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Abstract: We use the description of the Picard modular surface
for discriminant −3 as a moduli space of curves of genus 3 to gen-
erate all vector-valued Picard modular forms from bi-covariants for
the action of GL2 on the space of pairs of binary forms of bidegree
(4, 1). The universal binary forms of degree 4 and 1 correspond to
a meromorphic modular form of weight (4,−2) and a holomorphic
Eisenstein series of weight (1, 1).
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1. Introduction

Some Shimura varieties can be interpreted as moduli spaces of curves and
such an interpretation offers extra ways to study these Shimura varieties.
More precisely, in a number of cases a dense open part of the Shimura va-
riety is the image of a moduli space of curves under a morphism of finite
degree. Examples are the moduli space of principally polarized abelian va-
rieties of dimension 2 (resp. 3) where we have the Torelli map M2 → A2
(resp. M3 → A3) from the moduli space of curves of genus 2 (resp. 3). Igusa
[15] used this to describe the generators for the rings of scalar-valued Siegel
modular forms of degree 2 and later Tsuyumine [31] extended this to the case
of degree 3. In joint work with Carel Faber [2, 3] we used the description
of M2 as a stack quotient of GL2 to extend the work of Igusa by describing
how invariant theory makes it possible to efficiently generate all vector-valued
Siegel modular forms (of level 1) of degree 2 from one universal vector-valued
meromorphic Siegel modular form χ6,−2 and one scalar-valued holomorphic
form χ10. Similarly, in [4], we used the description of an open part of M3 as
a stack quotient of GL3 to generate all Siegel and Teichmüller modular forms
from a universal meromorphic Teichmüller modular form χ4,0,−1 of genus 3
and the form χ9, a square root of a Siegel modular form χ18. These universal
vector-valued modular forms χ6,−2 for genus 2 and χ4,0,−1 for genus 3 can be
seen as giving the equation of the universal curve over the moduli space while
the scalar-valued ones χ10 and χ18 are related to the discriminants of these
equations.

It is natural to try to extend this to other Shimura varieties. In [28]
Shimura gave a list of arithmetic ball quotients that are moduli spaces of
curves. This list was extended to a complete list by Rohde, see [25, 18].

Here we treat one case of Shimura’s list, a quotient of the 2-ball that gives
the moduli of genus 3 curves that are triple cyclic covers of the projective line.
The period domain of such curves is a Picard modular surface associated to
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the group of unitary similitudes GU(2, 1,Q(
√
−3)). These periods were first

studied by Picard in the late 19th century in a series of papers [22, 23, 24].
We show how all vector-valued modular forms on the moduli space in

question can be generated by invariant theory from two universal modular
forms, one meromorphic form χ4,−2 of weight (4,−2), and a holomorphic
Eisenstein series E1,1 of weight (1, 1). Multiplication of χ4,−2 by the scalar-
valued modular form ζ, related to the discriminant, makes χ4,−2 holomor-
phic. These three forms are Teichmüller modular forms, but can be viewed
as Picard modular forms on an appropriate congruence subgroup. The two
vector-valued forms χ4,−2 and E1,1 can be interpreted as the quartic and the
linear term f4 and f1 in the equation of the universal canonical curve over
the moduli space

y3f1 = f4 .

Like in the cases of Siegel modular forms of degree 2 and 3, the interpre-
tation of our moduli space as a stack quotient enables the use of invariant
theory. This moduli space is a stack quotient of a twisted version of the ac-
tion of GL2 on V4 × V1, where V1 is the standard representation of GL2 and
V4 = Sym4(V1). The invariant theory used is that of covariants (or more pre-
cisely, bi-covariants) for this action. The generators of the ring of bi-covariants
are known classically. The construction of modular forms is realized by substi-
tuting the coordinates of the basic forms χ4,−2 and E1,1 in the covariants. In
general, a covariant yields a meromorphic modular form with possible poles
only along the curve T1 where the scalar-valued form ζ vanishes. This curve
T1 is the locus where the Jacobian of our genus 3 curve is a product of an
abelian surface and a fixed elliptic curve with multiplication by third roots of
unity.

In order to apply this effectively, we need to construct explicitly Fourier-
Jacobi expansions of the generating modular forms ζ, χ4,−2 and E1,1. We use
gradients of theta functions to construct these basic forms.

To check holomorphicity of the modular forms obtained from covariants
we need also the Taylor expansions of these generating forms along the mod-
ular curve T1 on our Picard modular surface.

As an application, we show how to construct the generators of rings of
scalar-valued modular forms and of modules of vector-valued modular forms
from invariants and covariants. In particular, we determine generators of mod-
ules of vector-valued Picard modular forms of weight (4, k).

As a possible further application, we mention that the description of mod-
ular forms by covariants should allow a description and construction of these
Picard modular forms in positive characteristic.
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It is a great pleasure to dedicate this paper to Don Zagier who through
his work and in his contacts with us has been a source of inspiration for both
of us.

2. Picard modular forms

We briefly recall the notion of Picard modular forms on the 2-ball. We refer
to [9, 5] for more details. Let F = Q(

√
−3) with ring of integers OF = Z[ρ]

for a primitive third root of unity ρ and units O×
F = μ6. We consider the

non-degenerate Hermitian form h of signature (2, 1) on the F -vector space
Z = F 3 given by

z1z
′
2 + z′1z2 + z3z

′
3 ,

where the prime indicates the Galois conjugate. It defines an algebraic group
G over Q consisting of the similitudes of h

G(Q) = {g ∈ GL(3, F ) : h(gz) = η(g)h(z)}

with multiplier homomorphism η : G → Gm. This is a group of type
GU(2, 1, F ). We let G0 = ker(η). The two arithmetic groups of interest are

Γ = G0(Z), Γ1 = G0(Z) ∩ ker det .

After choosing an embedding F ↪→ C we can identify F ⊗Q R with C and
G(R) acts on the complex vector space ZR = Z ⊗Q R via the standard repre-
sentation. An element g of G+(R) = {g ∈ G(R) : η(g) > 0} preserves the set
of negative complex lines

B = {L : L ⊂ Z ⊗Q R, dimC L = 1, h|L < 0} .

The action can be given explicitly by first identifying B via u = z3/z2 and
v = z1/z2 with a complex 2-ball

B = {(u, v) ∈ C2 : v + v̄ + uū < 0} .

Then an element g = (gij) acts by

g · (u, v) =
(
g31v + g32 + g33u

g21v + g22 + g23u
,
g11v + g12 + g13u

g21v + g22 + g23u

)
.
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The quotient XΓ = Γ\B is called a Picard modular surface. It is not compact,
but can be compactified by adding one cusp. It was studied in detail by
Holzapfel and Feustel, see [12, 8]. The two congruence subgroups

Γ[
√
−3] = {γ ∈ Γ : γ ≡ 13 (mod

√
−3)} and Γ1[

√
−3] = Γ[

√
−3] ∩ Γ1

will also play a role here. For later use we record the following lemma, see
[27, p. 329].

Lemma 2.1. The following six elements generate the arithmetic group
Γ[
√
−3]: g0 = ρ 13 and

g1 =
( 1 0 0

0 1 0
0 0 ρ

)
, g2 =

(
1 0 0√
−3 1 0
0 0 1

)
, g3 =

(
1 0 0

ρ−1 1 ρ−1
1−ρ2 0 1

)
,

g4 =
(

1
√
−3 0

0 1 0
0 0 1

)
, g5 =

(
1 ρ−1 ρ−1
0 1 0
0 1−ρ2 1

)
.

The quotient XΓ1[
√
−3] = Γ1[

√
−3]\B can be compactified by adding four

cusps represented by [1 : 0 : 0], [0 : 1 : 0] [ρ : 1 : 1] and [ρ : 1 : −1]. We have
an isomorphism

Γ/Γ1[
√
−3] ∼= S4 × μ6, g 
→ (σ(g), det(g)) ,

where S4 is the symmetric group and σ(g) is the permutation of the four
cusps. The μ6–part is generated by −13 and g1 = diag(1, 1, ρ), while the
S4–part is generated by:

r1 =

⎛⎜⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎟⎠ , r2 =

⎛⎜⎝−1 0 0
0 −1 0
0 0 1

⎞⎟⎠ and r3 =

⎛⎜⎝1 ρ2 1
0 1 0
0 −1 1

⎞⎟⎠ .

Note that Γ1/Γ1[
√
−3] � S4 and the three elements r1, r2 and r3 correspond

to the permutations (12), (34) and (234) in S4.
The action of G+(R) on B defines two factors of automorphy:

j1(g, u, v) = g21v + g22 + g23u

j2(g, u, v) = det(g)−1
(
G32u + G33 G32v + G31
G12u + G13 G12v + G11

)
,

where Gij denotes the minor of gij . We have

det(j2(g, u, v)) = j1(g, u, v)/ det(g) .
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The factor of automorphy j2 agrees with the canonical factor of automorphy
as defined by Satake, see [26, Chapter II.5]; see also [29].

For a pair (j, k) of integers and g ∈ G+(R), we define a slash operator on
functions f : B → Symj(C2),

(f |j,kg)(u, v) = j1(g, u, v)−kSymj(j2(g, u, v)−1)f(g · (u, v)).

For a discrete subgroup Γ′ of G+(R) ∩ ker η and a character χ of Γ′ of finite
order, we define the space of modular forms of weight (j, k) and character χ
on Γ′ as

Mj,k(Γ′, χ) =
{
f : B → Symj(C2) | f holomorphic, f |j,kg = χ(g) f for g ∈ Γ′

}
.

We denote by Sj,k(Γ′, χ) the subspace of cusp forms of Mj,k(Γ′, χ). For j = 0,
that is, for scalar-valued forms, we shorten these notations by just writing
Mk(Γ′, χ) and Sk(Γ′, χ), and Mk(Γ′) and Sk(Γ′) if χ is trivial. We have the
graded ring of modular forms on Γ′ with

M(Γ′) =
⊕
k�0

Mk(Γ′) .

We apply this to the case where Γ′ equals to one of the groups Γ,Γ1,Γ[
√
−3]

and Γ1[
√
−3].

Remark 2.2. The isomorphism Γ[
√
−3]/Γ1[

√
−3] ∼= μ3 via g 
→ det(g) gives

a decomposition

Mj,k(Γ1[
√
−3]) = ⊕2

l=0Mj,k(Γ[
√
−3], detl) ,

and similarly, Γ/Γ1 ∼= μ6 via g 
→ det(g) gives

Mj,k(Γ1) = ⊕5
l=0Mj,k(Γ, detl) .

However, since −13 ∈ Γ acts by (−1)j+k on Mj,k(Γ1) here we may restrict l
by j + k ≡ l(mod2), that is, l ∈ {0, 2, 4} or l ∈ {1, 3, 5}. But note that if we
view a modular form on Γ1 as a modular form on Γ1[

√
−3] the notation of

the character may change since Γ/Γ1 ∼= μ6, but Γ[
√
−3]/Γ1[

√
−3] ∼= μ3.

We have two order 2 characters on Γ. The first one is det3, while the
second one, denoted ε, comes from the isomorphism Γ/Γ1[

√
−3] ∼= S4 × μ6

and the map S4 × μ6 → {±1} given by (σ, z) 
→ sgn(σ) with sgn the sign
character on S4.
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The isomorphism Γ1/Γ1[
√
−3] ∼= S4 makes Mj,k(Γ1[

√
−3]) into a repre-

sentation of S4 and we have

Mj,k(Γ1, ε) = Mj,k(Γ1[
√
−3])s[14],

with s[14] the alternating S4-representation and with Mj,k(Γ1[
√
−3])s[14] de-

noting the subspace of Mj,k(Γ1[
√
−3]) where S4 acts via the alternating char-

acter.
By [12] the Baily-Borel compactification X∗

Γ[
√
−3] of XΓ[

√
−3] = Γ[

√
−3]\B

can be identified with P2 ⊂ P3 given by the hyperplane x1 +x2 +x3 +x4 = 0
with the action of Γ/Γ[

√
−3] ∼= S4 × μ2 given by xi 
→ sgn(σ)xσ(i) and μ2

acting trivially. Moreover, X∗
Γ1[

√
−3] can be identified with the 3-fold cover

given by ζ3 =
∏

1≤i<j≤4(xi − xj).
The factor of automorphy j1 corresponds to an orbifold line bundle L

on Γ\B and the factor j2 to a rank 2 orbifold vector bundle U . If we define
j3 = det(g) to be the third factor of automorphy we have det(j2) = j1/j3.
This factor j3 corresponds to R = det(U)−1 ⊗ L, see [1]. Note that R is a
torsion line bundle.

When we speak of weight (j, k, l) we refer to the factor of automorphy
jk1 Symj(j2) jl3.

The M(Γ)-module

M(Γ) =
⊕

j,k∈Z≥0

Mj,k(Γ)

can be made into a ring; indeed a modular form on Γ of weight (j, k, l)
is a section of Symj(U) ⊗ Lk ⊗ Rl on Γ\B and the canonical projection
Syma(U)⊗ Symb(U) → Syma+b(U) and the usual multiplication of line bun-
dles determines the ring structure. Similarly, we have a ring structure on the
M(Γ1)-module M(Γ1) = ⊕Mj,k(Γ1).

We now briefly summarize what is known about Picard modular forms
on the groups in question. Shiga studied in the sixties Picard modular forms
using theta functions in [27]. In the eighties, Feustel and Holzapfel determined
a few rings of scalar-valued modular forms, see below. In the nineties, Finis
constructed a number of scalar-valued Hecke eigenforms of small weight and
determined Hecke eigenvalues in [9]. Shintani discussed the notion of vector-
valued modular forms in [30].

Bergström and one of us studied in [1] the cohomology of local systems
on the arithmetic quotient Γ1[

√
−3]\B and gave dimension formulas for the

spaces Sj,k,l(Γ[
√
−3]). The interpretation of the Picard modular surface as
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a moduli of curves was used there to determine experimentally by count-
ing points over finite fields Hecke eigenvalues of Picard modular forms on
Γ1[

√
−3]. Motivated by the early experimental results of [1] we constructed

in [5] a number of vector-valued modular forms and determined the structure
of a few modules of vector-valued modular forms.

We finish this section by recalling some results of Feustel and Holzapfel,
[8, 12] on the structure of some graded rings of scalar-valued modular forms.
There exist modular forms ϕi ∈ M3(Γ[

√
−3]) for i = 0, 1, 2, and a form

ζ ∈ S6(Γ[
√
−3], det ) such that

M(Γ[
√
−3]) = C[ϕ0, ϕ1, ϕ2], and M(Γ1[

√
−3]) = C[ϕ0, ϕ1, ϕ2, ζ]/(R),

where (R) is the ideal generated by the relation

(1) ζ3 = − ρ

37
√
−3

ϕ0ϕ1ϕ2(ϕ1 − ϕ0)(ϕ2 − ϕ0)(ϕ2 − ϕ1) .

The constant −ρ/37√−3 is due to our normalizations, see later. The ϕi are
related with the coordinates xi of the Baily-Borel compactification X∗

Γ[
√
−3]

via

x1 = ϕ0+ϕ1+ϕ2, x2 = −3ϕ0+ϕ1+ϕ2, x3 = ϕ0−3ϕ1+ϕ2, x4 = ϕ0+ϕ1−3ϕ2,

and the action of S4 by xi 
→ sgn(σ)xσ(i) makes M3(Γ[
√
−3]) into the S4-

representation s[2, 12] corresponding to the partition (2, 1, 1) of 4.
The form ζ ∈ S6(Γ[

√
−3], det) is S4-anti-invariant. We thus can view ζ

as an element of S6(Γ1, ε).
One defines Eisenstein series Ei of weight i on the group Γ or a smaller

group by

E6 = ϕ2
0 + ϕ2

1 + ϕ2
2 −

2
3(ϕ0ϕ1 + ϕ0ϕ2 + ϕ1ϕ2) ∈ M6(Γ),

E9 = (−ϕ0 + ϕ1 + ϕ2)(ϕ0 − ϕ1 + ϕ2)(ϕ0 + ϕ1 − ϕ2)

with E9 ∈ M9(Γ[
√
−3]) ∩M9(Γ1, ε), and E12 ∈ M12(Γ) by

E12 = −1
3(ϕ0 + ϕ1 + ϕ2)(−3ϕ0 + ϕ1 + ϕ2)(ϕ0 − 3ϕ1 + ϕ2)(ϕ0 + ϕ1 − 3ϕ2) .

Then we can describe the rings of modular forms on Γ and Γ1:

M(Γ) = C[E6, E12, E
2
9 ] , and M(Γ1) = C[E6, E12, E

2
9 , ζE9, ζ

2]/(R1),
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with the ideal (R1) generated by the relation (E9 ζ)2 = E2
9ζ

2 and

(2) ρ 216312ζ6 = 9E4
6E12 − 8E3

6E
2
12 + 6E2

6E
2
12 − 24E6E

2
9E12 + 16E4

9 +E3
12 .

We also have
M(Γ1, ε) = C[E6, E9, E12, ζ

2]/(R′)

with (R′) generated by the relation (2).

3. A modular embedding

The arithmetic quotient XΓ = Γ\B parametrizes principally polarized abelian
threefolds with multiplication by OF . So there is a morphism XΓ → A3(C).
We now describe the corresponding modular embedding Γ\B → Sp(6,Z)\H3
with H3 the Siegel upper half space of degree 3

H3 = {τ ∈ Mat(3,C) : τ t = τ, Im(τ) > 0} .

Such modular embeddings were considered by Picard, Shiga and Holzapfel,
see [22, 27, 13].

The lattice O3
F with Hermitian form h = z1z

′
2 + z2z

′
1 + z3z

′
3 determines

an alternating form (2/
√

3)Im(h) and by taking as Z-basis of this lattice

e1 = (ρ2, 0, 0), e2 = (0, ρ2, 0), e3 = (0, 0, ρ2),
f1 = (0, ρ, 0), f2 = (ρ, 0, 0), f3 = (0, 0, ρ)

we can identify it with the standard symplectic lattice generated by e1, e2, e3,
f1, f2, f3 with 〈ei, ej〉 = 0, 〈fi, fj〉 = 0, 〈ei, fj〉 = δij . Here 〈 , 〉 denotes the
alternating form that is the imaginary part of the Hermitian form. This defines
an embedding Γ → Sp(6,Z).

If we take instead the symplectic basis (e1, e3,−f2, f1, f3, e2) we get the
following modular embedding

ι : B → H3, σ : Γ → Sp(6,Z)

given by

ι(u, v) =

⎛⎜⎝
u2+2ρ2v

1−ρ ρ2u ρu2−ρ2v
1−ρ

ρ2u −ρ2 u
ρu2−ρ2v

1−ρ u ρ2u2+2ρ2v
1−ρ

⎞⎟⎠
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and for g = (aij + ρ bij)

σ(g) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 − b11 a13 − b13 −b11 b12 b13 a12 − b12
a31 − b31 a33 − b33 −b31 b32 b33 a32 − b32

b11 b13 a11 −a12 −a13 b12
−b21 −b23 −a21 a22 a23 −b22
−b31 −b33 −a31 a32 a33 −b32

a21 − b21 a23 − b23 −b21 b22 b23 a22 − b22

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The pullback of the stabilizer in Sp(6,Z) of ι(B) is the group Γ. This can be
derived from the Torelli theorem applied to curves of genus 3 that are triple
cyclic covers of P1.

Let E be the Hodge bundle on A3(C), that is, the cotangent bundle of
the universal abelian threefold along the zero section. Via the map ι we can
pull back E to Γ\B.

We wish to express the pull back of the Hodge bundle in terms of the
automorphic bundles L, U and R associated to the factors of automorphy j1,
j2 and j3.

Lemma 3.1. The pullback of the Hodge bundle E over A3(C) to Γ1\B is
isomorphic to U ⊕ L. The pullback of det(E) is L2 ⊗R−1.

Proof. The second statement follows from the first when one uses det(U) =
L ⊗ R−1. In order to prove the first one, we observe that the Hodge bundle
corresponds to the factor of automorphy (cτ + d) for Sp(6,R) acting on H3.
With τ = ι(u, v) and σ(g) = (a, b; c, d) we find for diagonal matrices g =
diag(g1, g2, g3) with gi = ai + ρbi that c ι(u, v) + d equals⎛⎜⎝ a2 0 −b2

−b3ρ
2u ḡ3 −b3u

b2 0 −b2

⎞⎟⎠
with characteristic polynomial (X − g2)(X − ḡ3)(X − ḡ2). Since g respects
the Hermitian form, we have g1ḡ2 = g3ḡ3 = 1, and therefore j2(g, (u, v)) =
diag(ḡ3, ḡ2) and j1(g, (u, v)) = g2. Hence, up to a base change we have cτ +
d = j2(g, (u, v)) ⊕ j1(g, (u, v)). Since arbitrary Hermitian matrices can be
diagonalized the lemma follows.

4. Modular curves

Picard modular surfaces contain modular curves defined by positive vectors
in the lattice O3

F . Though these curves were considered by Feustel, Kudla,
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Cogdell and others, their geometry on these surfaces did not yet get the
attention that their counterparts on Hilbert modular surfaces got. Here we
need just two curves that play a role.

A vector w = (a, b, c) ∈ O3
F with positive norm ab′ + a′b + cc′ defines a

1-ball Bw inside B = {L : L ⊂ ZR : dimC L = 1, h|L < 0} by the condition
L⊥w, or equivalently by

(3) a′ + b′v + c′u = 0 .

This defines a curve in Γ\B and also in the Baily-Borel compactification X∗
Γ.

We can define a modular curve TN in Γ\B as the union of all curves defined
by equations (3) with ab′ + a′b + cc′ = N . Its closure in X∗

Γ is also denoted
TN .

In the following, we need the two curves T1 and T2. The curve T2 was
studied in [21].

The curve T1 has one irreducible component on X∗
Γ as one sees by verifying

that the action of Γ on positive vectors (a, b, c) with ab′ + a′b + cc′ = 1
is transitive using the generators of Γ, see Section 2. It can be defined by
u = 0 and viewed as a quotient of the upper half plane H embedded in
B by τ 
→ (0,

√
−3τ). The image in Γ1[

√
−3]\B is isomorphic to Γ0(3)\H

with Γ0(3) the usual congruence subgroup of SL(2,Z). The modular form ζ
vanishes on T1 since ζ(−u, v) = −ζ(u, v).

The curve T2 is a Shimura curve associated to the unit group of a maximal
order in the quaternion algebra

(
−3,2
Q

)
of discriminant 6. The curve T2 has

one irreducible component on X∗
Γ and it can be defined by v = −1 and is the

fixed point locus of the involution

ξ : (u, v) 
→ (−u/v, 1/v)

that is induced by the symmetry (z1, z2, z3) 
→ (z2, z1,−z3) of our Hermitian
form z1z

′
2 + z′1z2 + z3z

′
3. The involution ξ induces an action on spaces of

modular forms. The action on a modular form f ∈ Mk(Γ[
√
−3]) restricted to

v = −1 is by multiplication by (−1)k. In particular, the Eisenstein series E9
vanishes on the fixed point locus of ξ.

More precisely, on X∗
Γ the modular forms ζ6 and E2

9 give rise to the cycle
relations:

6λ1 = [T1], 9λ1 = [T2] ,
where λ1 represents the first Chern class of L and the classes [T1] and [T2]
are Q-classes on the orbifold X∗

Γ in the sense of Mumford [20]. Indeed, the
modular forms ζ6 and E2

9 that live on XΓ have divisors 6T1 and 2T2, where
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the multiplicities come from the fact that a generic point of T1 (resp. T2) has
a stabilizer of order 6 (resp. of order 2). Equivalently, one can also work on
X∗

Γ1[
√
−3] where one has the modular forms ζ and E9 with divisors T1 and T2;

see for example the Taylor expansion of ζ along u = 0 in Section 15. The
volume form on the orbifold defines a class T0, see [6].

Corollary 4.1. If [TN ] denotes for N ∈ Z≥0 the Q-class of the curve TN on
X∗

Γ, then the series
∑∞

N=0[TN ] qN equals F ⊗ λ1 with

F = −1/6 + 6 q + 9 q2 + 42 q3 + 78 q4 + O(q5)

a modular form in M3(Γ0(3),
( ·

3
)
).

Proof. We can work on the minimal resolution of singularities X̃Γ1[
√
−3] of

X∗
Γ1[

√
−3] and consider the classes [T c

N ] there that are defined by a linear
combination (with Q-coefficients) of TN plus a sum of resolution curves such
that T c

N is orthogonal to the cusp resolutions. Then we can use the result
of Cogdell [6, Thm. on page 126], the analogue for Picard modular surfaces
of the Hirzebruch-Zagier theorem on curves on Hilbert modular surfaces. It
says that

∑
N [T c

N ]qN is a modular form of weight 3 on Γ0(3) with Dirichlet
character. Since dimM3(Γ0(3),

(
3
)
) = 2 and we know the coefficients of q and

q2, this identifies the modular form.

In the Baily-Borel compactification X∗
Γ[
√
−3], identified with P2 viewed as

the hyperplane x1 + x2 + x3 + x4 = 0 in P3 and with the action of S4 given
by xi 
→ sgn(σ)xσ(i), the lines xi = xj describe the six components of T1.
Similarly, the curve T2 has three components and is given by xi + xj = 0 for
1 ≤ i < j ≤ 4.

We now describe the image of T1 under the modular embedding ι con-
structed in the preceding section. The image in H3 under ι of the curve given
by u = 0 is ⎧⎪⎨⎪⎩

⎛⎜⎝τ11 0 τ12
0 1 + ρ 0
τ12 0 τ22

⎞⎟⎠ ∈ H3 : τ11 = τ22 = −2τ12

⎫⎪⎬⎪⎭ .

In particular, ι(T1) ⊂ A2,1 ⊂ A3, with A2,1 the moduli of abelian varieties
that are products. The equations τ11 = τ22 and τ11 + 2τ12 = 0 define two
Humbert surfaces of discriminant 4 in A2, cf. [10, p. 210].

The fact that ι(T1) is contained in A2,1 means that an abelian threefold
X representing a point of T1 splits as a product X = X2 × X1 with X2 a
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principally polarized abelian surface and X1 an elliptic curve. Since X1 has
multiplication by ρ the curve X1 is rigid. This means that the Hodge bundle
E restricted to an irreducible component of T1 on XΓ1[

√
−3] has a trivial factor.

By Lemma 3.1 the Hodge bundle E splits as U ⊕ L and since the action of ρ
on the 2-dimensional factor X2 has eigenvalues (ρ, ρ2) (see [1, Section 5.5]),
we see that this constant factor is contained in U .

This means that the bundle U restricted to an irreducible component T
of our modular curve T1 on XΓ1[

√
−3] is of the form OT ⊕ N with N the

line bundle obtained by the restriction of det(U); its sections correspond to
modular forms of weight 1.

However, the curve T1 on Γ1[
√
−3]\B is reducible with six smooth irre-

ducible components meeting in ordinary double points.

Lemma 4.2. Let f be a meromorphic modular form of weight (j, k) on
Γ1[

√
−3] that is holomorphic outside the curve T1. If f has order r along

T1, then the first non-zero Taylor term of f along T1 is an element of

⊕j
i=0M

(r)
i+k+r(Γ1(3)) ,

with M
(s)
k (Γ1(3)) the space of meromorphic modular forms of weight k on

Γ1(3) that are holomorphic outside the orbit of τ0 = (1− ρ2)/3 ∈ H and have
order at least s at τ0.

Proof. Restricting the vector bundle Symj(U)⊗Lk to an irreducible compo-
nent T of the modular curve T1 gives the vector bundle B = ⊕j

i=0N
⊗(i+k).

Moreover, the conormal space of the component T of T1 in Γ1[
√
−3]\B when

pulled back to H can be identified with a fibre of the line bundle N , as one
sees by looking at the action of ρ on the deformation space of an abelian
threefold X = X2 ×X1 representing a point of T . Thus the conormal bundle
of T can be identified with N . The rth term in the Taylor expansion along T
of f , viewed as a section of Symj(U)⊗Lk, is a section of B⊗N⊗r. Correcting
for the double point of T1 lying on a component T , that is represented by τ0,
implies the result.

For later use we discuss the Taylor development of modular forms along
the curve T1. Recall that this curve is represented by u = 0 in B. Now
we can apply Proposition 8.4 of [5] that we recall here for convenience: Let
f ∈ Mj,k(Γ[

√
−3], detl) and write

f(u,
√
−3τ) =

∑
n�0

⎡⎣ f
(0)
n (τ)
...

f
(j)
n (τ)

⎤⎦un .



108 Fabien Cléry and Gerard van der Geer

We write Γ(3) for the principal congruence subgroup of SL(2,Z), and Γ1(3),
Γ0(3) for the usual congruence subgroups.

Proposition 4.3. The first component f (0)
n is a modular form of weight k+n

on Γ1(3) and a cusp form if n > 0. Moreover, f (m)
n vanishes unless n+j−m ≡

l mod 3. The function f
(m)
0 is a modular form of weight k+m on Γ1(3), while

for n > 0 the function f
(m)
n is a quasi-modular form of weight k + m + n on

Γ1(3).

The proof was not given in [5]. Since we use this proposition and a variant
later, we give some details. The modular embedding of T1 on XΓ[

√
−3] is given

by (
a b
c d

)

→

⎛⎜⎝ a
√
−3b 0

c/
√
−3 d 0

0 0 1

⎞⎟⎠ , τ 
→ (0,
√
−3 τ) .

We write F ∈ Mj,k(Γ[
√
−3], detl) as

F (u, v) =

⎛⎜⎜⎝
F (0)

...
F (j)

⎞⎟⎟⎠ with F (m) =
∞∑
n=0

F (m)
n (v)un .

Changing coordinates by setting f
(m)
n (τ) = F

(m)
n (

√
−3τ), the modularity of

F implies the following equation.

Equation 4.4.

∞∑
n=0

⎛⎜⎜⎝
f

(0)
n (τ)

...
f

(j)
n (τ)

⎞⎟⎟⎠ un =

(cτ + d)−k−jSymj

(
cτ + d 0

−cu/
√
−3 1

) ∞∑
n=0

(cτ + d)−n

⎛⎜⎜⎝
f (0)(aτ+b

cτ+d )
...

f (j)(aτ+b
cτ+d)

⎞⎟⎟⎠un

Here the matrix Symj

(
cτ + d 0

−cu/
√
−3 1

)
is a lower diagonal matrix with

entry on place (r, s) for r ≥ s equal to(
j

j + 1 − r

)( −c√
−3

)r−s

(cτ + d)j+1−r .
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From this it follows that F (m)
n is a modular form (and not only quasi-modular)

if F (μ)
ν = 0 for all μ < m and ν < n.

Modular forms on Γ1(3). For later use we recall some facts about elliptic
modular forms of level 3. Recall that the ring of modular forms on Γ(3) equals

M(Γ(3)) = C[ϑ, ψ] , where ϑ(τ) =
∑

α∈OF

qN(α) and ψ(τ) = η(3τ)3

η(τ)

with ϑ and ψ of weight 1 and η(τ) = q1/24 ∏
n�1(1 − qn) the Dedekind eta-

function, and for τ ∈ H we set as usual q = e2πiτ . Since Γ1(3)/Γ(3) is cyclic
of order 3 generated by T = ( 1 1

0 1 ) and ψ|1T = ρψ, we get the structure of
the ring of modular forms on Γ1(3)

M(Γ1(3)) = C[ϑ, ψ3].

For example, the form F of Corollary 4.1 is (54ψ3−ϑ3)/6. To lighten notation
we will sometimes use the relation

ψ(ϑ3 − ψ3) = η8 .

Note that

M2k(Γ1(3)) = M2k(Γ0(3)) and M2k+1(Γ1(3)) = M2k+1(Γ0(3),
( ·
3
)
) .

By a result of Kaneko-Zagier (see [17, Proposition 1, part b]) we know that
the graded ring M̃(Γ1(3)) of quasi-modular forms on Γ1(3) is given by

M̃(Γ1(3)) = M(Γ1(3)) ⊗ C[e2] � C[ϑ, ψ3, e2] ,

where e2 is the Eisenstein series of weight 2 on SL(2,Z). We normalise e2 such
that its Fourier expansion is given by

e2(τ) = 1 − 24
∑
n�1

σ1(n)qn.

Examples of modular forms of level 3 are given by Θj(τ) =
∑

α∈OF
αjqN(α) ∈

Mj+1(Γ1(3)). Observe that Θj is a cusp form as soon as j > 1 and identically
zero if j �≡ 0 mod 6. For example, we have Θ0 = ϑ and

Θ6 = 6ϑψ3(ϑ3 − 27ψ3) = 6ϑψ2η8, Θ12 = ϑη8
(
η16 + 18ψ4η8 + 729ψ8

)
.
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Recall that M
(r)
k (Γ1(3)) is the space of meromorphic modular forms of

weight k that are holomorphic outside the orbit of τ0 = (1 − ρ2)/3 and have
order at least r at τ0.

The form ϑ is non-zero outside the orbit of τ0. Multiplication by ϑ−r

provides an isomorphism for r ∈ Z

(4) M (r)
r (Γ1(3)) ∼−→ M0(Γ1(3)) = C .

5. A stack quotient

In this section, we discuss the moduli stack of curves of genus 3 that are a
cyclic cover of degree 3 of the projective line. We consider smooth projective
curves C over C of genus 3 together an automorphism α of order 3 such that
the eigenvalues on H0(C,Ω1

C) are ρ, ρ, ρ2. An isomorphism (C, α) −→ (C ′, α′)
is an isomorphism ν : C → C ′ such that να = α′ν. We let N denote the
moduli stack over C of such curves.

A choice ω1, ω2 of a basis of the ρ-eigenspace H0(C,Ω1
C)ρ defines a mor-

phism of degree 3 to C/α = P1. By the holomorphic Lefschetz fixed point
formula the automorphism α has five fixed points on C, four of which have
action by ρ on the tangent space and one with action by ρ2.

The ρ-eigenspace of Sym4(H0(C,Ω1
C)) has dimension 7, whereas the ρ-

eigenspace of H0(C, (Ω1
C)⊗4) has dimension 6. (This follows from the holomor-

phic Lefschetz formula; or by the simple argument that the ternary quartic
defining the canonical image of C in P2 must lie in an eigenspace and all ele-
ments with eigenvalue 1 or ρ2 are divisible by η, a generator of H0(C,Ω1

C)ρ2 ,
and this would give a reducible equation.) After choosing a generator η of
H0(C,Ω1

C)ρ2 we thus find a non-trivial relation

b1η
3ω1 + b2η

3ω2 =
4∑

i=0
ai ω

4−i
1 ω2

with bi, aj ∈ C. By setting f1 = b1x1 + b2x2 and f4 =
∑4

i=0 aix
4−i
1 xi2 and

observing that f1 is not identically zero, we obtain an equation

(5) y3f1 = f4 .

This represents the canonical image of C. A different normalization is ob-
tained by putting y = ỹ/f1 which gives ỹ3 = f4f

2
1 . By putting the zero of f1

at infinity we find yet another normalization: an affine equation u3 = f with
f of degree 4 in v. The map α corresponds to the field exension C(u, v)/C(v).
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Changing the choice of basis of H0(C,Ω1
C)ρ corresponds to an action of

GL2. Changing the basis η corresponds to an action of Gm. Together this
defines an action of the subgroup G = GL1 ×GL2 ⊂ GL3 on H0(C,Ω1

C) that
preserves the decomposition in eigenspaces for α.

Let V be the 2-dimensional C-vector space generated by elements x1, x2.
We view V as the standard representation of GL2. We consider elements
f1 ∈ V and f4 ∈ Sym4(V ). If the discriminant of f4f1 does not vanish, the
equation y3f1 = f4 defines an equation of a smooth projective curve C of
genus 3 with an automorphism α given by y 
→ ρy. The space H0(C,Ω1

C)
comes with a basis consisting of the forms (in affine coordinates) η = dx/f1y,
ω1 = dx/y2, ω2 = dx/f1y

2.
An element (a, b; c, d) ∈ GL2 acts on f4 and f1 by

f4(x1, x2) 
→ f4(ax1 + bx2, cx1 +dx2), f1(x1, x2) 
→ f1(ax1 + bx2, cx1 +dx2),

and we can define an action

y 
→ y/(cx1 + dx2) .

However, in order to get the right stack quotient we need to consider
a twisted action. We define Vm,n for m ∈ Z≥0 and n ∈ Z as the GL2-
representation

Symm(V ) ⊗ det(V )⊗n .

The underlying space of Vm,n can and will be identified with Symm(V ), but
the action of GL2 is different.

We define an action of Gm on V4,−2 ⊕ V1,1 by letting t ∈ Gm act via
(x1, x2) 
→ (tx1, tx2). Via y 
→ t y this leaves the equation (5) unchanged. It
corresponds to the action of the diagonal Gm in G. Then the action of the
diagonal Gm in GL2 on V4,−2 ⊕ V1,1 is given by (f4, f1) 
→ (f4, t

3f1); hence
the central μ3 ⊂ GL2 acts trivially.

We let Y be the subset of V4,−2×V1,1 of pairs (f4, f1) such that the discrim-
inant of f4f1 is not zero. Moreover, we let P(Y) be the image in P(V4,−2⊕V1,1).
The stack quotient that we need is obtained by first dividing by the diagonal
Gm in G to get P(Y) and then dividing by the action of PG ⊂ PGL(3) on
P(Y). Equivalently, we directly take the stack quotient [Y/G]. Summarizing
we get the following result.

Proposition 5.1. The stack quotient [Y/G] represents the moduli stack of
curves N .
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Note that the central μ6 IdV acts trivially on the equation (5) but −1 IdV

acts by f1 
→ −f1. Hence the stabilizer of a generic element is μ3 as it should.

We can extend Y to the open subset Y ′ of V4,−2 ⊕ V1,1 consisting of pairs
(f4, f1) such that either

1. f4 has one double zero: f4 = h2
1h2 with deg(hi) = i and disc(h2h1f1) �=

0, or
2. f4 = f1h3 with h3 of degree 3 and disc(f4) �= 0.

The locus Y ′ has a complement of codimension 2 in V4,−2 ⊕ V1,1.

In Case (1) the equation y3f1 = h2
1h2 (or equivalently y3 = h2

1h2f
2
1 )

defines a curve of genus 2 which is a triple cyclic cover of P1. In Case (2) the
equation y3 = h3 defines a 3-pointed genus 1 curve C1 with as marked points
the three points of the fibre of C1 → P1 defined by f1 = 0.

The space N can be viewed as a Hurwitz space and can be compactified
as such. We will deal with this in the next section.
Remark 5.2. Relation with ternary quartics. We conclude this section
by giving the relationship with a stack quotient description of the moduli of
non-hyperelliptic curves of genus 3. It is well-known that the moduli space
Mnh

3 of non-hyperelliptic curves of genus 3 can be described as a stack quo-
tient associated to the action of GL3 on ternary quartics. Since we are using
canonical curves as in (5) we get an embedding of stacks N → Mnh

3 .
Let W be a 3-dimensional vector space and let

W4,0,−1 = Sym4(W ) ⊗ det(W )−1 .

This space can be regarded as the space of ternary quartics with a twisted
GL(W ) action. The element t idW in the diagonal Gm in GL(W ) acts via
f 
→ t f for a quartic f ∈ W4,0,−1. We let Z ⊂ W4,0,−1 be the subset of
quartics with non-zero discriminants. The stack quotient [Z/GL(W )] can be
identified with Mnh

3 , see [4].
To connect it to our case we write W = W ′⊕W ′′ with W ′ = 〈x1, x2〉 and

W ′′ = 〈y〉. The element diag(1, 1, ρ) acts W4,0,−1 and the ρ2-eigenspace is

Sym4(W ′) ⊗ det(W ′)−1 ⊗ (W ′′)−1⊕W ′ ⊗ det(W ′)−1 ⊗ (W ′′)⊗2

With det(W ′) = W ′′ we find the GL(W ′) representation (W ′)4,−2 ⊕ (W ′)1,1.
Note that det(W ′) and W ′′ differ by the action of the diagonal μ3 in GL2
when viewed as subgroup of G.
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6. The Hurwitz space

We briefly discuss a compactification of N as a Hurwitz space. We consider
admissible triple cyclic covers f : C → P where C is a nodal curve of genus 3
and P a stable curve of genus 0 with marked points p0, {p1, . . . , p4} together
with an order 3 automorphism α such that C/α is isomorphic to P , f equals
the map C → C/α and α fixes the pi while acting by ρ2 (resp. by ρ) on
the tangent space of p0 (resp. of pi with i �= 0). Here admissible is taken in
the sense of Harris-Mumford, see for example [11, p. 175]. The marking of
p1, . . . , p4 is taken unordered, that is, modulo the action of the symmetric
group S4. We denote this space by N .

It allows a morphism N → M0,1+4 = M0,5/S4 with Mg,n the usual
Deligne-Mumford moduli stack of stable n-pointed curves of genus g.

Note that the moduli space M0,1+4 of marked stable curves of genus 0
has a stratification with five strata according to the topological type of the
genus 0 curve.

There is a corresponding stratification of N . We now describe the five
types of curves (C,P, α) corresponding to the strata of M0,1+4. These are:

1. C is smooth.
2. C is a union C1∪C2 of curves Ci of genus i with automorphisms α1 and

α2 of order 3. The unique node is a fixed point of α1 and α2. Moreover,
this point is of type ρ2 for α2 and of type ρ for α1.

3. C is a linear chain of three curves Ci of genus 1 with automorphisms αi

(i = 1, 2, 3) and the two nodes are fixed points. Moreover, the action of
α1 and α3 is by ρ, while for the middle one the action by α2 is by ρ2.

4. C is a join of a genus 1 curve C1 with an automorphism α1 that acts
by ρ and a rational curve C0 = P1 with an automorphism α0 that acts
by x 
→ ρx. The curve C is obtained by identifying the three points of
an α1-orbit of length 3 with 1, ρ, ρ2 on P1.

5. C consists of the union of a genus 1 curve C1 with an order 3 automor-
phism α1 and two P1’s with automorphism x 
→ 1/(1 − x), say C0 and
C ′

0, that intersect each other in 0, 1 and ∞ such that C1 and C ′
0 are

disjoint, while C1 and C0 intersect in a fixed point of α1. Moreover, the
action of α1 is by ρ.

The corresponding strata are denoted by Ni for i = 1, . . . , 5 with N1 = N .
The first three cases represent curves whose generalized Jacobian is an

abelian variety. The dimensions of the strata are 2, 1, 0, 1, 0 respectively.
The strata N2 and N4 correspond to the two cases (1) and (2) of the

preceding section. To connect it with the quartics discussed there, one con-
siders for the case N2 the space H0(C2,Ω1

C2
(2P )) with P the point of C2
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shared with C1. This space has dimension 3 and the action of α2 on it has
eigenvalues ρ, ρ, ρ2. A choice of basis can be used to generate an equation of
type y3f1 = h2

1h2 as in the smooth case. For N4 one considers H0(C1, O(Q))
with Q the degree 3 divisor of intersection points.

On the Hurwitz space N we have the Hodge bundle E. It allows a decom-
position in ρ and ρ2-eigenspaces of dimension 2 and 1.

7. The Torelli morphism

The homology H1(C,Z) of a smooth curve C given by an equation (4), or in
other words of type (1) of the preceding section, is a projective Z[ρ]-module of
rank 3, hence isomorphic to a direct sum of ideals of Z[ρ], and since F = Q(ρ)
has class number 1, it can be identified with Λ = O3

F with OF = Z[ρ]. More-
over, if have chosen an embedding F ↪→ C we obtain a 3-dimensional complex
vector space W = H1(C,R) = H1(C,Z)⊗QR. The Jacobian variety of such a
curve C is a principally polarized abelian threefold W/Λ with complex mul-
tiplication by the ring of integers OF . The polarization defines an alternating
integral form on the lattice Λ. The corresponding Hermitian form on W may
be normalized to the form

z1z
′
2 + z′1z2 + z3z

′
3,

where x 
→ x′ corresponds to the Galois automorphism of F/Q. This form
has signature (2, 1).

The Torelli map that associates to a curve C its Jacobian defines a map

τ : N → Γ\B .

Note that our generic curve, given by an equation y3f1 = f4, has an auto-
morphism group of order 3, while the generic Jacobian of such a curve has an
automorphism group of order 6.

Recall that on Γ\B we have the basic orbifold vector bundle U cor-
responding to the factor of automorphy j2. We may identify N with the
stack quotient [Y/G] by Proposition 5.1 and consider the pullback of U on
Y ⊂ V4,−2 × V1,1.

Proposition 7.1. The Torelli map τ induces an orbifold morphism of degree
2 with the property that the pullback of the orbifold bundle U is the equivariant
bundle V . The image of τ is the open part where the cusp form ζ does not
vanish.
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Proof. The first statement follows from the construction in Section 5. The
second statement follows from [12, Thm. 6.1.3] or even already from Picard’s
papers [22, 23, 24].

8. Teichmüller modular forms

We begin by noting that we have two notions of modular forms here, Picard
modular forms and Teichmüller modular forms. On the Hurwitz space N we
have the Hodge bundle that agrees on

N ct = N1 ∪N2 ∪N3

(where ‘ct’ refers to compact type) with the pullback τ ∗(E) under the Torelli
morphism and thus admits a decomposition τ ∗(E) = τ ∗(U)⊕ τ ∗(L). Further-
more, det(τ ∗(U)) and τ ∗(L) differ by a torsion line bundle τ ∗(R)−1.

We will denote τ ∗(E) again by E. We thus can speak of Teichmüller mod-
ular forms with a character: a Teichmüller modular form of weight (j, k, l) is
a section on N ct of

Ej,k,l = Symj(τ ∗(U)) ⊗ τ ∗(L)k ⊗ τ ∗(R)l .

Proposition 8.1. A section of Ej,k,l over N ct extends to a section of Ej,k,l

over N .

The proof is a slight adaptation of the proof of Proposition 14.1 in [4] and
is omitted.

We can pull back Picard modular forms via the Torelli map. Since the
Torelli map is of degree 2, there can be more Teichmüller modular forms
than Picard modular forms, that is, Teichmüller modular forms that are not
pullbacks of Picard modular forms.

An example of a Teichmüller modular form that is not a Picard modular
form on Γ is the form ζ3 ∈ S18(Γ[

√
−3]). Since −13 acts trivially on B and ζ

changes sign under −13, the form ζ3 does not live on Γ. But it lives on N as
we now show.

Lemma 8.2. The form ζ3 is a Teichmüller modular form of weight (0, 18, 3)

Proof. On M3 we have a Teichmüller form of weight 9, see [4]. The pullback
under the morphism N ct → M3 of χ9 under the morphism N → M3 gives a
Teichmüller form ζ ′ of weight (0, 18, 3) on N ct that does not vanish outside
the divisor of ζ. As a calculation shows, the pullback of χ9 via ι : B → H3 to
Γ[
√
−3]\B gives a non-zero multiple of the modular form ζ3 ∈ S18(Γ[

√
−3]).

Hence ζ ′ coincides with a non-zero multiple of ζ3.



116 Fabien Cléry and Gerard van der Geer

Remark 8.3. The form ζ3 can be constructed algebraically as Ichikawa does
in [14, p. 1059] for χ9. One observes that the natural map of rank 6 sheaves
Sym2(E) → π∗(ω⊗2

C/N ct) with π : C → N ct the universal curve, is an iso-
morphism on N , and by [19, Thm 5.10] taking the determinant thus gives a
morphism L8 ⊗ R−4 → L26 ⊗ R−13. This morphism extends over N ct, but
vanishes on N2. This gives a section of L18 ⊗R3.

Remark 8.4. If we consider the moduli stack N [Γ1] of curves of genus 3 that
are a triple cyclic cover of P1 with a Jacobian with a Γ1-level structure, then
ζ is a Teichmüller modular form on N [Γ1] of weight (0, 6, 1), but it is not a
Picard modular form on Γ1. Its square ζ2 is a Picard modular form on Γ1.

The involution −1 (fibrewise) on E induces an involution θ on the space
H0(N ct,Ej,k,l) and on H0(N ,Ej,k,l). The pullback of Mj,k,l(Γ) to N ct lands
in the (+1)-eigenspace H0(N ,Ej,k,l)+ of θ.

Lemma 8.5. We have H0(N ,Ej,k,l)+ = τ ∗(Mj,k,l(Γ)).

Proof. We have H0(N ct, τ ∗(Ej,k,l))+ = τ ∗(H0(τ(N ct),Ej,k,l)) = τ ∗(Mj,k,l(Γ)),
where the last equality follows from the Koecher principle for Picard modular
forms. Proposition 8.1 concludes the proof.

We now show that Teichmüller modular forms can be viewed as Picard
modular forms on a congruence subgroup.

Corollary 8.6. For the (−1)-eigenspace of θ we have

H0(N ,Ej,k,l)− ∼= Mj,k,l(Γ[
√
−3])s[14] .

Proof. Multiplication by ζ ∈ S0,6,1(Γ[
√
−3]) maps θ-anti-invariant forms to

θ-invariant ones, that is, Picard modular forms. The fact that ζ is S4 anti-
invariant completes the proof.

Recall the character ε obtained from the sign character on S4 as defined
in Section 2. We have

Mj,k(Γ1, ε) = Mj,k(Γ1[
√
−3])s[14] .

We define an index 2 subgroup Γ̃1 of Γ1 as the kernel of ε. Thus a Teichmüller
form can be viewed as a Picard modular form on Γ̃1.
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9. Covariants of pairs of binary forms of degree 4 and 1

We recall some classical invariant theory. As before we have the C-vector
space V = 〈x1, x2〉 and we write Vn for Symn(V ), the space of binary forms
of degree n. Consider for a given tuple (n1, . . . , nr) the GL2-representation

V = Vn1 ⊕ · · · ⊕ Vnr .

A covariant of V of order m and degree d is an equivariant polynomial map
φ : V → Vm that is homogeneous of degree d:

φ(g · v) = g · φ(v), φ(tv) = td φ(v) for all v ∈ V, t ∈ Gm.

The covariants form a doubly graded ring

C(V) = ⊕d,mC(V)d,m .

A covariant of order m = 0 is called an invariant. One can view it as a
polynomial in the coefficients of the r-tuple (f1, . . . , fr) ∈ V of binary forms
that is invariant under the action of SL2.

Classical invariant theory provides a SL2-equivariant linear map from
Vm ⊗ Vn → Vm+n−2k via f ⊗ g 
→ (f, g)k, where the expression (f, g)k is
called the kth-transvectant and it is given by

(f, g)k = (m− k)! (n− k)!
m!n!

k∑
j=0

(−1)j
(
k

j

)
∂kf

∂xk−j
1 ∂xj2

∂kg

∂xj1∂x
k−j
2

.

Covariants of V can be identified with the invariants of V ⊕ V1 ∼= V ⊕ V ∨
1 via

the map that associates to a covariant of order m the transvectant (φ(v), lm)m
with l ∈ V1. For a good reference, we refer to Draisma [7].

We are interested in the action of GL2 on V4 ⊕ V1 and the correspond-
ing covariants. Equivalently, we can look at the invariants of the action on
V4 ⊕ 2V1. We write f for the covariant which is the universal binary quartic
(corresponding to the identity map on V4) and h and l for the universal linear
terms:

f = a0x
4
1+a1x

3
1x2+a2x

2
1x

2
2+a3x1x

3
2+a4x

4
2, h = b0x1+b1x2, l = l0x1+l1x2,

The following result is classical; we refer to [7].
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Proposition 9.1. The 20 generating invariants of V4 ⊕ 2V1 are given by:

I2,1 = (f, f)4, I2,2 = (h, l)1, I3,1 = (f, (f, f)2)4, I5,1 = (f, h4)4,
I5,2 = (f, h3l)4, I5,3 = (f, h2l2)4, I5,4 = (f, hl3)4, I5,5 = (f, l4)4,
I6,1 = ((f, f)2, h4)4, I6,2 = ((f, f)2, h3l)4, I6,3 = ((f, f)2, h2l2)4,
I6,4 = ((f, f)2, hl3)4, I6,5 = ((f, f)2, l4)4, I9,1 = ((f, (f, f)2)1, h6)6,
I9,2 = ((f, (f, f)2)1, h5l)6, I9,3 = ((f, (f, f)2)1, h4l2)6,
I9,4 = ((f, (f, f)2)1, h3l3)6, I9,5 = ((f, (f, f)2)1, h2l4)6,
I9,6 = ((f, (f, f)2)1, hl5)6, I9,7 = ((f, (f, f)2)1, l6)6.

We get the generating covariants of V4 ⊕V1 by substituting l0 = −x2 and
l1 = x1 in the generating invariants of V4 ⊕ 2V1; we denote these covariants
by Ja,b,c, where a is degree in the coefficients of f , b is the degree in the
coefficients of h and c is the degree in x1 and x2. If we write

s : C(V4 ⊕ 2V1) → C(V4 ⊕ V1)

for this substitution, we find the following table for the images under s of the
twenty generators:

I2,1 I2,2 I3,1 I5,1 I5,2 I5,3 I5,4 I5,5 I6,1 I6,2
J2,0,0 J0,1,1 J3,0,0 J1,4,0 J1,3,1 J1,2,2 J1,1,3 J1,0,4 J2,4,0 J2,3,1

I6,3 I6,4 I6,5 I9,1 I9,2 I9,3 I9,4 I9,5 I9,6 I9,7
J2,2,2 J2,1,3 J2,0,4 J3,6,0 J3,5,1 J3,4,2 J3,3,3 J3,2,4 J3,1,5 J3,0,6

Some simple examples are

J2,0,0 = (12 a0a4 − 3 a1a3 + a2
2)/6 ,

and J0,1,1 = h, J1,0,4 = f/70. The discriminants of f and fh are given by

32 (J3
2,0,0 − 6J2

3,0,0) and 32 (J3
2,0,0 − 6J2

3,0,0)J2
1,4,0 .

These invariants satisfy many relations, for example we have

(6) 5250 J3
2,4,0 + 26136 J2

3,6,0 + 1750 J3
1,4,0J3,0,0 − 2625 J2

1,4,0J2,0,0J2,4,0 = 0 .

Remark 9.2. We may view V as the dual of V ∨; then we can view Symm(V )
as the set of homogeneous polynomial maps V ∨ → C of degree m, and as
such it carries a natural left action of GL(V ) by composition. Instead of the
representation V = ⊕Vni we can also consider twisted cases V = ⊕r

i=1Vni,mi



Picard modular forms by means of invariant theory 119

with, as before, Vn,m = Symn(V )⊗det(V )⊗m and consider covariants for this
GL2-representation. That is, taking V∨ = ⊕V ∨

ni,mi
we look at GL2-equivariant

embeddings
Vj,k ↪→ O(V∨) = ⊕mSymm(V) .

10. From covariants to modular forms

By definition a Teichmüller modular form of weight (j, k, l) is a section of
Symj(U) ⊗ det(U)k ⊗ Rl+k on N ct. Here we write again U for τ ∗(U). We
identify the Hurwitz space N with the quotient stack [Y/G]. Under the Torelli
morphism τ : [Y/G] ∼= N → Γ\B the pullback of the bundle U is the
equivariant bundle V . Therefore, modular forms pull back to bi-covariants
for the action of G on Y . If the modular form is of weight (j, k, l), that is,
a section of Symj(U) ⊗ det(U)k ⊗ Rl+k, the corresponding bi-covariant lies
by Remark 9.2 in a space of bi-covariants that is given as the image of GL2-
equivariant map

Vj,k → O(V4,−2 ⊕ V1,1) ,
where O(V4,−2 ⊕V1,1) is the ring of polynomial functions on V4,−2 ⊕V1,1. The
character of the modular form can be read off from the action of the diagonal
Gm ⊂ GL2.

Thus we see that a section of Symj(U) ⊗ Lk ⊗ Rl on Γ\B pulls back to
a covariant for the action of GL2 on V4,−2 ⊕ V1,1, and this covariant can be
identified with a covariant for the (untwisted) action on V4⊕V1. Moreover, we
are identifying covariants of the action of GL2 on V4 ⊕ V1 with invariants of
the action on V4⊕V1⊕V1 as explained in Section 9. Thus our section provides
a covariant Ja,b,c, where the index (a, b, c) indicates that it has degree a in the
ai, degree b in the bi and degree c in x1, x2. Clearly, we have j = c. Moreover,
we find k = (3b− c)/2, since the action of the diagonal Gm ⊂ GL2 is by t0 on
V4,−2, by t3 on V1,1, by t−1 on the component V1, the dual of V1,1 but twisted
back by det−1, and by t2 on det(V ). If we start with a Picard modular form,
then a + b + c is even.

Let
M = ⊕j,k,lH

0(N ,Ej,k,l)
be the ring of modular forms, where the ring structure is obtained in a similar
way as for Picard modular forms, see Section 2. Restricting to N we get a
map

M
μ−→ C(V4 ⊕ V1) .

Since the image of the Torelli map on N is the complement of T1, the locus
where the cusp form ζ vanishes, as discussed in Section 4, a covariant defines
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a meromorphic modular form that is holomorphic outside this divisor. Thus
we can complement the map μ by a ring homomorphism

(7) M
μ−→ C(V4 ⊕ V1)

ν−→ M[1/ζ]

with the property that ν ◦ μ = idM. Note that ζ is a Teichmüller modular
form of weight 6 with character det as explained in Remark 8.4.

On our quotient stack N we have two diagonal sections corresponding to
the universal quartic f4 and universal linear form f1. We put

χ4,−2 = ν(f4), χ1,1 = ν(f1) .

Here χ4,−2 (resp. χ1,1) is a meromorphic Teichmüller modular form of weight
(j, k, l) = (4,−2, 1) (resp. (1, 1, 1)) and we wish to identify these meromorphic
modular forms. For this we need an estimate on the pole orders along the curve
T1. By Corollary 8.6 we may view these Teichmüller forms as Picard modular
forms on Γ1[

√
−3].

Lemma 10.1. The meromorphic modular form χ4,−2 has order −1 along the
curve T1. The meromorphic modular form χ1,1 is holomorphic.

Proof. In order to prove that the order of both χ1,1 and χ4,2 is at least −1 we
may use the restriction of the Teichmüller modular form χ4,0,−1 constructed
in [4]. It is known that it has a pole of order 1 along the hyperelliptic locus
in M3. The relation between χ4,0,−1 and the pair (χ4,−2, χ1,1) is provided
by Remark 5.2. From this we can conclude the result since the order of χ1,1
satisfies a congruence condition, see (8) below. But we shall give a direct
argument that gives more information.

We may view χ1,1 and χ4,−2 as meromorphic Picard modular forms on
Γ1[

√
−3]. We start with the Taylor expansion along T1 given by u = 0

χ1,1 =
(
χ

(0)
1,1

χ
(1)
1,1

)
with χ

(m)
1,1 =

∑
n≥r

f (m)
n un .

We assume that χ1,1 has order r along T1. Using the action of (1, 1, ρ) and
−13 we see that a non-zero term f

(m)
n satisfies the congruence condition

(8) n ≡ m (mod 6) .

In particular, by a slight variant of Proposition 4.3, a non-zero term f
(m)
r is a

meromorphic modular form of weight 1+m+r on Γ1(3), regular outside (the
orbit of) τ0 = (1−ρ2)/3 and with order at least r at τ0. The space M (1)

1 (Γ1(3))
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is generated by ϑ =
∑

α∈OF
qN(α) and we know that M (r)

r (Γ1(3)) is generated
by ϑr, as explained in (4) at the end of Section 3. This implies that f

(m)
r

is divisible by ϑr, so f
(m)
r = ϑrϕ with ϕ ∈ Mm+1(Γ1(3)) for m = 0 or 1.

But then ϕ is a non-zero multiple of ϑm+1, implying that f
(m)
r is a non-zero

multiple of ϑr+m+1. The anti-invariance of χ1,1 implies that r ≡ 0 (mod 6).
Thus the order of χ1,1 equals the order of χ(0)

1,1.
Since holomorphic Picard modular forms have weight (j ≥ 0, k ≥ 0), the

order s of χ4,−2 along T1 is negative. If we write χ
(m)
4,−2 =

∑
n≥s g

(m)
n un for

m = 0, . . . , 4, then for non-zero g
(m)
n we have

(9) n ≡ m + 3 (mod 6) .

Moreover, g(m)
s ∈ M

(s)
−2+s+m(Γ1(3)). For non-zero M

(s)
k (Γ1(3)) we need −2 +

s + m ≥ s, hence using the congruence restriction (9), we see m = 2 for
non-zero g

(m)
s and it is a non-zero multiple of ϑs. We then have that g(m)

s+1 = 0
unless m = 3, and in fact it is quasi-modular and one observes that it is not
zero by applying the Equation 4.4 to ϑs. Similarly g

(m)
s+2 = 0 unless m = 4.

Using again Equation 4.4 we see ord(χ(4)
4,−2) = ord(χ(2)

4,−2) + 2.
The discriminant of f4 and of f4f1 are invariants that define scalar-valued

modular forms. These invariants are given by Δ4 = J3
2,0,0−6J2

3,0,0 and Δ4 J
2
1,4,0

up to non-zero multiplicative scalars. The weight of ν(Δ4) is 0 and that of
ν(J1,4,0) is 6, and these are units outside T1. Therefore ν(Δ4) is constant
and ν(J1,4,0) must be a multiple of ζ. Now we have the equality J1,4,0 =
a0b

4
1 − a1b0b

3
1 + a2b

2
0b

2
1 − a3b

3
0b1 + a4b

4
0 and we can vary a4 and b0, while

keeping b1 and a0, . . . , a3 fixed. Then the term a4b
4
0 must yield under ν a

regular expression and we infer that

ord(g(4)) + 4 ord(f (0)) = s + 2 + 4 r ≥ 0 ,

where we write g(4) = χ
(4)
4,−2 and f (0) = χ

(0)
1,1, hence r ≥ 0 and χ1,1 is holomor-

phic. Since dimM1,1(Γ[
√
−3], det) = 1 we can identify χ1,1 with a non-zero

multiple of a generator E1,1 of M1,1(Γ[
√
−3], det) constructed in [5]. We con-

clude from the development given there that it has order 0 with f
(0)
0 being a

non-zero multiple of ϑ and that χ(1)
1,1 has order 1.

Keeping now b0, b1 fixed and varying one of a0, . . . , a4, we see that all
terms a0b

4
1, a1b0b

3
1, a2b

2
0b

2
1, a3b

3
0b1 in J1,4,0 must give regular forms. Using this

regularity we find that

ord(g(0), . . . , g(4)) = (≥ 1,≥ 1,≥ −1,≥ 0,≥ 1) .
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But using the congruence condition (9) we see

ord(g(0), . . . , g(4)) = (≥ 3,≥ 4,= −1,≥ 0,≥ 1) ,

which proves that the order of χ4,−2 along T1 equals −1.

Corollary 10.2. The modular form χ1,1 generates M1,1(Γ[
√
−3], det). The

modular form ζχ4,−2 generates M4,4(Γ[
√
−3], det2).

Proof. By [5] we know that dimM1,1(Γ[
√
−3], det) = 1. In [1] it was shown

that dimS4,4(Γ[
√
−3], det 2) = 1. As ζ vanishes along the curve T1 it follows

that ζχ4,−2 is regular and generates S4,4(Γ[
√
−3], det2).

A generator χ4,4 of S4,4(Γ[
√
−3], det2) will be constructed explicitly in

Section 12. In the paper [5] we constructed explicitly an Eisenstein series
E1,1 ∈ M1,1(Γ[

√
−3], det ). Hence up to a non-zero multiplicative constant

χ1,1 agrees with E1,1.
We can write the meromorphic modular form χ4,−2, when viewed as a

meromorphic Picard modular form on Γ1[
√
−3], as

(10) χ4,−2 =
4∑

i=0
αiX

4−i
1 X i

2 ,

where the X1, X2 are dummy variables to indicate the coordinates of V and
the αi are meromorphic functions on the the 2-ball B. Similarly, we can write
E1,1 as

(11) E1,1 = β1X1 + β2X2

with βi holomorphic on B.
In Section 15, we shall derive the beginning of the Taylor expansion along

u = 0 of the generators χ4,4 of S4,4(Γ, det2) and E1,1 of M1,1(Γ, det). This
gives the orders, see Corollary 15.3. As a corollary we find the orders of the
αi and βi along the curve given by u = 0.

Corollary 10.3. The orders of (α0, . . . , α4) and (β1, β2) along T1 are

ord(α0, α1, α2, α3, α4) = (3, 4,−1, 0, 1) , ord(β1, β2) = (0, 1) .

Proof. As observed in Section 4 the modular form ζ vanishes simply along
the components of T1 on Γ1[

√
−3]\B. Together with the orders of χ4,4 this

proves the result.
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Now we can describe the map ν. Recall that we write a covariant as a
polynomial of degree a in the coefficients ai of f4, of degree b in the coeffi-
cients of f1 and degree c in x1, x2. The map ν amounts to substituting the
coordinates αi (i = 0, . . . , 4) and βi (i = 0, 1) in a covariant. For simplicity
we will view the elements of M[1/ζ] as Picard modular forms on Γ1[

√
−3],

see the description in Section 8.

Theorem 10.4. The map ν : C(V4⊕V1) → M[1/ζ] is given by substituting αi

for ai, βi for bi and Xi for xi in a covariant. The map ν sends an invariant
Ja,b,c of degree a in the ai, degree b in the bi and degree c in x1, x2 to a
meromorphic modular form of weight (j, k, l) = (c, (3b − c)/2, 2(a + b + c)).
The form ν(f) is S4-invariant if a+ b is even, and S4-anti-invariant if a+ b
is odd.

Proof. This follows from the identities (10) and (11).

Corollary 10.5. All modular forms on Γ can be constructed by substituting
the coordinates of χ4,−2 and E1,1 in covariants.

Proof. The composition M → C(V4 ⊕ V1) → M[1/ζ] is the identity on M.
Indeed, the map μ interprets modular forms in terms of bi-covariants and the
map ν re-interprets a bi-covariant as a (a priori meromorphic) Teichmüller
modular form. But ν is given by substituting the coordinates of χ4,−2 and
χ1,1. The form χ1,1 is a non-zero multiple of E1,1.

Remark 10.6. Given generators χ4,4 of S4,4(Γ[
√
−3], det2) and E1,1 of the

space M1,1(Γ[
√
−3], det) one can show directly using the modular behavior

of χ4,4, E1,1 and ζ, that if we write

χ4,4/ζ =
4∑

i=0
α′
iX

4−i
1 X i

2, χ1,1 = β′
1X1 + β′

2X2 ,

the substitution of α′
i for ai, β′

i for bi and Xi for xi in a covariant of multi-
degree (a, b, c) gives a modular form of weight (c, (3b− c)/2, 2(a + b + c)).

The orders of the modular forms ν(J) along the curve T1 for the generating
invariants given in Section 9 can be deduced from Corollary 10.3. We give a
table.

J2,0,0 J0,1,1 J3,0,0 J1,4,0 J1,3,1 J1,2,2 J1,1,3 J1,0,4 J2,4,0 J2,3,1
−2 0 −3 1 0 −1 −1 −1 0 −1

J2,2,2 J2,1,3 J2,0,4 J3,6,0 J3,5,1 J3,4,2 J3,3,3 J3,2,4 J3,1,5 J3,0,6
−2 −2 −2 0 −1 −1 −1 −1 −1 −1



124 Fabien Cléry and Gerard van der Geer

11. Gradients of theta functions

In order to use Theorem 10.4 effectively it is important to know the Fourier-
Jacobi expansions of ζ, χ4,−2 (or χ4,4) and E1,1 quite well. In this section
and the next one, we construct these modular forms and give part of their
Fourier-Jacobi expansion. We will use gradients of theta series to construct
modular forms.

Recall the definition of theta series with characteristics (see [16], p.49):
let g ∈ Z�1, (μ1, . . . , μg) ∈ Rg, (ν1, . . . , νg) ∈ Rg and set for τ ∈ Hg, the
Siegel upper half space of degree g, and z = (z1, . . . , zg) ∈ Cg

ϑ[μν ](τ, z) = ϑ[μ1,...,μg
ν1,...,νg

](τ, z) =
∑

n=(n1,...,ng)∈Zg

eπi(n+μ)(τ(n+μ)t+2(z+ν)t) .

We simply call this series a theta series with characteristics. Its restriction
to z = 0 is called a theta constant, and we omit the variable z in this case:
ϑ[μν ](τ, 0) = ϑ[μν ](τ). We have the formulas (see loc. cit.)

ϑ−[μν ](τ, z) = ϑ[μν ](τ,−z) and ϑ[μ+m
ν+n

](τ, z) = e2πiμnt

ϑ[μν ](τ, z)

for any (m,n) ∈ Zg × Zg.
From [16, p. 85, p. 176] we deduce the following transformation formula

for the gradient ∇ϑ[μν ] (written as a column vector) of the theta function
ϑ[μν ] as a function of z.

Proposition 11.1. Let γ = (a, b; c, d) ∈ Sp(2g,Z) then we have

∇ϑγ·[μν ](γ τ, z(cτ + d)−1) =

j(γ, τ, z)
(
(cτ + d)∇ϑ[μν ](τ, z) + ϑ[μν ](τ, z)∇(eπiz(cτ+d)−1c zt)

)
,

where
j(γ, τ, z) = κ(γ)eπiφ(γ,[μν ]) det(cτ + d)

1
2 eπiz(cτ+d)−1c zt

with

φ(γ, [ μν ]) = −μdtbμt + 2μbtcνt − νctaνt + (μdt − νct)(abt)0

γ · [ μν ] =
[(

d −c
−b a

)
( μ
ν ) + 1

2
(

(cdt)0
(abt)0

)]
=
[

dμ−cν+(cdt/2)0
−bμ+aν+(abt/2)0

]
.

Moreover, κ(γ) is an eighth root of unity (depending only on γ) and the symbol
X0 denotes the diagonal (column) vector (in its natural order) of a matrix X.
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As a direct corollary of Proposition 11.1, we have for theta functions
vanishing on B× (0) ⊂ B× C3 the following.

Corollary 11.2. Assume that ϑ[μν ](ι(u, v), 0) = 0 for any (u, v) ∈ B. Then
for any γ =

(
a b
c d

)
∈ Sp(6,Z) we have

∇ϑγ·[μν ](γ ι(u, v), 0) =

κ(γ)eπiφ(γ,[μν ]) det(c ι(u, v) + d)
1
2 (c ι(u, v) + d)∇ϑ[μν ](ι(u, v), 0).

If C is a smooth projective curve of genus 3 that is a triple cyclic cover
of C/α = P1, the kernel of multiplication by 1 − α on its Jacobian Jac(C)
is isomorphic to (Z/3Z)3. This is a totally isotropic subspace for the Weil
pairing on Jac(C)[3]. If the ramification points of C → P1 are p0, p1, . . . , p4,
with p0 the unique point with ρ2 action, we have a surjective homomorphism

φ : (Z/3Z)4 → Jac(C)[1 − α], (c1, . . . , c4) →
∑

ci(pi − p0)

with kernel given by
∑4

i=1 ci = 0. The group S4 ×μ2 acts and can be seen as
the orthogonal group for (OF /

√
−3OF )3 with the form ab′ + ab′ + cc′.

We can identify the canonical theta divisor Θ ⊂ Pic(2)(C) with a theta
divisor in Jac(C) by translation over κ = 2p0, a half-canonical divisor. There
are fifteen (1 − α)-torsion points lying on a theta divisor Θ − 2p0 ⊂ Jac(C),
namely: pi + pj − 2p0 for 0 ≤ i ≤ j ≤ 4 and (i, j) �= (0, 0). Note the linear
equivalence p1 + p2 + p3 + p4 ∼ 4p0.

The set of 15 torsion points on the theta divisor can be divided into three
sets:

C1 = {0,±(pi − p0), i = 1, . . . 4}, C2 = {pi + pj − 2p0 : 1 ≤ i < j ≤ 4}

and C0 the complement of C1 � C2 with cardinalities #C0 = 12, #C1 = 9
and #C2 = 6.

If we let the theta characteristic 2p0 correspond to [ μν ] =
[

0 1/2 0
0 1/2 0

]
, then

using the embedding σ of Γ[
√
−3] in Sp(6,Z) and the property that

σ(g) · [ μν ] ≡ [ μν ] mod Z

for any of g ∈ Γ[
√
−3], we find that the set Ci of (1 − α)-torsion points

corresponds to the set of theta characteristics of degree 3{[
k/3 (2l+1)/6 −k/3
m/3 (2l+1)/6 m/3

]
: 0 ≤ k, l,m ≤ 2 : km− (l − 1)2 ≡ i− 1(mod3

}
.
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We will abbreviate such a characteristic by [klm].

Lemma 11.3. Writing σ(g) =
(
a b
c d

)
for g ∈ Γ[

√
−3] and ι(u, v) = τ for

(u, v) ∈ B we have

(cτ + d)
[ v1(

1 0
0 −ρ2

)
[ v2
v1 ]

]
=
[

pr2(j2(g,(u,v))[ v2
v1 ])(

1 0
0 −ρ2

)
j2(g,(u,v))[ v2

v1 ]

]
,

where pr2 denotes the projection [ xy ] 
→ y.

The proof can be carried out by checking it on the generators of Γ[
√
−3].

A set of generators was given in Lemma 2.1.
From the set C1 we take representatives modulo changing sign

C ′
1 = {[011], [110], [101], [202], [010]}

and for λ ∈ C ′
1 with g0 = ρ13 and σ(g0) = (a0, b0; c0, d0) ∈ Sp(6,Z) we have

∇ϑλ(ι(u, v), 0) = ρ(c0ι(u, v) + d0)∇ϑλ(ι(u, v), 0) =
[ 0 0 −ρ
−u 1 −ρu
ρ 0 −ρ

]
∇ϑλ(ι(u, v), 0)

and this implies that

∂ϑλ

∂z3
(ι(u, v), 0) = −ρ2 ∂ϑλ

∂z1
(ι(u, v), 0).

So for the characteristics in the set C1, only the last component of the gradient
of ϑλ is dependent of the previous one. This gives a (2 + 1)–decomposition
and therefore good hopes to get vector-valued modular forms.

For the five elements λi ∈ C ′
1 (i = 0, . . . , 4) listed in the order above we

put

(12) Fi(u, v) = c−1
[∂ϑλi

∂z2
(ι(u, v), 0)

∂ϑλi

∂z1
(ι(u, v), 0)

]

with the constant c given by

(13) c = ϑ[ 1/6
1/6

](−ρ2, 0) = 33/8

2π Γ(1/3)3/2e
5πi
72 .

Using Corollary 11.2 we then obtain:

Lemma 11.4. Let λ = [klm] ∈ C ′
1 and g ∈ Γ[

√
−3] and write σ(g) · λ =

λ+ [ m1 m2 m3
n1 n2 n3 ]. Then Fi(g · (u, v)) = Ai(g, u, v)Fi(u, v) with Ai(g, u, v) given
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by

κ(σ(g)) eπ
√
−1φ(σ(g),c1i) e−

2π
√

−1
6 (2(n1−n3)k+n2(2l+1)) j1(g, (u, v))j2(g, (u, v)) .

This gives us the transformation behavior of the Fi under the generators
gi of the group Γ[

√
−3] given in Lemma 2.1.

Corollary 11.5. We have Fi|1,1gj = c(i, j)Fi with c(i, j) given in the follow-
ing diagram.

i\j 0 1 2 3 4 5
0 1 ρ ρ ρ2 1 1
1 1 ρ 1 1 ρ ρ2

2 1 1 ρ ρ ρ ρ

3 1 1 ρ 1 ρ 1
4 1 ρ 1 1 1 1

12. Construction of χ4,4 and E1,1

Finis constructed in [9] elliptic modular functions X, Y, Z for the elliptic curve
C/Λ with Λ =

√
−3OF , that satisfy the relation

X3 = ρ (Y 3 − Z3) .

Here X, Y and Z are normalized theta functions satisfying

f(z + α) = exp
( 2π√

3
(ᾱz − ρN(α))

)
f(z) (α ∈ Λ)

and Z(z) = Y (−z). The zero divisor of X is the degree 3 divisor OF mod Λ
and that of Y is 1/

√
−3 + OF mod Λ. These functions can be defined by

X(z) = 1
c
eπz

2/
√

3ϑ[ 1/2
1/2

](−ρ2, z), Y (z) = 1
c
eπz

2/
√

3ϑ[ 1/6
1/6

](−ρ2, z),

with c = ϑ[ 1/6
1/6

](−ρ2, 0) as given in (13). The functions X and Y satisfy for

α ∈ OF

X(z + α) = e
2π√

3
(ᾱz−ρN(α))

X(z), Y (z + α) = e
2π√

3
(ᾱz−ρN(α))

ρTr(α)Y (z) .

and X(εz) = εX(z) for ε ∈ O×
F and Y (ρz) = Y (z). Moreover, we have the

identity
X(

√
−3 z) =

√
−3X(z)Y (z)Z(z) .
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We can develop the theta functions ϑλ for λ ∈ C ′
1 in Fourier-Jacobi series.

Working this out and substituting this in the Fi as defined in equation (12),
one finds after some amount of calculation the following Fourier-Jacobi series
of the Fi.

We set
ξ = (ρ2 − 1)/3 and qv = e2πv/

√
3

and obtain

F0(u, v) =
∑

α∈OF

ρ−Tr(α)
[

X′(αu)
2π√

3
ᾱX(αu)

]
qN(α)
v ,

F1(u, v) =
∑

α∈OF +ξ

[
X′(αu)

2π√
3
ᾱX(αu)

]
qN(α)
v ,

F2(u, v) =
∑

α∈OF +ξ

e
2π√

3
(αξ̄−ᾱξ)

[
Y ′(αu)

2π√
3
ᾱY (αu)

]
qN(α)
v ,

F3(u, v) =
∑

α∈OF +ξ

e
2π√

3
(αξ̄−ᾱξ)

[
Z′(αu)

2π√
3
ᾱZ(αu)

]
qN(α)
v ,

F4(u, v) =
∑

α∈OF

[
X′(αu)

2π√
3
ᾱX(αu)

]
qN(α)
v .

Using the transformation behavior of X, Y, Z one can calculate the trans-
formation of the Fi under the generators rk for k = 1, 2, 3 of the S4-part, see
Section 2. Putting all of that together, we get

i F0|1,1r−1
i F1|1,1r−1

i F2|1,1r−1
i F3|1,1r−1

i F4|1,1r−1
i

1 −F1 −F0 −F2 −F3 −F4
2 −F0 −F1 −F3 −F2 −F4
3 F0 e5πi/9F2 e−2πi/3F3 eπi/9F1 F4

After these preparations we can construct the two basic modular forms. We
put

χ4,4 = Sym4(F0, F1, F2, F3) and E1,1 = F4 .

Corollary 12.1. We have

χ4,4 ∈ S4,4(Γ[
√
−3], det2) and E1,1 ∈ M1,1(Γ[

√
−3], det) .

Remark 12.2. Both χ4,4 and E1,1 are Hecke eigenforms. But the eigenvalues
of E1,1 are not always integral, see [5, Remark 12.3].

In [1, Section 11.3,Case 1] it is conjectured that there is a lift from
S−

8 (Γ0(9)) (see loc. cit., Section 11.1 for the notation) to the S4-invariant part
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of the space S4,4(Γ[
√
−3], det2). The space S−

8 (Γ0(9)) is one-dimensional and
generated by one form, say f , whose Fourier expansion f(τ) =

∑
n�1 an(f)qn

can be normalised as

f(τ) = q + 232 q4 + 260 q7 − 5760 q10 + 6890 q13 + 7744 q16 + 33176 q19 + . . . .

The claim that χ4,4 is a lift of f is supported by the fact the Hecke eigenvalue
of χ4,4 at 1 + 3ρ (of norm 7) is given by

λ1+3ρ(χ4,4) = 309 − 882ρ.

This Hecke eigenvalue is computed directly by using the Fourier-Jacobi ex-
pansion of the last component of χ4,4 (recall that the last component of a
vector-valued Picard modular Hecke eigenform is sufficient to compute its
Hecke eigenvalues). Since the Fourier-Jacobi expansion of χ(4)

4,4 (after suitable
normalisation) starts with X2q2

v , for computing its Hecke eigenvalue at 1+3ρ,
we need its Fourier-Jacobi coefficient at q14

v . This Fourier-Jacobi coefficient
will be given in the next section and this gives

λ1+3ρ(χ4,4) = 309−882ρ = 260+(1+3ρ5)(1+3ρ2)2 = a7(f)+(1+3ρ5)(1+3ρ2)2.

13. The Fourier-Jacobi expansion of χ1,1

Here we develop the form E1,1 in a Fourier-Jacobi series. Recall the definition
of E1,1 with qv = e2πv/

√
3

E1,1(u, v) =
∑

α∈OF

[
X′(αu)

2π√
3
ᾱX(αu)

]
qN(α)
v .

Using the relation X(εu) = εX(u) for ε ∈ O×
F , we get

E1,1(u, v) =
[
X′(0)

0

]
+ 6

[
X′(u)

2π√
3
X(u)

]
qv + 6

[
X′(u

√
−3)

− 2π√
3

√
−3X(u

√
−3)

]
q3
v + . . .

and using the Shintani operators (see [5, §4]), we can rewrite this as

E1,1(u, v) =
[
X′(0)

0

]
+ 6

[
X′(u)

2π√
3
X(u)

]
qv + 6

[
(XY Z)′(u)
2π√

3
3XY Z(u)

]
q3
v + . . .

We set
Pn(X, Y, Z) =

∑
α∈Nn

ᾱX(αu) ,
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where we use the notation

Nn = {α = a + bρ ∈ OF |N(α) = a2 − ab + b2 = n}.

If P ′
n(X, Y, Z) denotes the derivative of Pn(X, Y, Z) with respect to the vari-

able u

P ′
n(X, Y, Z) = (

∑
α∈Nn

ᾱX(αu))′ =
∑
α∈Nn

αᾱX ′(αu) = n
∑
α∈Nn

X ′(αu) ,

we have
E1,1(u, v) =

[
X′(0)

0

]
+
∑
n�1

[
P ′
n(X,Y,Z)/n

2π√
3
Pn(X,Y,Z)

]
qnv .

In order to get more terms in the Fourier-Jacobi expansion of E1,1 we write
the set Nn as Nn = α1 O

×
F � α2 O

×
F � . . . � αj O

×
F and split Pn according to

this decomposition:

Pn(X, Y, Z) =
∑
α∈Nn

ᾱX(αu) =
j∑

i=1

∑
ε∈O×

F

ε̄ᾱiX(εαiu)

=
j∑

i=1

∑
ε∈O×

F

ᾱiX(αiu) = 6
j∑

i=1
ᾱiX(αiu) .

The polynomials Pn are homogeneous of degree n in X, Y and Z and the first
few of them are given by

P1 = 6X; P3 = 18XY Z; P4 = 12X(Y 3 + Z3);
P7 = −6X(Y 6 − 16Y 3Z3 + Z6); P9 = 54XY Z(Y 6 − Y 3Z3 + Z6);
P12 = −36XY Z(2Y 9 − 3Y 6Z3 − 3Y 3Z6 + 2Y Z9);
P13 = 6X(5Y 12 − 7Y 9Z3 + 30Y 6Z6 − 7Y 3Z9 + 5Z12) .

14. The Fourier-Jacobi expansion of χ4,4

The Fourier-Jacobi expansion of χ4,4 is determined by those of F0, . . . , F3.
We determine these and start with F0. We set

Qn(X, Y, Z) =
∑
α∈Nn

ρ−Tr(α)ᾱX(αu) ,

which gives for the derivative of Qn(X, Y, Z) with respect to the variable u

Q′
n(X, Y, Z) = n

∑
α∈Nn

ρ−Tr(α)X ′(αu)
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and this leads to the expansion

F0(u, v) =
∑

α∈OF

ρ−Tr(α)
[

X′(αu)
2π√

3
ᾱX(αu)

]
qN(α)
v =

[
X′(0)

0

]
+
∑
n�1

[
Q′

n(X,Y,Z)/n
2π√

3
Qn(X,Y,Z)

]
qnv .

Lemma 14.1. We have Qn = Pn if n ≡ 0 (mod 3), else Qn = −Pn/2.

Proof. Using X(εu) = εX(u) and the decomposition Nn = �j
i=1αiO

×
F as

above we get

Qn(X, Y, Z) =
j∑

i=1

( ∑
ε∈O×

F

ρ−Tr(εαi))ᾱiX(αiu)

and writing αi = ai + ρbi with ai, bi ∈ Z, we have

∑
ε∈O×

F

ρ−Tr(εαi) = 3(ρai+bi + ρ2(ai+bi)) =
{

6 if ai + bi ≡ 0 (mod 3)
−3 if ai + bi �≡ 0 (mod 3) .

Noticing that N(αi) ≡ (ai + bi)2 (mod 3), we get the desired result.

For F1 we set Nn(ξ) = ξ · {α ∈ OF |N(α) = n, α ≡ 1 (mod
√
−3)} and

note that the map α + ξ 
→ ξ(α(ρ − 1) + 1) is a bijection from {α + ξ |α ∈
OF , N(α + ξ) = n/3} to Nn(ξ). We define

Rn(X, Y, Z) =
∑

α∈Nn(ξ)
ᾱX(αu) ,

so we have
R′

n(X, Y, Z) = n

3
∑

α∈Nn(ξ)
X ′(αu) ,

and we can write

F1(u, v) =
∑

α∈OF +ξ

[
X′(αu)

2π√
3
ᾱX(αu)

]
qN(α)
v =

∑
n�1

[
3R′

n(X,Y,Z)/n
2π√

3
Rn(X,Y,Z)

]
qn/3v .

We relate the polynomials Rn and Pn. For n ≡ 0 (mod 3) we have Rn = 0; if
n ≡ 1 (mod 3) we write

Nn(ξ) = �j
i=1ξαi{1, ρ, ρ2}
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with αi ≡ 1(mod
√
−3). We thus get Rn(X, Y, Z) = ξ̄Pn(X0, Y0, Z0)/2 with

X0 = X(ξu), Y0 = Y (ξu) and Z0 = Z(ξu). For F2 we use

Sn(X, Y, Z) =
∑

α∈Nn(ξ)
e

2π√
3
(αξ̄−ᾱξ)

ᾱY (αu) ,

so we obtain
S′
n(X, Y, Z) = n

3
∑

α∈Nn(ξ)
e

2π√
3
(αξ̄−ᾱξ)

Y ′(αu) .

We then have

F2(u, v) =
∑

α∈OF +ξ

e
2π√

3
(αξ̄−ᾱξ)

[
Y ′(αu)

2π√
3
ᾱY (αu)

]
qN(α)
v =

∑
n�1

[
3S′

n(X,Y,Z)/n
2π√

3
Sn(X,Y,Z)

]
qn/3v .

Writing again Nn(ξ) = �j
i=1ξαi {1, ρ, ρ2} with αi − 1 ∈ (3) we find

Sn(X, Y, Z) = 3 ξ
j∑

i=1
ᾱi Y (αiξu) .

Using the Shintani operators we find the first few Sn, where again we use the
notation X0 = X(ξu), Y0 = Y (ξu) and Z0 = Z(ξu):

S1 = 3 ξ̄Y0, S4 = −6 ξ̄Y0(−Y 3
0 + 2Z3

0 ), S7 = −3 ξ̄Y0(Y 6
0 + 14Y 3

0 Z
3
0 − 14Z6

0 ),
S13 = 3 ξ̄Y0(5Y 12

0 − 13Y 9
0 Z

3
0 + 39Y 6

0 Z
6
0 − 52Y 3

0 Z
9
0 + 26Z12

0 ) .

Finally, for F3 we use F3 = −F2|1,1r−1
2 and thus put Tn(X, Y, Z) =

Sn(X,Z, Y ) and then can write

F3(u, v) = −
∑

α∈OF +ξ

e
2π√

3
(αξ̄−ᾱξ)

[
Z′(αu)

2π√
3
ᾱZ(αu)

]
qN(α)
v = −

∑
n�1

[
3T ′

n(X,Y,Z)/n
2π√

3
Tn(X,Y,Z)

]
qn/3v .

After these preparations we can calculate the beginning of the Fourier-Jacobi
expansion of χ4,4. The result is, after suitable normalisation,

χ4,4 =

⎡⎢⎢⎢⎢⎢⎢⎣
(
√

3
2π )4(3 c1ρ2(X ′

0Y
′
0Z

′
0) qv + O(q2

v))
(
√

3
2π )3(c1(2 + ρ)(X0Y

′
0Z

′
0 + X ′

0Y
′
0Z0 + X0Y

′
0Z

′
0) qv + O(q2

v))
(
√

3
2π )2(−c1X

′qv + O(q2
v))√

3
2π (− c1

3 Xqv + 4XX ′q2
v + O(q4

v))
X2q2

v − 6X2Y Zq4
v + O(q5

v)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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where c1 = X ′(0). For the last coordinate one can calculate more terms.
Indeed, this involves only the second coordinates of the Fi (i = 0, . . . , 3) and
one finds:

χ
(4)
4,4 = X2

(
q2
v − 6Y Zq4

v − 20 (Y 3 + Z3)q5
v + 81Y 2Z2q6

v + 132 (Y 4Z + Y Z4)q7
v

+ (122Y 6 − 800Y 3Z3 + 122Z6)q8
v

+ (−1020Y 7Z + 1470Y 4Z4 − 1020Y Z7)q10
v

+ (−76Y 9 + 1140Y 6Z3 + 1140Y 3Z6 − 76Z9)q11
v

+ (−486Y 8Z2 + 486Y 5Z5 − 486Y 2Z8)q12
v

+ (3012Y 10Z − 3924Y 7Z4 − 3924Y 4Z7 + 3012Y Z10)q13
v

+ (−1261Y 12 + 266Y 9Z3 + 4782Y 6Z6 + 266Y 3Z9 − 1261Z12)q14
v + . . .

)
.

Remark 14.2. To identify the terms in the Fourier-Jacobi expansions, we use
the fact that we know a basis for the space of theta functions of degree 3n on
the elliptic curve C/Λ:

{XaY bZc : 0 ≤ a ≤ 2, 0 ≤ b ≤ n− a, a + b + c = n} .

We can use the Taylor expansion of an element in this space around the origin
to express it in terms of such a basis.

15. Restriction to the curve T1

In order to know which covariants yield holomorphic modular forms, we need
the expansion of the modular forms ζ, χ4,4 and E1,1 along T1, given by u = 0,
the zero locus of ζ.

We start with the expansions of the elliptic functions X, Y and Z near
the origin of the elliptic curve C/Λ. These have the form

(14) X(z) =
∑
j�0

c6j+1z
6j+1, Y (z) =

∑
j�0

d3jz
3j , Z(z) =

∑
j�0

(−1)j d3jz
3j .

Note that the functions Y and Z are normalised such that d0 = 1. Let ξ =
(ρ2 − 1)/3 = ρ

√
−3/3 as before. By [9, Lemma 9, formulas (68–69)] these

functions satisfy

Y 3(ξz) = 1
ρ− 1(ρY (z) − Z(z)) and Z3(ξu) = 1

ρ− 1(−Y (z) + ρZ(z)) ,
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and with X3 = ρ(Y 3 − Z3), we have X3(ξz) = −ξ (Y (z) − Z(z)). This
relation provides links between the numbers c6j+1 and d6j+3, while the relation
Y 3(ξz) + Z3(ξz) = Y (z) + Z(z) provides the relation between the c6j+1 and
d6j . It follows that the numbers c6j+1 and d3j can be expressed in terms of
powers of c1. For example, we have:

c7 = 6 ρ c71/7!, c13 = −63ρ2 c13
1 /13!, c19 = −2634 · 23 c19

1 /19!,
d3 = ρ2c31/3!, d6 = −2 ρc61/6!, d9 = −8 c91/9!, d12 = −23 19 ρ2c12

1 /12!,
d15 = 235 · 31 ρ c15

1 /15! .

Here the constant c1 is given by

(15) c1 = Γ(1/3)3 e−17iπ/18/(2π) .

Remark 15.1. These numbers are related to the development of the modular
form ϑ around its zero τ0 = (1 − ρ2)/3, see [32, Prop. 17].

For the restriction to the curve T1 of the modular forms ζ, E1,1 and χ4,4
we can apply Proposition 4.3.

The definition of the cusp form ζ ∈ S6(Γ[
√
−3, det]) yields by (14) with

qv = e2π v/
√

3

ζ(u,
√
−3τ) = 1/6

∑
α∈OF

α5X(αu)qN(α) = 1/6
∑
j�0

a6j+1Θ6(j+1)(τ)u6j+1 ,

where Θj(τ) =
∑

α∈OF
αjqN(α) ∈ Mj+1(Γ1(3)), as introduced in Section 4.

Therefore, with w = c1u the Taylor expansion of ζ about u = 0 starts with

ζ(u,
√
−3τ) = c1 ϑη

8ψ2(τ)u + c7 ϑη
8
(
η16 + 18ψ4η8 + 729ψ8

)
u7 + . . .

= ϑη8(τ)
(
ψ2(τ)w + (ρ/840) (η16 + 18ψ4η8 + 729ψ8)(τ)w7 + . . .

)
.

In a similar way, we obtain the development along the curve T1 of the Eisen-
stein series E1,1:

E1,1(u,
√
−3τ) =

[
E

(0)
1,1(u,

√
−3τ)

E
(1)
1,1(u,

√
−3τ)

]
=
∑
α∈O

[
X′(αu)

2π√
3
ᾱX(αu)

]
qN(α)

=
∑
j�0

c6j+1
( [

(6j+1)Θ6j(τ)
0

]
u6j +

[ 0
Θ′

6j (τ)
√
−3

]
u6j+1

)
,
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where the components E
(i)
1,1 have the following expansions in which the vari-

able τ is omitted:

E
(0)
1,1(u,

√
−3τ) = c1

(
ϑ + ρ ϑψ2η8/20w6 + . . .

)
E

(1)
1,1(u,

√
−3τ) = π

6
√

3
(
(108ψ3 + ϑ(e2 − ϑ2))w+

( ρ

140)ψ η8(5η8 + 243ψ4 + 7e2ψϑ)w7 + . . .
)

For the cusp form χ4,4, we get

χ4,4(u,
√
−3τ) =

[ 0
0
h0
0
0

]
+
[ 0

0
0
h1
0

]
u +

[ 0
0
0
0
h2

]
u2 +

[ h4
0
0
0
0

]
u4 +

[ 0
h5
0
0
0

]
u5 + . . . ,

where h0 and h4 are cusp forms on Γ1(3), while h1, h2 and h5 are quasi-
modular forms on Γ1(3). We set

(16) γ = 2π/
√

3 .

Then the hi are given by

h0 = − c21
γ2 η8ψ2; h1 = − c21

6 γ η8ψ2(ϑ2 + e2); h2 = c21
144 η8ψ2(3ϑ2 + e2)(ϑ2 − e2)

h4 = −ρ
c81

12 γ4 η
8ψ2ϑ2; h5 = ρ

c81
180 γ3 η

8ψ2ϑ(4ϑ3 + 5ϑe2 + 54ψ3).

Remark 15.2. The cusp form h0 is proportional to the cusp form f6(τ) =
η6(τ)η6(3τ) of weight 6 on Γ0(3) with Fourier expansion

f6(τ) = q − 6 q2 + 9 q3 + 4 q4 + 6 q5 − 54 q6 − 40 q7 + 168 q8 + . . . .

This cusp form is one of the famous eta products and plays a similar role for
Γ0(3) as the discriminant form Δ for SL(2,Z).

From the above expansions, we derive the order of vanishing along T1 of
χ4,4 and χ1,1. This is used in Corollary 10.3.

Corollary 15.3. The order of the five coordinates of χ4,4 along u = 0 is
(4, 5, 0, 1, 2). The order of the two coordinates of E1,1 along u = 0 is (0, 1).
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16. Construction of modular forms from invariants

In this section, we shall use the map ν : C(V4 ⊕ V1) → M[1/ζ] to construct
modular forms. Under ν a covariant Ja,b,c of degree (a, b, c) in the variables
(ai, bi, xi) maps to a meromorphic modular form of weight (c, (3b− c)/2) on
Γ[
√
−3] with character εa+b ◦ det2a+2b+2c, that is,

ν(Ja,b,c) ∈ M̃c,3b/2,−a−b(Γ[
√
−3])

with the property that

ν(Ja,b,c) is
{
S4-invariant if a + b ≡ 0 mod 2
S4-anti-invariant if a + b ≡ 1 mod 2 .

Here the tilde on M refers to the meromorphicity along T1. In the following
table we give for the twenty generating covariants Ja,b,c the weight (j, k, l), the
index e = a + b(mod2) and the order of the coordinates of the meromorphic
modular form ν(Ja,b,c) along T1.

(a, b, c) j k l e order along T1
(2, 0, 0) 0 0 1 0 −2
(0, 1, 1) 1 1 1 1 [0, 1]
(3, 0, 0) 0 0 0 1 −3
(1, 4, 0) 0 6 1 1 1
(1, 3, 1) 1 4 1 0 [0, 1]
(1, 2, 2) 2 2 1 1 [−1, 0, 1]
(1, 1, 3) 3 0 1 0 [4,−1, 0, 1]
(1, 0, 4) 4 −2 1 1 [3, 4,−1, 0, 1]
(2, 4, 0) 0 6 0 0 0
(2, 3, 1) 1 4 0 1 [−1, 0]
(2, 2, 2) 2 2 0 0 [−2,−1, 0]
(2, 1, 3) 3 0 0 1 [3,−2,−1, 0]
(2, 0, 4) 4 −2 0 0 [2, 3,−2,−1, 0]
(3, 6, 0) 0 9 0 1 0
(3, 5, 1) 1 7 0 0 [−1, 0]
(3, 4, 2) 2 5 0 1 [4,−1, 0]
(3, 3, 3) 3 3 0 0 [3, 4,−1, 0]
(3, 2, 4) 4 1 0 1 [2, 3, 4,−1, 0]
(3, 1, 5) 5 −1 0 0 [1, 2, 3, 4,−1, 0]
(3, 0, 6) 6 −3 0 1 [6, 1, 2, 3, 4,−1, 0]
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As we saw in Section 2 we have M(Γ) = C[E6, E12, E
2
9 ] and first cusp

form appears in weight 12 and is given by

χ12 = (E2
6 − E12)/5184 .

The cusp form χ12 is a Kudla lift of an element in S−
11(Γ1(3)) (see [9, Prop.

10], or [1, Section 11.3, Case 2b]). Moreover, there is a cusp form

χ18 = (E3
6 − E2

9)/3888 .

By calculating the expansions for some of these ν(Ja,b,c) one can identify
sometimes the resulting modular forms. We use here what was mentioned in
Remark 14.2.

Doing this for the generators Ja,b,0 one obtains the following proposition.
Recall γ = 2π/

√
3 and c1 = X ′(0) as given in equations (15) and (16).

Proposition 16.1. The images under ν of the generators Ja,b,0 are;

ν(J1,4,0) = 3 c41
70 ζ , ν(J2,0,0) = c41

6γ4
χ12

ζ2 , ν(J3,0,0) = c61
864 γ6

χ18 − E6χ12

ζ3 ,

ν(J2,4,0) = − c61
5040 γ2 E6 , ν(J3,6,0) = c91

798336 γ3 E9 .

Remark 16.2. As a check, one may apply ν to the relation

(17) 3J3
2,4,0 + 13068

875 J2
3,6,0 + J3

1,4,0J3,0,0 −
3
2 J2,4,0J

2
1,4,0J2,0,0 = 0.

(see (6) in Section 9) and obtain

(18) c18
1

42674688000 γ6 (−E3
6 + E2

9 + 3888χ18) = 0 ,

in agreement with the definition of χ18.
Remark 16.3. The image of the discriminant 32(J3

2,0,0−6 J2
3,0,0) of the quartic

polynomial f4 under ν is constant:

ν(32(J3
2,0,0 − 6 J2

3,0,0)) = − ρ c12
1

33 γ12 .

This comes about by the fact that the moduli space is obtained by blowing
up of the discriminant locus, cf. the diagram in [3, p. 6] and the discussion
there.
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We finish this section with a result on the module of scalar-valued cusp
forms on Γ. Since the group Γ has a unique cusp, we have dimSk(Γ) =
dimMk(Γ) − 1 if dimMk(Γ) > 0 and the generating series for the dimension
of the spaces Sk(Γ) is given by

∑
k�0

dimSk(Γ)tk = t12 + t18 − t30

(1 − t6)(1 − t12)(1 − t18) = t12+2 t18+3 t24+4 t30+6 t36+. . .

The first cusp form appears in weight 12, namely χ12. Then we have

S18(Γ) = SpanC(E6χ12, χ18), S24(Γ) = SpanC(E2
6χ12, E6χ18, χ

2
12),

S30(Γ) = SpanC(E3
6χ12, E

2
9χ12, χ12χ18, χ

2
12, E

2
6χ18, E

2
6χ

2
12) ,

but in the last case, we have the relation χ12(3888χ18−(E3
6 −E2

9)) = 0 which
comes from the relation (18) multiplied by J2

1,4,0J2,0,0 which corresponds to
χ12. Here this relation actually counts as a relation between cusp forms.

Corollary 16.4. The M(Γ)-module Σ(Γ) = ⊕kSk(Γ) of cusp forms on Γ is
generated by the forms χ12 and χ18 with the relation 3888χ18χ12 − (E3

6 −
E2

9)χ12 = 0 in weight 30.

17. The structure of a module for j = 4

To show the feasibility of constructing modular forms by covariants, as an
application we determine the structure of the M(Γ)-module

M2
4(Γ) = ⊕k�0M4,k(Γ, det2) .

With the same method one can also treat the modules

Ml
4(Γ) = ⊕k�0M4,k(Γ, detl)

for l = 0 and l = 1, but we refrain from giving the details.
The structure of the modules Ml

j(Γ) = ⊕kMj,k(Γ, detl) for j < 4 was
determined in [5] in a different manner, but it would be very difficult to go
beyond these cases that way. Invariant theory provides a good way to build
generators.

For the cusp forms, we use the notation Σl
4(Γ) or

Σl
4(Γ[

√
−3]) = ⊕k�0S4,k(Γ[

√
−3], detl) .
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Note (see [5, Proposition 5.1]) that

Ml
4 = Σl

4 if l �≡ 1 mod 3.

Recall that if k �≡ 1 mod 3 then M4,k(Γ[
√
−3], detl) = (0).

Theorem 17.1. The M(Γ)-module Σ2
4 is freely generated by cusp forms of

weight (4, 4), (4, 10), (4, 16), (4, 22) and (4, 28).

Proof. We begin the proof by deducing the Hilbert–Poincaré series for the
module Σ2

4. For this we start with Γ[
√
−3]. The dimension of the space

S4,1+3k(Γ[
√
−3], det2) is given by (see [1, Thm. 4.7])

dimS4,1+3k(Γ[
√
−3], det2) = k(5k + 1)/2 − 2

for k � 1. One can show that dimS4,1,2(Γ[
√
−3]) = 0, for example by

the following argument. By multiplication with E6 and the knowledge of
S4,7,2(Γ[

√
−3]) as a S4-module, we see that only the s[3, 1] and s[2, 1, 1] com-

ponents can be non-zero. Restricting to a component of T1 is injective since
such a component is the zero locus of a form of weight 1, and dividing would
give a non-zero form of weight (4, 0) on some congruence subgroup. The fact
that dimS3(Γ0(3),

( ·
3
)
)) = 2 and dim s[3, 1] = dim s[2, 1, 1] = 3, now shows

that dimS4,1,2(Γ[
√
−3]) = 0.

The Hilbert–Poincaré series for the dimensions is therefore given by

∑
k�0

dimS4,1+3k(Γ[
√
−3], det2)t1+3k = t4 + 6 t7 − 2 t10

(1 − t3)3 .

Lemma 17.2. The M(Γ[
√
−3])-module Σ2

4(Γ[
√
−3]) is generated by a gen-

erator of type s[4] in weight (4, 4), generators of type s[3, 1] and s[2, 1, 1] in
weight (4, 7) and a relation of type s[2, 2] in weight (4, 10).

Proof. This can be proved using results of [1] as in [5].

Writing the isotypical decomposition of M3k(Γ[
√
−3]) = Symk(s[2, 1, 1])

as

Symk(s[2, 1, 1]) = ak s[4] + bk s[3, 1] + ck s[2, 2] + dk s[2, 1, 1] + ek s[1, 1, 1, 1]

we get by Lemma 17.2 for k � 1

S4,6k−2(Γ[
√
−3], det2) = (a2k−2 + b2k−3 + d2k−3 − c2k−4) s[4] + . . .
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The generating series of the numbers ak, bk, ck, dk and ek are given by the
generating series N/(1− t)(1− t2)(1− t3)(1− t4) with N as in the next table.

ak bk ck dk ek

N (1 − t)(1 − t3 + t6) t2(1 − t3) (1 − t)t2(1 + t2) (t− t2 + t3)(1 − t3) t3(1 − t)

This leads to the following generating series for the dimension of the spaces
S4,6k−2(Γ, det2):

∑
k�1

dimS4,6k−2(Γ, det2)t6k−2 = t4 + t10 + t16 + t22 + t28

(1 − t6)(1 − t12)(1 − t18)

= t4 + 2 t10 + 4 t16 + 7 t22 + 11 t28 + O(t34) .

Now we turn to the construction by covariants of the generators of weights
(4, 4), (4, 10), (4, 16), (4, 22) and (4, 28).

The form of weight (4, 4) is already available:

χ4,4 = 4900
3 c41

ν(J1,0,4J1,4,0)

and for later use we observe that the Fourier-Jacobi of its last component
χ

(4)
4,4(u, v starts with

X2(q2
v − 6Y Z q4

v − 20 (Y 3 + Z3) q5
v + 81Y 2Z2 q6

v + 132(Y 4Z + Y Z4) q7
v

+ (122Y 6 − 800Y 3Z3 + 122Z6) q8
v − (1020Y 7Z − 1470Y 4Z4 + 1020Y Z7) q10

v

+ (−76Y 9 + 1140Y 6Z3 + 1140Y 3Z6 − 76Z9) q11
v + . . .

)
.

Next we construct a generator χ4,10 of weight 10. Note that dimS4,10(Γ, det2) =
2 and we know already a form of weight (4, 10), namely E6 χ4,4.

The three covariants J2,4,0J1,4,0J1,0,4, J2
1,4,0J2,0,4 and J1,4,0J0,1,1J3,3,3 pro-

duce modular forms in S4,10(Γ, det2). But we have the following relation

132 J0,1,1J3,3,3 + 175(J2,4,0J1,0,4 − J1,4,0J2,0,4) = 0 .

We know ν(J2,4,0) = −(c61/5040γ2)E6. We set

χ4,10 = −2744000 γ2

c10
1

ν(J2
1,4,0J2,0,4).
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One checks holomorphicity using the table in Section 12. The Fourier-Jacobi
expansion of its last component starts with

χ
(4)
4,10 =X2(q2

v + 54Y Z q4
v − 272(Y 3 + Z3) q5

v

+ 405Y 2Z2 q6
v + 3024(Y 4Z + Y Z4) q7

v

+ (4406Y 6 − 15560Y 3Z3 + 4406Z6) q8
v − 23328(Y 5Z2 + Y 2Z5) q9

v

− (62748Y 7Z − 221022Y 4Z4 + 62748Y Z7) q10
v

− (22000Y 9 − 16368Y 6Z3 − 16368Y 3Z6 + 22000Z9) q11
v + . . .

)
.

The Fourier-Jacobi expansions of the last components of E6χ4,4 and χ4,10
start with

E6χ
(4)
4,4 = X2q2

v + 750X2Y Zq4
v + . . . , χ

(4)
4,10 = X2q2

v + 54X2Y Zq4
v + . . . .

and this shows that they generate the space S4,10(Γ, det2).
For the generator of weight (4, 16) we note that dimS4,16(Γ, det2) = 4

and we have already three linearly independent elements E2
6χ4,4, E12χ4,4 and

E6χ4,10. We now put

χ4,16 = 2304960000 γ4

c16
1

ν(J2
1,4,0(6 J2,1,3J2,3,1 − J2,0,0J1,1,3J1,3,1)) .

We observe that the Taylor expansion of ν(6 J2,1,3J2,3,1 − J2,0,0J1,1,3J1,3,1)
along T1 starts with

ν(6 J2,1,3J2,3,1 − J2,0,0J1,1,3J1,3,1)(u,
√
−3τ) =

c81
705600γ6

([ 0
0
ϑ4
0
0

]
u−2 + γ/6

⎡⎣ 0
0
0

ϑ3(3ϑ3+ϑe2−108ψ3)
0

⎤⎦u−1 + . . .

)
,

so the multiplication by ν(J1,4,0)2, proportional to ζ2, makes it holomorphic
along T1.

The Fourier-Jacobi expansion of the last component χ
(4)
4,16 of χ4,16 starts

with

X2(q2
v + 162Y Zq4

v + 3040(Y 3 + Z3)q5
v + 43497Y 2Z2q6

v − 2592(Y 4Z + Y Z4)q7
v

− (298462Y 6 + 263600Y 3Z3 + 298462Z6)q8
v − 839808(Y 5Z2 + Y 2Z5)q9

v

+ (2185380Y 7Z − 127170Y 4Z4 + 2185380Y Z7)q10
v

+ (4366688Y 9 + 8413152Y 6Z3 + 8413152Y 3Z6 + 4366688Z9)q11
v + . . .

)
.
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The Fourier-Jacobi expansions of the last component of E2
6χ4,4, E12χ4,4,

E6χ4,10 and χ4,16 start with

E2
6χ

(4)
4,4 = X2q2

v + 1506X2Y Zq4
v + 4012X2(Y 3 + Z3)q5

v

+ 603369X2Y 2Z2q6
v + . . .

E12χ
(4)
4,4 = X2q2

v − 3678X2Y Zq4
v + 35116X2(Y 3 + Z3)q5

v

+ 354537X2Y 2Z2q6
v + . . .

E6χ
(4)
4,10 = X2q2

v + 810X2Y Zq4
v + 1744X2(Y 3 + Z3)q5

v

+ 61641X2Y 2Z2q6
v + . . .

χ
(4)
4,16 = X2q2

v + 162X2Y Zq4
v + 3040X2(Y 3 + Z3)q5

v

+ 43497X2Y 2Z2q6
v + . . .

showing that these generate S4,16(Γ, det2).
Before we construct the last two generators, we need a lemma.

Lemma 17.3. We have

ν(J2
1,4,0(J3,0,0J1,3,1 − J2,0,0J2,3,1) ∈ M1,16(Γ) ,

ν(J1,4,0J1,1,3) ∈ M3,6(Γ, det2) ,
ν(J1,4,0J0,1,1J3,4,2) ∈ M3,12(Γ, det2) ,

and these three forms are S4-invariant.

For the proof one calculates the Taylor expansion along T1 as done for
the examples above.

In order to get a form of weight (4, 22) we set

χ4,22 = 53782400000 γ6

3 c22
1

ν(J3
1,4,0J1,1,3(J3,0,0J1,3,1 − J2,0,0J2,3,1))

and by applying Lemma 17.3, we see that χ4,22 ∈ S4,22(Γ, det2).
The Fourier-Jacobi expansion of its last component starts with

χ
(4)
4,22 =X2(Y Zq4

v + 9(Y 3 + Z3) q5
v + 60Y 2Z2q6

v − 277(Y 4Z + Y Z4) q7
v

− (6363Y 6 − 9468Y 3Z3 + 6363Z6) q8
v + 2106(Y 5Z2 + Y 2Z5) q9

v

+ (15128Y 7Z + 27844Y 4Z4 + 15128Y Z7) q10
v +

(276471Y 9 − 212895Y 6Z3 − 212895Y 3Z6 + 276471Z9) q11
v + . . .

)
.
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By using the Fourier-Jacobi of the last component of E3
6χ4,4, E6E12χ4,4,

E2
9χ4,4, E2

6χ4,10, E12χ4,10, E6χ4,16 and χ4,22, we check that they are linearly
independent so they span the space S4,22(Γ, det2) that is of dimension 7.

For the generator of weight (4, 28) we put

χ4,28 = −51114792960000 γ8

c28
1

ν(J3
1,4,0J0,1,1J3,4,2 (J3,0,0J1,3,1 − J2,0,0J2,3,1))

and by applying Lemma 17.3 we see that χ4,28 ∈ S4,28(Γ, det2). The Fourier-
Jacobi expansion of its last component χ(4)

4,28 starts with

X2(Y Z q4
v + 9(Y 3 + Z3) q5

v − 384Y 2Z2q6
v − 7117(Y 4Z + Y Z4) q7

v

+ (−31959Y 6 − 92592Y 3Z3 − 31959Z6)q8
v − 274698(Y 5Z2 + Y 2Z5) q9

v

+ (3511880Y 7Z − 4338416Y 4Z4 + 3511880Y Z7) q10
v

+ (18226071Y 9 − 5450355Y 6Z3 − 5450355Y 3Z6 + 18226071Z9) q11
v + . . .

)
.

By using the Fourier-Jacobi of the last components of E4
6χ4,4, E2

6E12χ4,4,
E6E

2
9χ4,4, E2

12χ4,4, E3
6χ4,10, E6E12χ4,10, E2

9χ4,10, E2
6χ4,16, E12χ4,16, E6χ4,22

and χ4,28, we check that they are linearly independent, so they span the 11-
dimensional space S4,28(Γ, det2).

Lemma 17.4. The exterior product of our generators satisfies

5∧
k=1

χ4,6k−2 = − c10
1

2 γ10 ρ2 ζ12 E2
9 .

Proof. We first note that the exterior product of the five forms χ4,6k−2 for
k ∈ {1, 2, 3, 4, 5}, which take values in Sym4(C2) � C5, can be viewed as
the determinant of the five components of these five forms, and viewing a
covariant of degree 4 in x1, x2 as a vector of size 5 whose (i+1)th component
is the coefficient of x4−i

1 xi2, 0 � i � 4, we have

5∧
k=1

χ4,6k−2 = 241 · 32 · 518 · 719 · 11γ
20

c80
1

ν(J1,4,0)11 × ν(det(J ))

with J the expression
J1,0,4J2,0,4J1,1,3J0,1,1J3,4,2(6 J2,1,3J2,3,1 − J2,0,0J1,1,3J1,3,1)(J3,0,0J1,3,1 − J2,0,0J2,3,1)2))
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and we thus get

5∧
k=1

χ4,6k−2 = 235 · 32 · 512 · 714 · 112 γ
20

c80
1

ν(J12
1,4,0J

2
3,6,0(J3

2,0,0 − 6J2
3,0,0)2) .

We have seen in Proposition 16.1 that

ν(J1,4,0) = 3c41
70 ζ, ν(J3,6,0) = c91

798336 γ3E9, ν(32(J3
2,0,0 − 6 J2

3,0,0)) = −ρ
c12
1

33 γ12

and this implies
5∧

k=1
χ4,6k−2 = − c10

1
2 γ10 ρ2 ζ12 E2

9 ,

thus proving the lemma.

We can now conclude the proof of Theorem 17.1. The modular forms χ4,k
with k ∈ {4, 10, 16, 22, 28} are algebraically independent over M(Γ) because
of Lemma 17.4. Since they generate a submodule with Hilbert–Poincaré series
equal to that of Σ2

4 the result follows.

In a similar way one can treat the cases l = 1 and l = 0. We intend to
come back to these cases in another paper.
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