of dimension 2g� 3 doesn’t exist for
gf 3. In positive characteristic we have the following.

(2.7) Proposition (Characteristic > 2). Let X be a complete subvariety of ~MMg of max-
imal dimension 2g� 3, e.g., an irreducible component of V0ðMgÞ.

(i) X contains points corresponding to chains of g elliptic curves such that on every non-

extremal elliptic curve in the chain the two attachment points di¤er by a 2-torsion point.

(ii) X contains points corresponding to smooth hyperelliptic curves.

Proof. The proof of the first statement is entirely analogous to the proof of Lemma
2.5; the only adaptation required is that one should choose points in Ai;1 and Bg�i;1 corre-
sponding to marked points on extremal components of the chains that di¤er from the at-
tachment point by a point of order 2 (such points exist). Fulton ([HM], p. 88) shows that
the curves from (i) are stable hyperelliptic curves. Thus X X ~HHg is complete of dimension at
least g� 1 and nonempty. We conclude by applying Lemma 2.6. r

§3. Relations between the tautological classes

We work over an algebraically closed field of characteristic 32. Let as before RMg

denote the moduli space of pairs ðC 0;CÞ with C a smooth curve of genus g and C 0 an étale
double cover of C. We consider the Prym map
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P : RMg !Ag�1; ðC 0;CÞ 7! PðC 0;CÞ:

Here PðC 0;CÞ is the Prym variety of C 0 ! C, i.e., the identity component of the kernel
of the norm map Nm : JðC 0Þ ! JðCÞ. The Prym variety comes with a canonical principal
polarization X, see [M1], p. 333.

The Prym map P extends to a map

P : R ~MMg !A�
g�1; ðC 0;CÞ 7! PðC 0;CÞ;

where A�
g�1 is the Satake compactification and R ~MMg is the moduli space of pairs ðC 0;CÞ

with C a stable curve of genus g of compact type and C 0 an étale double cover of C.
Then C 0 is a stable curve of genus 2g� 1, not necessarily of compact type. The Prym
variety is then the identity component of the kernel of the norm map on the generalized
Jacobians.

We establish a relation between the Chern classes of the Hodge bundle and the
pull-back of such classes under the Prym map. Consider the universal morphism of curves
q : C 0 ! C over the moduli space R ~MMg. The universal curve p : C ¼ Cg ! R ~MMg carries a
torsion line bundle L defined by q�ðOC 0 Þ ¼ OC lL and Ln2 FOC .

Let o be the relative dualizing sheaf of Cg over R ~MMg. We define the Prym-Hodge
bundle E 0 on R ~MMg by

E 0 :¼ p�ðonLÞ:

This is a vector bundle of rank g� 1 on R ~MMg. We denote its Chern classes by l 0i ¼ ciðE 0Þ,
for 1e ie g� 1.

(3.1) Theorem. Let f : R ~MMg ! ~MMg be the map ðC 0;CÞ 7! C. Then

chðE 0Þ ¼ ch
�
f�ðEÞ

�
� 1:

Proof. Applying the Grothendieck-Riemann-Roch theorem (GRR) to the line bun-
dle onL and the morphism p gives

chðE 0Þ ¼ p�
�
chðonLÞ � Td4ðoÞ

�
:

Since we work in Chow groups tensored with Q we can disregard torsion classes and we
may replace the term onL on the right by o, so that

chðE 0Þ ¼ p�
�
chðoÞ � Td4ðoÞ

�
:ð1Þ

But applying GRR to o and p gives
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chðp!oÞ ¼ ch
�
f�ðEÞ

�
� 1 ¼ p�

�
chðoÞ � Td4ðoÞ

�
;ð2Þ

so that by comparing (1) and (2) we find chðE 0Þ ¼ ch
�
f�ðEÞ

�
� 1 as required. r

(3.2) Corollary. We have f�ðliÞ ¼ l 0i for i ¼ 1; . . . ; g� 1. r

Note that it also follows that lg vanishes in the Chow ring A�ð ~MMgÞ. This is compati-
ble with the fact that it vanishes on Ag.

Denote by c : R ~MMg !M2g�1 the morphism ðC 0;CÞ 7! C 0. Then

c�ðE2g�1Þ ¼ f�ðEÞl E 0;

hence c�ðl1Þ ¼ 2l 01.

(3.3) Corollary. The Torelli maps R ~MMg !A�
g (resp. R ~MMg !A�

2g�1) sending ðC 0;CÞ
to JðCÞ (resp. JðC 0Þ) are constant on any complete connected algebraic subset of a fiber of the

extended Prym map P : R ~MMg !A�
g�1.

Proof. Clearly P�ðl1Þ ¼ l 01. This is zero on a fiber of P, hence the same holds for
f�ðl1Þ and c�ðl1Þ. These are pull-backs of ample classes on A�

g resp. A�
2g�1 via the Torelli

maps. The result follows. r

(3.4) Corollary. The restriction of the Prym map to a complete subvariety Y of R ~MMg

is quasi-finite on Y XRMg. r

§4. The locus V0(RMg)

We now consider in RMg the locus V0ðRMgÞ of étale double covers ðC 0;CÞ where the
p-rank of C 0 is zero (p > 2). Here is our motivation for studying this locus. Consider Ag

and a toroidal compactification Ag of the type constructed in [FC], Ch. IV (such that the
Hodge bundle extends). The class lg has zero intersection with all boundary classes (those
from Ag �Ag). If a positive multiple of lg can be written as an e¤ective sum of subvarieties
not contained in the boundary, then all those subvarieties are complete subvarieties of Ag of
codimension g. The locus V0 is a (canonical) e¤ective cycle of this type in positive charac-
teristic [G], Thm. 9.2, while in characteristic 0 such an e¤ective cycle doesn’t exist for gf 3
[KS], Cor. 1.2. As we saw in §2, the situation for ~MMg and its compactification Mg is exactly
analogous.

Now consider Mg, with compactification Mg. The class lglg�1 has zero intersection
with all boundary classes [F], p. 112, and appears to be the natural analogue of the class lg

for Ag and ~MMg (cf. [FP], §0). In the search for an e¤ective representative of a multiple of
lglg�1, it seems natural to combine the p-rank zero requirement with a condition specific
to curves. Certainly, the construction of the Prym variety PðC 0;CÞ associated to an étale
double cover C 0 of a curve C plays an important role in the theory of curves and Jacobians.
The Prym variety is a principally polarized abelian variety of dimension gðCÞ � 1. The
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requirement that it have p-rank zero should then impose the desired g� 1 additional
conditions; or equivalently, one may combine the two requirements by asking that C 0 have
p-rank zero. Note also that the class of V0ðM2g�1Þ is a multiple of l2g�1 and that
c�ðl2g�1Þ ¼ f�ðlglg�1Þ. This explains our interest in the locus V0ðRMgÞ.

(4.1) Proposition. Every irreducible component of V0ðRMgÞ has dimension at least

g� 2. A complete irreducible component of V0ðRMgÞ has dimension equal to g� 2.

Proof. The first statement follows by applying Lemma 2.1 to the family of curves C 0

over RMg. The second statement follows then from Diaz-Looijenga. r

Let as before c : R ~MMg !M2g�1 be the morphism ðC 0;CÞ 7! C 0. We define

V0ðR ~MMgÞ ¼ c�1
�
V0ðM2g�1Þ

�
:

Clearly, this contains V0ðRMgÞ ¼ c�1
�
V0ðM2g�1Þ

�
, and every irreducible component of

V0ðR ~MMgÞ has dimension at least g� 2, by Lemma 2.1 again. Observe that V0ðR ~MMgÞ is com-
plete: it is a closed sublocus of the complete locus RV0ð ~MMgÞ.

For g ¼ 2, all components of V0ðR ~MMgÞ have the expected dimension g� 2 ¼ 0.
In fact, from Corollary 3.3 and the identification ~MM2 ¼A2, the Prym map P is finite on
RV0ð ~MM2Þ. In §6 we count the number of points of V0ðRM2Þ. It turns out that V0ðRM2Þ is
empty for p ¼ 3, but nonempty for pf 5.

For gf 3, the situation is more complicated. We first analyze the case g ¼ 3 in some
detail. We have the following description of the components of V0ðR ~MM3Þ.

(4.2) Proposition. (i) All components of V0ðRM3Þ have dimension equal to g� 2 ¼ 1.

(ii) For every pair ðD 0;DÞ A V0ðRM2Þ and every supersingular elliptic curve E, there is

a component of V0ðR ~MM3Þ isomorphic to D. The curve Cp corresponding to p A D is obtained

by gluing D and E at p, while C 0p is obtained by gluing two copies of E to D 0 at the two inverse

images of p.

(iii) For every pair ðE 0;EÞ A V0ðRM1;1Þ and every component X of V0ð ~MM2Þ, there is a

component of V0ðR ~MM3Þ isomorphic to the universal curve over X (considered as a subvariety

of ~MM2;1). The curve C corresponding to D A X and p A D consists of E and D glued at p, while

C 0 is obtained by gluing two copies of D to E 0 (the inverse images of 0 A E are identified with

the two points p).

(iv) For every pair ðE 0;EÞ A V0ðRM1;1Þ and every two supersingular elliptic curves F

and G, there is a component of V0ðR ~MM3Þ isomorphic to E (considered as a subvariety of
~MM1;2). The curve Cp corresponding to 03 p A E consists of E with F and G glued on at 0 and

p, while C 0p consists of E 0 with two copies of both F and G glued on at the respective inverse

images.

The components of type (ii)–(iv) are the components of V0ðR ~MM3Þ not intersecting

RM3.
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Proof. From Corollary 3.4, the restriction of the Prym map to RV0ðMgÞ is quasi-
finite. For g ¼ 3 this means that all components of V0ðRM3Þ have dimension equal to
g� 2 ¼ 1, the dimension of V0ðA2Þ. By taking the closure, we obtain the components of
V0ðR ~MM3Þ intersecting RM3. It is straightforward to check that (ii), (iii), and (iv) give a com-
plete description of the p-rank zero étale double covers of reducible curves of genus 3. Since
these families are positive-dimensional, they yield the components of V0ðR ~MM3Þ not inter-
secting RM3. r

The components of type (iii) have dimension 2 and provide the first examples of
components of V0ðR ~MMgÞ of dimension greater than g� 2. Taking X to be a component of
V0ð ~MMg�1Þ, we find components of V0ðR ~MMgÞ of dimension 2g� 4.

Return to genus 3. From the description in Proposition 4.2, one might expect that all
components of V0ðRM3Þ are complete. However, this is not the case, as is shown by the fol-
lowing argument that we learned from Oort.

(4.3) Proposition (Oort). If V0ðRMg�1Þ is nonempty, then it has a component of di-

mension >g� 3 (necessarily noncomplete) or V0ðRMgÞ has a noncomplete component.

Proof. Consider c : R ~MMg !M2g�1 and the Torelli map t : M2g�1 !A�
2g�1. The im-

age tcðR ~MMgÞ has dimension 3g� 3; every component of the intersection with V0ðA2g�1Þ has

dimension at least g� 2. The intersection V0ðA2g�1ÞX tcðR ~MMgÞ equals tc
�
V0ðR ~MMgÞ

�
.

Let Y be a component of V0ðRMg�1Þ. We may assume that dim Y ¼ g� 3. Con-

sider the following family in V0ðR ~MMgÞ isomorphic to the universal curve over fðY Þ: for
ðD 0;DÞ A Y and p A D, construct C by gluing a supersingular elliptic curve E to D at p

and C 0 by gluing two copies of E to D 0 ( just as in type (ii) above). Denote this family by
Z. Then tcðZÞ has dimension g� 3. Therefore it is strictly contained in a component of

tc
�
V0ðR ~MMgÞ

�
. That component necessarily contains Jacobians of smooth curves C 0 and

yields a noncomplete component of V0ðRMgÞ. r

We may similarly consider a family of pairs ðC 0;CÞ, where C consists of two
smooth components, D of genus i and E of genus j, and C 0 consists of D 0 of genus 2i � 1
and two copies of E. Let ðD 0;DÞ vary in a component Y of V0ðRMiÞ and E in a compo-

(ii) (iii) (iv)

D'

D

E

E

E

D

D

D

E'

E

F

F

F

E'

G

G

G

E

(Figures (iii) and (iv) represent general points of the corresponding components.)

Faber and van der Geer, Complete subvarieties of moduli spaces126



nent of V0ðMjÞ. Since the attachment points vary also, the dimension of this family equals
ðdim Y þ 1Þ þ ð2j � 2Þf ði � 1Þ þ ð2j � 2Þ ¼ j þ g� 3. (Mutatis mutandis, this includes
the cases i ¼ 1 and j ¼ 1.) Denoting the family by Z, we have

dim tcðZÞ ¼

0; i ¼ 1; j ¼ 1;

j þ g� 4 ¼ 2g� 5; i ¼ 1; j > 1;

dim Y f i � 2 ¼ g� 3; i > 1; j ¼ 1;

dim Y þ 2j � 3f j þ g� 5; i > 1; j > 1:

8>>><
>>>:

The proposition uses the case j ¼ 1 for gf 3. We see that for gf 4 one may also use the
case j ¼ 2. This proves: if V0ðRMg�2Þ is nonempty, then it has a component of excess di-
mension or V0ðRMgÞ has a noncomplete component.

(4.4) Corollary. For pf 5, the locus V0ðRMgÞ has a noncomplete component for

g ¼ 3; 4, and 5.

Proof. Use that V0ðRM2Þ is nonempty and of dimension 0. Then V0ðRM3Þ has a
noncomplete component. It has dimension 1. Now use the proposition again for g ¼ 4 and
the discussion above for g ¼ 5. r

We study the case p ¼ 3 and g ¼ 3 in the next section.

§5. The locus V0(RM3) for pF 3

We start by recalling some facts concerning hyperelliptic curves. Assume charðkÞ3 2.
Every étale double cover C 0 of a hyperelliptic curve C arises from splitting up the set B of
branch points of C into two disjoint subsets of even cardinality:

B ¼ B1 q B2:

Then C 0 is a Galois cover of P1 with Galois group Z=2� Z=2 and we have a diagram

C 0

 ��
��???y  ��
��

C1 C C2

 ��
�� ???y  ��
��

P1

where C1 (resp. C2) is the hyperelliptic curve with branch points B1 (resp. B2). Moreover,
the Prym variety of C 0 over C is isomorphic to JðC1Þ � JðC2Þ (cf. [M1], p. 346). Note that
C 0 is hyperelliptic if and only if C1 or C2 is a rational curve.

Next, assume that k has characteristic p > 2. The p-rank of a hyperelliptic curve C

can be computed easily. If C is given by y2 ¼ f ðxÞ with f ðxÞ a polynomial without multi-
ple roots of degree 2gþ 1 or 2gþ 2, then the regular di¤erentials xi�1 dx=y with 1e ie g

form a basis. Write
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f ðxÞðp�1Þ=2 ¼ aðxÞ ¼
Py
i¼0

aix
i;

then the Hasse-Witt matrix with respect to this basis is

H ¼

ap�1 a2p�1 � � � agp�1

ap�2 a2p�2 � � � agp�2

..

. ..
. . .

. ..
.

ap�g a2p�g � � � agp�g

0
BBBB@

1
CCCCA:

(Cf. [SV], p. 54.) The p-rank of C equals the semisimple rank of H. In particular, C has p-
rank 0 if and only if

H �HðpÞ � . . . �Hð pg�1Þ ¼ 0;

where Hðp
iÞ is the matrix obtained from H by raising every entry to the ðpiÞth power. This

is independent of the chosen basis.

Let now p ¼ 3.

(5.1) Lemma. A hyperelliptic curve C 0 of genus 5 with a fixed-point-free involution

cannot have 3-rank 0.

Proof. Let C be the quotient curve of genus 3. Then C is hyperelliptic and C 0 is an
étale double cover of C. By the discussion above, the Prym variety of ðC 0;CÞ is the Ja-
cobian of a curve D of genus 2. Assume that C 0 has 3-rank 0. Then D has 3-rank 0. Write

D as y2 ¼
P5

i¼0

aix
i. The Hasse-Witt matrix of D equals

HD ¼
a2 a5

a1 a4

� �
:

We may assume a5 ¼ 1 and a4 ¼ 0. It follows then that a1 ¼ a2 ¼ 0. We may assume a0 ¼ 1
and write D as

y2 ¼ x5 þ ax3 þ 1:

Then C can be written as

y2 ¼ ðx2 þ bxþ cÞðx5 þ ax3 þ 1Þ ¼ x7 þ bx6 þ ðaþ cÞx5 þ abx4 þ acx3 þ x2 þ bxþ c

and the Hasse-Witt matrix of C equals

HC ¼
1 aþ c 0

b ab 1

c ac b

1
CA;

0
B@
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with determinant c2 � cb2 ¼ cðc� b2Þ. The discriminant of x2 þ bxþ c equals b2 � c, so it
follows that c ¼ 0. Then

HC ¼

0
B@

1 a 0

b ab 1

0 0 b

1
CA

and the ð3; 3Þ-entry of H �Hð3Þ �Hð9Þ equals b13. This forces b ¼ 0 and we obtain a con-
tradiction. r

(5.2) Proposition. For p ¼ 3, the locus V0ðRM3Þ doesn’t have a complete component.

Proof. Suppose instead that there is a complete one-dimensional family X of smooth
curves of genus 5, varying in moduli, such that each curve has 3-rank 0 and possesses a fixed-
point-free involution. On X the degree of l1 is positive. Hence the degree of the divisor T in
M5 of trigonal curves and their degenerations is positive, since ½T � ¼ 8l1 (cf. [HM], p. 24).
It is easy to see that a trigonal curve of genus 5 cannot have a fixed-point-free involution: the
g1

3 is unique, thus fixed by the involution; there are 2 fixed divisors; this forces fixed points
on the curve. The intersection points of X and T come therefore from degenerate trigonal
curves where the trigonal system decomposes as a g1

2 plus a base point. These curves are hy-
perelliptic and Lemma 5.1 gives a contradiction. r

(5.3) Example. For p ¼ 5, there do exist smooth hyperelliptic curves of genus 5 with
5-rank 0 and possessing a fixed-point-free involution. Consider C of genus 3 given by

y2 ¼ ðx2 � xþ 2Þðx5 þ x4 þ 2x2 � 2xÞ ¼ x7 þ x5 � x4 þ x3 þ x2 þ x:

One easily checks that both C and D, given by y2 ¼ f ðxÞ ¼ x5 þ x4 þ 2x2 � 2x, have 5-
rank 0. The étale double cover C 0 is given by

y2 ¼ f
x2 � 2

2x� 1

� �
ð2x� 1Þ6

¼ 2x11 � 2x10 þ x9 þ x8 � x7 � 2x6 þ 2x5 � x4 þ x3 � 2x2 � 2xþ 2;

with fixed-point-free involution ðx; yÞ 7! xþ 1

2x� 1
;�y

� �
.

(5.4) Example. For p ¼ 3, there do exist smooth hyperelliptic curves of genus 7 with
3-rank 0 and possessing a fixed-point-free involution. Consider C of genus 4 given by

y2 ¼ xðx8 þ x6 þ x5 � x3 � x2 � 1Þ:

One easily checks that both C and D, given by y2 ¼ f ðxÞ ¼ x8 þ x6 þ x5 � x3 � x2 � 1,
have 3-rank 0. The étale double cover C 0 is given by

y2 ¼ f ðx2Þ ¼ x16 þ x12 þ x10 � x6 � x4 � 1;

with fixed-point-free involution ðx; yÞ 7! ð�x;�yÞ.
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(5.5) Example. For p ¼ 3, there do exist smooth hyperelliptic curves of genus 3 pos-
sessing an étale double cover with 3-rank 0. Consider C of genus 3 given by

y2 ¼ ðx3 þ xþ 1Þðx4 þ x� 1Þ ¼ x7 þ x5 � x4 � x3 þ x2 � 1:

One easily checks that C and the elliptic curves v2 ¼ x3 þ xþ 1 and w2 ¼ x4 þ x� 1 have
3-rank 0. The étale double cover C 0 is the normalization of

v8 � w6 � v4w2 � v6 � w4 � v4 þ v2 � 1 ¼ 0;

with fixed-point-free involution induced by ðv;wÞ 7! ð�v;�wÞ.

§6. The number of p-rank zero étale double covers of genus 2 curves

In this section we count the number of points of V0ðRM2Þ, that is, we count the
number of pairs ðC 0;CÞ with C a smooth curve of genus 2 and C 0 an étale double cover of
C with p-rank zero. Our method is to use intersection theory on stacks. In the terminology
of Mumford [M2], p. 293, we intersect the Q-classes of RV0ð ~MM2Þ and P�1V0ðA1Þ inside
R ~MM2. The intersection has dimension zero and the Q-class of every point is counted with
the intersection multiplicity in the universal deformation space. This gives the number of
points of V0ðR ~MM2Þ and we need to subtract the contribution of the reducible curves to ob-
tain the number of points of V0ðRM2Þ.

(6.1) Theorem. The weighted number of isomorphism classes of pairs ðC 0;CÞ with C

a smooth curve of genus 2 and C 0 an étale double cover of C with p-rank zero is given by

P
ðC 0;CÞ

mðC 0;CÞ
jAutðC 0;CÞj ¼

1

384
ðp� 3Þðp� 1Þ2ðpþ 1Þ;

where mðC 0;CÞ A Zf1 is the intersection multiplicity in the universal deformation space and

jAutðC 0;CÞj denotes the number of automorphisms of C that fix the point of order 2 in JðCÞ
corresponding to C 0.

Proof. Since V0ðA1Þ has class ðp� 1Þl1, the class of P�1V0ðA1Þ equals

ðp� 1ÞP�ðl1Þ ¼ ðp� 1Þl 01 ¼ ðp� 1Þf�l1;

by Corollary 3.2. By [G], Thm. 9.2, the class of RV0ð ~MM2Þ equals ðp� 1Þðp2 � 1Þf�l2 (note
that ~MM2 ¼A2 as stacks). To evaluate the degree of the intersection, we apply f�. We obtain

f�
�
ðp� 1Þf�l1 � ðp� 1Þðp2 � 1Þf�l2

�
¼ 15ðp� 1Þ2ðp2 � 1Þl1l2 ¼

1

384
ðp� 1Þ2ðp2 � 1Þ;

since l1l2 ¼
1

5760
on M2. This is the weighted number of points of V0ðR ~MM2Þ.

The number of reducible curves in this intersection can be computed easily. We need
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an ordered pair ðE1;E2Þ of supersingular elliptic curves and a point of order 2 on E1. We
find

3 � p� 1

24
� p� 1

24
¼ 1

192
ðp� 1Þ2:

In the next proposition we show that these pairs count with multiplicity pþ 1. Therefore
the weighted number of points of V0ðRM2Þ equals

1

384
ðp� 1Þ2ðp2 � 1Þ � 1

192
ðpþ 1Þðp� 1Þ2 ¼ 1

384
ðp� 1Þ2ðpþ 1Þ

�
ðp� 1Þ � 2

�

¼ 1

384
ðp� 3Þðp� 1Þ2ðpþ 1Þ;

as required. r

In §7 we give a number of examples illustrating this formula. Note that V0ðRM2Þ is
empty for p ¼ 3, but nonempty for pf 5.

(6.2) Proposition. The locus RV0ð ~MM2Þ intersects P�1V0ðA1Þ with multiplicity pþ 1 at

points corresponding to stable curves with two elliptic components.

Proof. For a smooth étale double cover D 0 ! D corresponding to a point h of order
2 in JðDÞ the codi¤erential of the Prym map P : RMg !Ag�1 is given by the multiplica-
tion map Sym2

�
H 0ðD;oD n hÞ

�
! H 0ðD;o2

DÞ. We extend this result to certain étale double
covers of reducible curves of genus 2 in the following manner.

Let C be a stable curve of genus 2 consisting of two elliptic components E1 and E2.
We let DefðCÞ be the space of infinitesimal deformations of C. Since ~MM2 ¼A2, it can be
identified with the space of infinitesimal deformations of the Jacobian E1 � E2 of C (as a
principally polarized abelian surface). We thus get

DefðCÞG Sym2ðTE1
lTE2

Þ ¼ Sym2ðTE1
Þl ðTE1

nTE2
Þl Sym2ðTE2

Þ;

where TEi
denotes the tangent space to Ei at the origin. Note that the tangent space and the

cotangent space to A2 are identified via the principal polarization.

Consider now the étale double cover C 0 of C defined by a point h of order 2 of E1. It
consists of the étale double cover E 01 of E1 defined by h and two copies of E2. Then

H 0ðC;oC n hÞ ¼ H 0ðE1;oE1
n hÞlH 0ðE2;oE2

Þ ¼ H 0ðE2;oE2
Þ ¼ TE2

:

With these identifications, the codi¤erential of the Prym map becomes the inclusion

Sym2ðTE2
Þ ! Sym2ðTE1

Þl ðTE1
nTE2

Þl Sym2ðTE2
Þ

and the tangent space to the fiber of the Prym map is given by

Sym2ðTE1
Þl ðTE1

nTE2
Þ:
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On the other hand, for a C which is supersingular (i.e., both Ei are supersingular) one
can calculate the directions in the deformation space DefðCÞ along which supersingularity
(or equivalently, the condition that the p-rank is 0) is preserved. According to a calculation
by Oort [O2], p. 258, we find the pþ 1 directions

�zp 1

1 z

� �
A Sym2ðTE1

lTE2
Þ;

where zpþ1 ¼ �1. Here the ith coordinate corresponds to TEi
. These tangent vectors are not

contained in Sym2ðTE1
Þl ðTE1

nTE2
Þ. r

§7. Examples

We now give a number of examples to illustrate the formula of the preceding section.
In §5 we discussed how the p-rank of a hyperelliptic curve may be computed and how the
étale double covers of hyperelliptic curves can be described. In the case where gðCÞ ¼ 2
we may assume that C2 is a rational curve and that C1 ¼ E is an elliptic curve. The Prym
variety of ðC 0;CÞ is isomorphic to E. Below, we will identify the étale double cover C 0 with
a point h of order 2 in JðCÞ. With C defined by y2 ¼ f ðxÞ, we give h by choosing 2 of the 6
branch points.

(7.1) pF 3. Over F3 the elliptic curve with j ¼ 0¼ 1728 can be written y2 ¼ x3� x.
Hence C can be written y2 ¼ ðx2 þ axþ bÞðx3 � xÞ with h corresponding to x2 þ axþ b.
Then the Hasse-Witt matrix equals

H ¼ a2 a5

a1 a4

� �
¼ �a 1

�b a

� �

and we have the condition H �HðpÞ ¼ 0. In particular, 0 ¼ detðHÞ ¼ b� a2; note that this
condition already makes C singular: x2 þ axþ a2 ¼ ðx� aÞ2. So, not only there isn’t a
smooth C of genus 2 and 3-rank 0 with unramified double cover C 0 of 3-rank 0 (hence
Prym of 3-rank 0), there isn’t even a smooth C of 3-rank e1 with Prym of 3-rank 0.

(7.2) pF 5. Over F5 the elliptic curve with p-rank 0 has j ¼ 0 and can be written
y2 ¼ x3 � 1. Hence C can be written y2 ¼ ðx2 þ axþ bÞðx3 � 1Þ with h corresponding to
x2 þ axþ b. Now aðxÞ ¼ f ðxÞ2 and

H ¼ a4 a9

a3 a8

� �
:

One checks that detðHÞ ¼ 0 gives b ¼ �a2 or b ¼ �2=a. Since b ¼ �a2 leads to a singular
curve (x2 þ ax� a2 ¼ ðx� 2aÞ2) one is left with b ¼ �2=a. Working out H �HðpÞ ¼ 0 leads
to the necessary condition a15 � a9 þ 1 ¼ 0; but a3 þ 3 ¼ 0 is to be avoided, as it leads to
a singular curve. The residual polynomial in F5½a� of degree 12 has 3 irreducible factors
of degree 4. Now note that the automorphism group of the 4-tuple f1; z; z2;yg (with z a
primitive cube root of 1) is acting on the solution set, reflecting the choice of x-coordinate
in writing the elliptic curve with j ¼ 0 as y2 ¼ x3 � 1. It is the group A4, generated by the
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transformations x 7! zx and x 7! ðxþ 2Þ=ðx� 1Þ. A calculation shows that the solution set
is one A4-orbit. So there is one isomorphism class of pairs ðC 0;CÞ with C 0 of 5-rank 0; it is
defined over F5 and has only the hyperelliptic automorphism y 7! �y (this follows since the
A4-orbit has length 12). So the answer to the counting problem is

1

2
¼ 2 � 4 � 4 � 6

384

as in the theorem; this proves that the multiplicity mðC 0;CÞ ¼ 1. Finally, one would of
course like to have a model over F5. One can try to take h ¼ f0;yg although this is not
guaranteed to work:

y2 ¼ xðx4 þ b3x3 þ b2x2 þ b1xþ b0Þ

with the bi A F5. The Prym condition is just b2
2 þ 2b1b3 þ 2b0 ¼ 0 wheras the condition for

C simplifies to H 2 ¼ 0. A solution is (for instance):

y2 ¼ xðx4 þ x3 þ 2xþ 3Þ with H ¼ 4 2

2 1

� �
:

Remark. The locus RV0ðM2Þ is nonsingular at a point ðC 0;CÞ with a-number
aðCÞ ¼ 1, while it has multiplicity pþ 1 at a point with aðCÞ ¼ 2. If the intersection with
P�1V0ðA1Þ is transversal, the multiplicity mðC 0;CÞ equals 1 resp. pþ 1.

(7.3) pF 7. Over F7 we start with the form y2 ¼ ðx2 þ axþ bÞðx3 � xÞ. To find so-
lutions one can proceed as follows. The 4 entries of H �HðpÞ and detðHÞ are 5 polynomials in
a and b that have to vanish simultaneously. Using Maple, one computes the resultants
modulo 7 w.r.t. the variable b (resp. a) of the determinant and each of the 4 entries with-
out problem; taking the polynomial g.c.d. modulo 7 of the 4 resultants leads to a polyno-
mial in a (resp. b) of degree 65 in both cases. The multiple factors in the a-polynomial are

a19ðaþ 2Þ3ðaþ 5Þ3, reducing the number of possible a-values to 43. The factors of the b-
polynomial all have multiplicity at least 2, with ðbþ 6Þ22ðb2 þ 3bþ 1Þ4b3 the factors with
multiplicity > 2, reducing the number of possible b-values to 20. Examining the singular
solutions leads to the exclusion of a ¼G2 and of b ¼ 0, which leaves us with 41 possible
a-values and 19 possible b-values. Clearly, when ða; bÞ is a solution, so is ð�a; bÞ; more
generally, the automorphism group of the 4-tuple f0; 1;�1;yg, the group D4, is acting on
the solution set; the x-transformations x 7! �x resp. x 7! ðx� 1Þ=ðxþ 1Þ have the e¤ect
ða; bÞ 7! ð�a; bÞ resp.

ða; bÞ 7! 2b� 2

bþ 1þ a
;
bþ 1� a

bþ 1þ a

� �
:

We examine the orbits of this action. It is clear that ða; bÞ ¼ ð0; 1Þ is the unique fixed point;
it is in fact the unique solution with a non-trivial stabilizer. Here C is the curve y2 ¼ x5 � x

which has 48 automorphisms; h ¼ fi;�ig; the pair ðC; hÞ has 16 automorphisms. Note that
aðCÞ ¼ 2 (since H ¼ 0); hence we expect to count ðC; hÞ with multiplicity pþ 1 ¼ 8 for a
total contribution of 8=16 ¼ 1=2. The pair ðC; hÞ is isomorphic to ðC; f0;ygÞ.
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It is easy to check that the only solution with a ¼ 0 is b ¼ 1, and vice versa. For the
solutions with a nonzero, 40 possible a-values remain. These fall into 5 orbits. We find only
18 possible b-values since a ‘ramification’ occurs: to b2 þ 3bþ 1 ¼ 0 correspond 8 a-values
(the roots of ða4 � a2 � 1Þða4 � 3a2 � 1Þ) instead of the expected 4.

So we find 5 more solutions ðC; hÞ, each having only the automorphisms y 7!Gy;
also, aðCÞ ¼ 1 for all five. Hence each contributes 1=2, so that the answer to the counting
problem is

6 � 1
2
¼ 3 ¼ 4 � 6 � 6 � 8

384
:

Two of the 5 D4-orbits are given by a polynomial in F7½a� of degree 16 (with 4 irreducible
factors of degree 4). Hence the 2 corresponding isomorphism classes ðC; hÞ are defined over
F49 (a Galois orbit of length 2). With some work, one finds explicit representatives:

C: y2 ¼ x
�
x4 þ x3 þ ði þ 1Þx2 þ ð3i � 2Þx� i

�
¼ xðx2 þ 3i � 2Þðx2 þ x� 2i þ 3Þ;

h: x2 þ x� 2i þ 3;

E: y2 ¼ xðx2 þ 3i � 2Þ ð j ¼ 1728 ¼ �1Þ

8<
:

with i ¼
ffiffiffiffiffiffiffi
�1
p

A F49.

The other three D4-orbits are given by a polynomial in F7½a� of degree 24 (with 4
irreducible factors of degree 6). The 3 corresponding isomorphism classes ðC; hÞ are defined
over F343 (a Galois orbit of length 3). One eventually finds explicit representatives:

C: y2 ¼ ðx2 þ 1Þ
�
x4 þ x3 þ ðr2 þ rþ 2Þx2 þ ð3r2 � 3rþ 1Þxþ ð5r2 � 3rþ 3Þ

�
;

h: x2 þ 1;

E: y2 ¼ x4 þ x3 þ ðr2 þ rþ 2Þx2 þ ð3r2 � 3rþ 1Þxþ ð5r2 � 3rþ 3Þ ð j ¼ 1728Þ

8<
:

with r ¼
ffiffiffi
23
p

A F343.

(7.4) pF 11. There are two cases: (A) the Prym variety is the elliptic curve with
j ¼ 1728; we take y2 ¼ ðx3 � xÞðx2 þ axþ bÞ as ðC; hÞ; (B) the Prym is the elliptic curve
with j ¼ 0; we work with y2 ¼ ðx3 � 1Þðx2 þ axþ bÞ.

In case (A) one initially finds a polynomial in a of degree 340; only its 5 linear
factors come with (varying) multiplicities; the reduced polynomial has degree 197. The
initial polynomial in b also has degree 340; every factor has at least multiplicity 2, and
only its 4 linear factors have higher multiplicities; the reduced polynomial has degree
100. As it turns out, the linear factors lead either to singular curves or to the 4 solutions
ða; bÞ ¼ ð0; 2Þ; ð0; 6Þ; ð3; 1Þ; ð8; 1Þ. These 4 solutions form a single D4-orbit; hence the cor-
responding pair ðC; hÞ has 4 automorphisms. One easily checks that aðCÞ ¼ 2 so that the
expected contribution is ðpþ 1Þ=4 ¼ 12=4 ¼ 3. The remaining 192 solutions of the reduced
polynomial in a form 24 orbits; their expected contribution is 24=2 ¼ 12, making the total
expected contribution in case (A) equal to 15. The Galois orbits have lengths 1, 4, 4, 4, 6,
and 6.
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In case (B) one initially finds a polynomial in a of degree 270; only a linear and a
quadratic factor come with a multiplicity; the reduced polynomial has degree 243. Exactly
the same happens for the polynomial in b. As it turns out, the linear and the quadratic
factor lead to singular curves. The remaining 240 solutions of the reduced polynomial in
a form 20 A4-orbits; the expected contribution in case (B) is 20=2 ¼ 10. The Galois orbits
have lengths 3, 3, 4, and 10.

Hence the total expected contribution equals 25, as in Theorem 6.1. So all intersec-
tions are transversal.

(7.5) pF 13. Here we find the first example of a non-transversal intersection. We
work with y2 ¼ ðx3þ xþ 4Þðx2þ axþ bÞ with Prym variety the supersingular elliptic curve
y2 ¼ x3þxþ4. One initially finds a polynomial in a of degree 466; a linear and a quadratic
factor come with multiplicity 15 and yield singular curves; the factor a4þ 8a3þ 7a2þ 8aþ 9
comes with multiplicity 2; one linear factor doesn’t give a solution; the remaining reduced
polynomial has degree 416. The remaining polynomial in b has degree 416 as well. The
group D2 acts; if all intersections were transversal and all points of intersection had a-
number 1, then the total contribution would be 104=2 ¼ 52. However, the answer is 105=2
according to Theorem 6.1. The only possible explanation is that exactly one of the intersec-
tions is non-transversal and has multiplicity 2. Indeed, the factor a4 þ 8a3 þ 7a2 þ 8aþ 9
yields that intersection point. The pair ðC; hÞ is defined over F13; an equation is

y2 ¼ x5 þ x4 þ 6x3 � 2x2 þ 2x

with h ¼ f0;yg. This is a nonsingular point of RV0ðM2Þ and the tangent line may be given
as

y2 ¼ x5 þ x4 þ ðtþ 6Þx3 þ ð2t� 2Þx2 þ ð2� tÞx

with the same h. The moving elliptic curve is

y2 ¼ x4 þ x3 þ ðtþ 6Þx2 þ ð2t� 2Þxþ 2� t

and the coe‰cient of x12 in
�
x4 þ x3 þ ðtþ 6Þx2 þ ð2t� 2Þxþ 2� t

�6
is t2 times a unit,

which proves the multiplicity statement.

(7.6) pF 17. There are two supersingular j-invariants. For the elliptic curve
y2 ¼ x3 þ xþ 1 we find a Galois orbit of length 2 with a-number 2 and 4 automorphisms,
contributing 2ðpþ 1Þ=4 ¼ 9, and a pair ðC; hÞ defined over F17 giving a simple tangency
and contributing 1. The remaining solutions contribute 928=8 ¼ 116 for a total contribu-
tion of 126.

For the elliptic curve y2 ¼ x3 � 1 we find the first example of a non-transversal in-
tersection with a-number 2. This proves that the intersection multiplicity cannot be read o¤
from the Hasse-Witt matrix. Let the pair ðC; hÞ be given by

y2 ¼ ðx3 � 1Þðx2 � 2x� 2Þ:
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The 18 tangent directions to RV0ðM2Þ can be written down explicitly. Two of them lie in
the tangent plane to the Prym fiber and it turns out that they yield simple tangencies. The
intersection multiplicity equals 20. The A4-orbit of this pair has length 3 and it contrib-
utes 3 � 20=24 ¼ 5=2. There is also an A4-orbit of length 12 with a-number 2, contributing
12 � 18=24 ¼ 9. The remaining solutions contribute 732=24 ¼ 61=2. The total contribution
for y2 ¼ x3 � 1 equals 42.

Adding up the contributions for the two elliptic curves, we obtain 168, as in Theorem
6.1.
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Astérisque 63 (1979), 113–163.

[KS] S. Keel and L. Sadun, Oort’s conjecture for Ag, J. Amer. Math. Soc. 16 (2003), 887–900.

[Ko] N. Koblitz, p-adic variation of the zeta-function over families of varieties defined over finite fields, Compos.

Math. 31 (1975), 119–218.

[L] E. Looijenga, On the tautological ring of Mg, Invent. Math. 121 (1995), 411–419.

[M-B] L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985).
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