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1 Introduction 

Modular forms are sections of naturally defined vector bundles on arithmetic quo-
tients of bounded symmetric domains. Often such quotients can be interpreted as 
moduli spaces and sometimes this moduli interpretation allows a description as a 
stack quotient under the action of an algebraic group like GLn . In such cases, clas-
sical invariant theory can be used for describing modular forms. 

In the 1960s, Igusa used the close connection between the moduli of principally 
polarized complex abelian surfaces and the moduli of algebraic curves of genus two 
to describe the ring of scalar-valued Siegel modular forms of degree two (and level 1) 
in terms of invariants of the action of GL2 acting on binary sextics, see [ 20, 21]. Igusa 
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used theta functions and a crucial step in Igusa’s approach was provided by Thomae’s 
formulas from the nineteenth century that link theta constants for hyperelliptic curves 
to the cross ratios of the branch points of the canonical map of the hyperelliptic curve 
to P1. 

In the 1980s Tsuyumine, continuing the work of Igusa, used the connection 
between the moduli of abelian threefolds and curves of genus 3 to describe gen-
erators for the ring of scalar-valued Siegel modular forms of degree 3 (and level 1). 
He used the moduli of hyperelliptic curves of genus 3 as an intermediate step and 
used theta functions and the invariant theory of binary octics as developed by Shioda, 
see [ 26, 30]. 

The description of the moduli of curves of genus 2 (resp. 3) in terms of a stack 
quotient of GL2 acting on binary sextics (resp. of GL3 acting on ternary quartics) 
makes it possible to construct the modular forms directly from the stack quotient 
without the recourse to theta functions or cross ratios. This applies not only to scalar-
valued modular forms, but to vector-valued modular forms as well. Covariants (or 
concomitants) yield explicit modular forms in an efficient way. This is in contrast 
to earlier and more laborious methods of constructing vector-valued Siegel modular 
forms of degree 2 and 3 that use theta functions. 

In joint work with Fabien Cléry and Carel Faber [ 7– 9] we exploited this for the 
construction of Siegel modular forms of degree 2 and 3. In degree  2 the universal 
binary sextic, the most basic covariant, defines a meromorphic Siegel modular form 
χ6,−2 of weight (6, −2). Substituting the coordinates of χ6,−2 in a covariant produces 
a meromorphic modular form that becomes holomorphic after multiplication by an 
appropriate power of χ10, a cusp form of weight 10 associated to the discriminant. For 
degree 3 we can play a similar game, now involving the universal ternary quartic and 
a meromorphic Teichmüller modular form χ4,0,−1 of weight (4, 0, −1) that becomes 
a holomorphic Siegel modular form χ4,0,8 of weight (4, 0, 8) after multiplication 
with χ9, a Teichmüller form of weight 9 related to the discriminant. 

With this approach it is easy to retrieve Igusa’s result on the ring of scalar modular 
forms of degree  2. Another advantage of this direct approach is that one can treat 
modular forms in positive characteristic as well. Thus it enabled the determination 
of the rings of scalar-valued modular forms of degree 2 in characteristic 2 and 3, two  
cases that were unaccounted for so far, see [ 6, 33]. 

In this survey we sketch the approach and indicate how one constructs Siegel 
modular forms of degree 2 and 3. We show how to derive the results on the rings of 
scalar-valued modular forms of degree 2. 

2 Siegel Modular Forms 

Classically, Siegel modular forms are described as functions on the Siegel upper half 
space. We recall the definition. 

For g ∈ Z≥0 we set L = Z2g with generators e1, . . . ,  eg, f1, . . . ,  fg and define 
a symplectic form 〈 , 〉 on L via 〈ei , f j 〉 =  δi j  . The Siegel modular group Γg =
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Aut(L, 〈 , 〉) of degree g is the automorphism group of this symplectic lattice. Here 

we write an element γ ∈ Γg as a matrix

(
a b  
c d

)
of four g × g blocks using the basis ei 

and fi ; we often abbreviate this as γ = (a, b; c, d). The group Γg acts on the Siegel 
upper half space 

Hg = {τ ∈ Mat(g × g, C) : τ t = τ , Im(τ ) >  0} 

via τ |→ γ(τ ) = (aτ + b)(cτ + d)−1. 
A scalar-valued Siegel modular form of weight k and degree g > 1 is a holo-

morphic function f : Hg → C satisfying f (γ(τ )) = det(cτ + d)k f (τ ) for all γ = 
(a, b; c, d) ∈ Γg . If  ρ : GL(g) → GL(V ) is a complex representation of GLg then a 
vector-valued Siegel modular form of weight ρ and degree g > 1 is a holomorphic 
map f : Hg → V satisfying 

f (γ(τ )) = ρ(cτ + d) f (τ ) for all γ = (a, b; c, d) ∈ Γg (1) 

We may restrict to irreducible representations ρ. For  g = 1 we have to require an 
additional growth condition for y = Im(τ ) → ∞. 

However, for an algebraic geometer modular forms are sections of vector bundles. 
Let Ag be the moduli space of principally polarized abelian varieties of dimension g. 
This is a Deligne-Mumford stack of relative dimension g(g + 1)/2 over Z. It carries a 
universal principally polarized abelian variety π : Xg → Ag. This provides Ag with 
a natural vector bundle E = E(g), the Hodge bundle, defined as 

E = π∗(Ω1 
Xg /Ag 

) .  

Starting from E we can create new vector bundles. Each irreducible representation ρ 
of GLg defines a vector bundle Eρ by applying a Schur functor (or just by applying 
ρ to the transition functions of E). In particular, we have the determinant line bundle 
L = det(E). Scalar-valued modular forms of weight k are sections of L⊗k and these 
form a graded ring. In fact, for g ≥ 2 and each commutative ring F we have the ring 

Rg(F) = ⊕k H
0 (Ag ⊗ F, L⊗k ) .  

The moduli space Ag can be compactified. There is the Satake compactification, 
in some sense a minimal compactification, based on the fact that L is an ample 
line bundle on Ag. This compactification A∗

g is defined as Proj(Rg) and satisfies the 
inductive property 

A∗ 
g = Ag ⌴ A∗ 

g−1 . 

Restriction to the ‘boundary’ A∗
g−1 induces a map called the Siegel operator

Φ : Rg(F) → Rg−1(F) .
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We will also use (smooth) Faltings-Chai type compactifications Ãg and over these 
the Hodge bundle extends [ 14]. We will denote the extension also by E. 

For g > 1 the Koecher principle holds: sections of Eρ over Ag extend to regular 
sections of the extension of Eρ over Ãg , see  [  14, Prop 1.5, p. 140]. For g = 1 this 
does not hold since the boundary in A∗

1 is a divisor, and we define modular forms 
of weight k as sections of L⊗k over Ã1. If  D denote the divisor added to Ãg to 
compactify Ag, then elements of H 0( Ãg, Eρ ⊗ O(−D)) are called cusp forms. 

We will write Mρ(Γg)(F) for H 0( Ãg ⊗ F, Eρ) or simply Mρ(Γg) when F is 
clear. The space of cusp forms is denoted by Sρ(Γg). By the Koecher principle the 
spaces Mρ(Γg)(F) and Sρ(Γg)(F) do not depend on the choice of a Faltings-Chai 
compactification. 

Over the complex numbers if ρ : GL(g) → GL(V ) is an irreducible representa-
tion, elements of H 0( Ãg ⊗ C, Eρ) correspond to holomorphic functions f : Hg → V 
satisfying (1). Such a function allows a Fourier expansion 

f (τ ) =
Σ
n≥0 

a(n) qn , 

where the sum is over symmetric g × g half-integral matrices (meaning 2n is integral 
and even on the diagonal) which are positive semi-definite, a(n) ∈ V and qn is 
shorthand for e2πiTr(nτ ). 

The definition 
Rg(F) = ⊕k H

0 ( Ãg ⊗ F, L⊗k ) 

for a commutative ring F allows one speak of modular forms in positive characteristic 
by taking F = F p. One cannot define such modular forms by Fourier series. 

We summarize what is known about the rings Rg(F). It is a classical result that 
the ring R1(C) is freely generated by two Eisenstein series E4 and E6 of weights 4 
and 6. Deligne determined in [ 10] the ring R1(Z) and the rings R1(F p). He showed  
that 

R1(Z) = Z[c4, c6,Δ]/(c3 4 − c2 6 − 1728Δ) , 

where Δ is a cusp form of weight 12 and c4 and c6 are of weight 4 and 6. Reduction 
modulo p gives a surjection of R1(Z) to R1(F p) for p ≥ 5. Moreover, Deligne showed 
that R1(F p) in characteristic 2 and 3 is given by 

R1(F2) = F2[a1,Δ], R1(F3) = F3[b2,Δ], 

where in each case Δ is a cusp form of weight 12 and a1 (resp. b2) is a modular form 
of weight 1 (resp. 2). 

In [ 20] Igusa determined the ring R2(C). He showed that the subring Rev 
2 (C) of 

even weight modular forms is generated freely by modular forms of weight 4, 6, 10, 
and 12 and R2(C) is generated over Rev 

2 (C) by a cusp form of weight 35 whose
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square lies in Rev 
2 (C); see also [ 21]. Later [ 22] he also determined the ring R2(Z); it  

has 15 generators of weights ranging from 4 to 48. 
In characteristic p ≥ 5 the structure of the rings R2(F p) is similar to that of R2(C), 

see [ 2, 24]; these are generated by forms of weight 4, 6, 10, 12, and 35. The structure 
of R2(F p) for p = 2 and 3 was determined recently in [ 6, 33]. All these cases can 
be dealt with easily using the approach with invariant theory. 

In degree 2 one can provide the R2-module 

M = ⊕ j,k M j,k(Γ2) with M j,k(Γ2) = H 0 ( Ã2, Sym j (E) ⊗ det(E)k ) 

with the structure of a ring using the projection of GL2-representations Symm (V ) ⊗ 
Symn (V ) → Symm+n (V ) with V the standard representation by interpreting 
Sym j (V ) as the space of homogeneous polynomials of degree j in two variables, say 
x1, x2 and performing multiplication of polynomials. The ring M is not finitely gen-
erated as Grundh showed, see [ 3, p. 234]. The dimensions of the spaces Sj,k(Γ2)(C) 
are known by Tsushima [ 29] for  k ≥ 4; for  k = 3 they were obtained independently 
by Petersen and Taïbi [ 25, 28]. 

For fixed j the Rev 
2 (C)-modules 

⊕k M j,2k(Γ2)(C) and ⊕k M j,2k+1(Γ2)(C) 

are finitely generated modules and their structure has been determined in a number 
of cases by Satoh, Ibukiyama and others, see the references in [ 8]. Invariant theory 
makes it easier to obtain such results. 

For g = 3 the results are less complete. Tsuyumine showed in 1985 [ 30] that the 
ring R3(C) is generated by 34 generators. Recently Lercier and Ritzenthaler showed 
in [ 23] that 19 generators suffice. 

3 Moduli of Curves of Genus Two as a Stack Quotient 

We start with g = 2. Let  F be a field of characteristic /= 2 and V = 〈x1, x2〉 the 
F-vector space with basis x1, x2. The algebraic group GL2 acts on V via (x1, x2) |→ 
(ax1 + bx2, cx1 + dx2) for (a, b; c, d) ∈ GL2(F). We will write Vj,k = Sym j (V ) ⊗ 
det(V )⊗k for j ∈ Z≥0 and k ∈ Z. This is an irreducible representation of GL2. The  
underlying vector space can be identified with the space of homogeneous polynomials 
of degree j in x1, x2. We will denote by V 0 j,k the open subspace of polynomials with 
non-vanishing discriminant. 

The moduli space M2 of smooth projective curves of genus 2 over F allows a 
presentation as an algebraic stack 

M2 
∼−→ [V 0 6,−2/GL2]
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Here the action of (a, b; c, d) ∈ GL2(F) is by f (x1, x2) |→ (ad − bc)−2 f (ax1 + 
bx2, cx1 + dx2). 

Indeed, if C is a curve of genus 2 the choice of a basis ω1, ω2 of H 0(C, K ) with 
K = Ω1 

C defines a canonical map C → P1. Let  ι denote the hyperelliptic involution 
of C . Choosing a non-zero element η ∈ H 0(C, K 3)ι=−1 yields eight elements η2, 
ω6 
1, ω5 

1ω2, . . . ,  ω6 
2 in the 7-dimensional space H 0(C, K 6)ι=1 and thus a non-trivial 

relation. 
In inhomogeneous terms, this gives us an equation y2 = f with f ∈ F[x] 

of degree 6 with non-vanishing discriminant. The space H 0(C, K ) has a basis 
xdx/y, dx/y. If  we  let  GL2 act on (x, y) via (x, y) |→ ((ax + b)/(cx + d), y(ad − 
bc)/(cx + d)3) then this action preserves the form of the equation y2 = f if we take 
f in V6,−2. Then λ IdV acts via λ2 on V6,−2. Thus the stabilizer of a generic element 
f is of order 2. Moreover −IdV acts by y |→ −y on y and the action of GL2 on the 
differentials is by the standard representation. 

Conclusion 3.1 The pull back of the Hodge bundle E on M2 under the composition 
V 0 6,−2 → [V 0 6,−2/GL2] ∼−→ M2 is the equivariant bundle V . 

The moduli space M2 can be constructed from the projectivized space P(V6,−2) 
of binary sextics. The discriminant defines a hypersurface D whose singular locus 
has codimension 1 in D. The locus of binary sectics with three coinciding roots forms 
an irreducible component D' of the singular locus. To illustrate the relation between 
P(V6,−2) at a general point of D' and M2 at a point of the locus δ1 in M2 of stable 
curves whose Jacobian is a product of two elliptic curves, we reproduce the picture 
of [ 12, p. 80].  

E1 E2 

E3 

Here we look at a plane Π intersecting D transversally at a general point of D'. 
One blows up three times, starting at Π ∩ D', and then blows down the exceptional 
divisors E1 and E2; after that E3 corresponds to the locus δ1 in M2; in  A2 this 
corresponds to the locus A1,1 of products of elliptic curves.
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4 Invariant Theory of Binary Sextics 

We review the invariant theory of GL2 acting on binary sextics. Let V = 〈x1, x2〉 be 
a 2-dimensional vector space over a field F . By definition an invariant for the action 
of GL2 acting on the space Sym6 (V ) of binary sextics is an element invariant under 
SL2(F) ⊂ GL2(F). If we write 

f = 
6Σ

i=0 

ai x
6−i 
1 xi 2 (2) 

for an element of Sym6 (V ) and thus take (a0, . . . ,  a6) as coordinates on Sym6 (V ), 
then an invariant is a polynomial in a0, . . . ,  a6 invariant under SL2(F). The discrim-
inant of a binary sextic, a polynomial of degree 10 in the ai , is an example. 

For F = C the ring of invariants was determined by Clebsch, Bolza and others 
in the 19th century. It is generated by invariants A, B, C, D, E of degrees 2, 4, 6, 10 
and 15 in the ai . Also for  F = F p we have generators of these degrees. We refer to 
[ 15, 20]. 

A covariant for the action of GL2 on binary sextics is an element of V ⊕ Sym6 (V ) 
invariant under the action of SL2. Such an element is a polynomial in a0, . . . ,  a6 and 
x1, x2. One way to make such covariants is to consider equivariant embeddings of an 
irreducible GL2-representation U into Symd (Sym6 (V )). Equivalently, we consider 
an equivariant embedding 

ϕ : C c→ Symd (Sym6 (V )) ⊗ U∨ . 

Then Φ = ϕ(1) is a covariant. If U has highest weight (λ1 ≥ λ2) then Φ is homo-
geneous of degree d in a0, . . . ,  a6 and degree λ1 − λ2 in x1, x2. We say that Φ has 
degree d and order λ1 − λ2. 

The simplest example is the universal binary sextic f given by (2); it corresponds 
to taking U = Sym6 (V ). 

Another example is the Hessian of f . Indeed, we decompose in irreducible rep-
resentations 

Sym2 (Sym6 (V )) = V [12, 0] ⊕  V [10, 2] ⊕  V [8, 4] ⊕  V [6, 6] , 

where V [a, b] =  Syma−b (V ) ⊗ det(V )b is the irreducible representation of highest 
weight (a, b). By taking U = V [12, 0] we find the covariant Φ = f 2 and by taking 
U = V [10, 2] we get the Hessian; U = V [6, 6] gives the invariant A. 

The covariants form a ring C and the invariants form a subring I = I (2, 6). The  
ring of covariants C was studied intensively at the end of the nineteenth century and 
the beginning of the twentieth century. The ring C is finitely generated and Grace 
and Young presented 26 generators for the ring C, see  [  16]. These 26 covariants are 
constructed as transvectants by differentiating in a way similar to the construction
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of the Hessian. The kth transvectant of two forms g ∈ Symm (V ), h ∈ Symn (V ) is 
defined as 

(g, h)k = 
(m − k)!(n − k)! 

m! n! 
kΣ
j=0 

(−1) j
(
k 

j

)
∂kg 

∂xk− j 
1 ∂x j 2 

∂kh 

∂x j 1 ∂x
k− j 
2 

and the index k is usually omitted if k = 1. Examples of the generators are C1,6 = f , 
C2,0 = ( f, f )6, C2,4 = ( f, f )4, C3,2 = ( f, C2,4)4. We refer to [ 8] for a list of these 
26 generators. 

5 Covariants of Binary Sextics and Modular Forms 

The Torelli morphism induces an embedding M2 c→ A2. The complement of the 
image is the locus A1,1 of products of elliptic curves. As a compactification we can 
take Ã2 = M2. 

We now fix the field F to be C or a finite prime field F p. 
In the Chow ring CH∗ 

Q( Ã2) ⊗ F we have the cycle relation 

10λ1 = 2[A1,1] + [D] 

with λ1 = c1(E) the first Chern class of E and D the divisor that compactifiesA2 ⊗ F . 
This implies that there exists a modular form of weight 10 with divisor 2 A1,1 + D, 
hence a cusp form. It is well-defined up to a non-zero multiplicative constant. We 
will normalize it later. We denote it by χ10 ∈ R2(F). 

We let V be the F-vector space with basis x1, x2. The fact that the pullback of the 
Hodge bundle E under 

V 0 6,−2 → [V 0 6,−2/GL2] →  M2 ⊗ F c→ A2 ⊗ F (3) 

is the equivariant bundle V implies that a section of Lk = det(E)k pulls back to an 
invariant of degree k. We thus get an embedding of the ring of scalar-valued modular 
forms of degree 2 into the ring of invariants 

R2(F) c→ I (2, 6)(F) .  

Conversely, an invariant of degree d defines a section of Ld on M2 ⊗ F , hence 
a rational (meromorphic) modular form of weight d that is holomorphic outside 
A1,1 ⊗ F . By multiplying it with an appropriate power of χ10 it becomes holomorphic 
on A2 ⊗ F , hence on all of Ã2 ⊗ F . We thus get maps
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R2(F) c→ I (2, 6)(F) ν−→ R2(F)[1/χ10] (4) 

the composition of which is the identity on R2(F). 
From the description of the moduli M2 given above one sees that the image of a 

cusp form is an invariant divisible by the discriminant D. The image of χ10 is a non-
zero multiple of the discriminant D. We may fix χ10 by requiring that ν(D) = χ10. 

This extends to the case of vector-valued modular forms. Let 

M(F) = ⊕ j,k M j,k(Γ2)(F) 

denote the ring of vector-valued modular forms of degree 2. 

Proposition 5.1 Pullback via (3) defines homomorphisms 

M(F) c→ C(2, 6)(F) ν−→ M(F)[1/χ10] , 

the composition of which is the identity. 

A modular form of weight ( j, k) corresponds to a covariant of degree d = j/2 + k 
and order j . A covariant of degree d and order r gives rise to a meromorphic modular 
form of weight (r, d − r/2). 

The most basic covariant is the universal binary sextic f . By construction ν( f ) is 
a meromorphic modular form of weight (6, −2). Therefore the central question is: 
Which rational modular form is ν( f )? 

Let A1,1 ⊂ A2 be the locus of products of elliptic curves. Under the map 

A1 × A1 → A1,1 → A2 

the pullback of the Hodge bundle E = E(2) is p∗
1 E

(1) ⊕ p∗
2 E

(1) with p1 and p2 the 
projections of A1 × A1 on its factors. The pullback of an element h ∈ M j,k(Γ2) thus 
can be identified with an element of 

j⨁
i=0 

Mk+ j−i (Γ1) ⊗ Mk+i (Γ1) .  

Near a point of A1,1 we can write such an element symbolically as 

h = 
jΣ

i=0 

η j X j−i 
1 Xi 

2 , 

where the Xi are dummy variables to indicate the vector coordinates, and such that 
the coefficient η j defines the element of Mk+ j−i (Γ1) ⊗ Mk+i (Γ1). 

In particular, we have
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ν( f ) = 
6Σ

i=0 

αi X
6−i 
1 Xi 

2 , 

where αi are rational functions near a point of A1,1. By interchanging x1 and x2 (that 
corresponds to the element γ ∈ Γ2 that interchanges e1 and e2) we see that α6−i = αi 

for i = 0, . . . ,  3. 
Proposition 5.2 If char(F) /= 2 and /= 3, then dim S6,8(Γ2)(F) = 1 and χ10ν( f ) 
is a generator of S6,8(Γ2)(F). 

Proof We shall use that dim S6,8(Γ2)(C) ≥ 1. Indeed, we know an explicit cusp form 
of weight (6, 8), see below. (Alternatively, we know the dimensions of Sj,k(Γ2)(C) 
for k ≥ 4, see  [  29]; in particular we know dim S6,8(Γ2)(C) = 1.) By semi-continuity 
this implies that dim S6,8(Γ2)(F) ≥ 1. 

The restriction of an element of S6,8(Γ2)(F) to the locus A1,1 ⊗ F lands in 

6⨁
i=0 

S8+6−i (Γ1)(F) ⊗ S8+i (Γ1)(F) ,  

and as we have dim Sk(Γ1)(F) = 0 for k < 12 it vanishes on A1,1 ⊗ F . 
The tangent space to A2 at a point [X = X1 × X2] of A1,1, with Xi elliptic curves, 

can be identified with 

Sym2 (TX ) = Sym2 (TX1 ) ⊕ (TX1 ⊗ TX2 ) ⊕ Sym2 (TX2 ) 

with TX (resp TXi ) the tangent space at the origin of X (resp. Xi ), and with the 
middle term corresponding to the normal space. Thus we see that the pullback of 
the conormal bundle of A1,1 to A1 × A1 is the tensor product of the pullback of the 
Hodge bundles on the two factors A1. 

Let h ∈ S6,8(Γ2)(F) and write h as 

h = 
6Σ

i=0 

ηi X
6−i 
1 Xi 

2 

locally at a general point of A1,1 ⊗ F . If we consider the Taylor development in 
the normal direction of A1,1 of the form h that vanishes on A1,1 ⊗ F then the first 
non-zero Taylor term of ηi , say  the  r th term, is an element of 

S14−i+r (Γ1)(F) ⊗ S8+i+r (Γ1)(F) .  

Since Sk(Γ1)(F) = (0) for k < 12, a non-zero r th Taylor term of ηi can occur only 
for 14 − i + r ≥ 12 and 8 + i + r ≥ 12. We thus find: 

ordA1,1 (η0, . . . ,  η6) ≥ (4, 3, 2, 1, 2, 3, 4) .
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Lemma 5.3 We have ordA1,1 (η3) = 1. 

Proof If ordA1,1 (η3) ≥ 2 then h/χ10 is a regular form in S6,−2(Γ2) and we write 
it as h/χ10 = Σ6 

i=0 ξi X
6−i 
1 Xi 

2 with ξi = ηi /χ10 regular. Then the invariant A = 
120 a0a6 − 20 a1a5 + 8 a2a4 − 3 a2 3 defines a non-zero regular modular form 

ν(A) = 120 ξ0ξ6 − 20 ξ1ξ5 + 8 ξ2ξ4 − 3 ξ2 3 

in M2(Γ2)(F). But restriction to A1,1 gives for even k an exact sequence 

0 → Mk−10(Γ2)(F) → Mk(Γ2)(F) → Sym2 (Mk(Γ1)(F)) (5) 

with the second arrow multiplication by χ10. This implies that dim M2(Γ2)(F) = 0 
for char(F) /= 2 and /= 3. This proves the lemma. ☐

The image of a non-zero element χ6,8 of S6,8 in C(2, 6) is a covariant of degree 11 
and order 6. But since χ6,8 is a cusp form, this covariant is divisible by the discriminant 
which is of degree 10. Therefore, χ6,8/χ10 corresponds to a covariant of degree 1, 
hence is a non-zero multiple of f . This implies that dim S6,8(Γ2)(F) = 1. ☐

Corollary 5.4 If we write ν( f ) = Σ6 
i=0 αi X

6−i 
1 Xi 

2 then 

ordA1,1 (α0, . . . ,  α6) ≥ (2, 1, 0, −1, 0, 1, 2) 

and ordA1,1 (α3) = −1. 

6 Constructing Vector-Valued Modular Forms of Degree 2 

Now that we know ν( f ) by Proposition 5.2 we can describe the map ν : C(2, 6) → 
M[1/χ10] explicitly. Recall that a covariant is a polynomial in a0, . . . ,  a6 and x1, x2. 
We arrive at the following conclusion. 

Proposition 6.1 The map ν : C(2, 6) → M[1/χ10] is substitution of αi for ai (and 
Xi for xi ). 

In order to efficiently apply the proposition we need to know the coordinates of a 
generator χ6,8 of S6,8 very explicitly. 

Remark 6.2 If F /= F2 the moduli space A2[2] of level 2 is a Galois cover of 
A2 with group Sp(2, Z/2Z). This group is isomorphic to the symmetric group S6. 
The sign character of S6 defines a character ∊ of Γ2. The pullback of χ10 under 
π : A2[2] →  A2 is a square χ2 

5 since the pullback of D under Ã2[2] →  Ã2 is divisible 
by 2 as a divisor. Thus χ5 is a modular form of weight 5 with character ∊. 

Let now F = C. Recall that χ6,8 vanishes on A1,1. Dividing χ6,8 by χ5 provides 
a holomorphic vector-valued modular form χ6,3 ∈ M6,3(Γ2, ∊)(F) with character ∊. 
Such a form can be constructed as follows.
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We consider the six odd order two theta functions ϑi (τ , z) with (τ , z) ∈ H2 × C2. 
The gradient Gi = (∂ϑi /∂z1, ∂ϑi /∂z2)(τ , 0) is a modular form of weight (1, 1/2) 
on some congruence subgroup, but the product of the transposes of these six gradients 
defines a vector-valued modular form of weight (6, 3) on Γ2 with character ∊. The  
product χ6,8 = χ5χ6,3 is a cusp form of weight (6, 8) on Γ2. A non-zero multiple of 
its Fourier expansion starts with (with q1 = e2πiτ11 , q2 = e2πiτ22 and r = e2πiτ12 ) 

χ6,8(τ ) = 

⎛ 

⎜⎜⎝ 

0 
0 

r−1−2+r 
2(r−r−1) 
r−1−2+r 

0 
0 

⎞ 

⎟⎟⎠ q1q2 + 

⎛ 

⎜⎜⎜⎝ 

0 
0 

−2(r−2+8r−1−18+8r+r2) 
8(r−2+4r−1−4r−r2) 

−2(7r−2−4r−1−6−4r+7r2) 
12(r−2−2r−1+2r−r2) 

−4(r−2−4r−1+6−4r+r2) 

⎞ 

⎟⎟⎟⎠ q1q
2 
2 

+ 

⎛ 

⎜⎜⎜⎝ 

−4(r−2−4r−1+6−4r+r2) 
12(r−2−2r−1+2r−r2) 

−2(7r−2−4r−1−6−4r+7r2) 
8(r−2+4r−1−4r−r2) 

−2(r−2+8r−1−18+8r+r2) 
0 
0 

⎞ 

⎟⎟⎟⎠ q2 
1 q2 + 

⎛ 

⎜⎜⎜⎝ 

16(r−3−9r−1+16−9r+r3) 
−72(r−3−3r−1+3r−r3) 

+128(r−3−2+r3) 
−144(r−3+5r−1−5r−r3) 

+128(r−3−2+r3) 
−72(r−3−3r−1+3r−r3) 
16(r−3−9r−1+16−9r+r3) 

⎞ 

⎟⎟⎟⎠ 
q2 
1 q

2 
2 + . . .  

Proposition 6.1 provides an extremely effective way of constructing complex 
vector-valued Siegel modular forms of degree 2. Let us give a few examples. In the 
decomposition 

Sym2 (Sym6 (V )) = V [12, 0] ⊕  V [10, 2] ⊕  V [8, 4] ⊕  V [6, 6] 

of Sym2 (Sym6 (V )) the covariant H defined by V [10, 2] is the Hessian and by 
Corollary 5.4 gives rise to a form χ8,8 = ν(H )χ10 ∈ S8,8(Γ2) and using the Fourier 
expansion of χ6,8 we obtain the Fourier expansion of χ8,8. Similarly, the covariant 
corresponding to V [8, 4] gives a form χ4,10 after multiplication with χ10. Finally, 
the covariant defined by V [6, 6] is the invariant A and defines the cusp form 
χ12 = ν(A)χ10. We refer to [ 7] for more details. 

As an illustration of this we refer to the website [ 1] that gives the Fourier series 
for generators for all cases where dim Sj,k(Γ2) = 1. 

Another illustration of the efficacity of the construction of modular forms appears 
when one considers the modules ⊕k M j,k(Γ2) and ⊕k M j,k(Γ2, ∊). Let  Rev 

2 be the ring 
of scalar-valued modular forms of even weight. The structure of the Rev 

2 -modules 

⊕k M j,2k(Γ2), ⊕k M j,2k+1(Γ2) 

has been determined for j = 2, 4, 6, 8, 10 by Satoh, Ibukiyama, Kiyuna, van Dorp 
and Takemori using various methods. Using covariants one can uniformly treat these 
cases and the cases of modular forms with character for the same values of j 

⊕k M j,2k(Γ2, ∊), ⊕k M j,2k+1(Γ2, ∊) .
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For example, the R2-module ⊕k M2,2k+1(Γ2, ∊) is free with generators of weight 
(2, 9), (2, 11), and (2, 17) and the module ⊕k M

10,2k 
10 (Γ2, ∊) is free with 10 generators. 

We refer to [ 8]. 
Yet another application of the construction of modular forms via covariants deals 

with small weights. It is known by Skoruppa [ 27] that dim Sj,1(Γ2) = 0. He proved 
this using Fourier-Jacobi forms. We conjecture dim Sj,2(Γ2) = 0 and proved this for 
j ≤ 52 using covariants. We refer to [ 5]. 

As a final illustration, for k = 3 the smallest j such that dim Sj,3(Γ2) /= 0 is 36. 
It is not difficult to construct a generator of S36,3(Γ2) using covariants, see [ 5]. 

7 Rings of Scalar-Valued Modular Forms 

The approach explained in the preceding section makes it easy to find generators for 
the rings R2(F) = ⊕k Mk(Γ2)(F) of modular forms of degree 2 for F = C or F = 
F p. We write νF for the map I (2, 6)(F) → R2(F)[1/χ10]. We denote by Rev 

2 (F) 
the subring of even weight modular forms. 

The degree 2 invariant A of a binary sextic f = Σ6 
i=0 ai x

6−i 
1 xi 2 can be written as 

120 a0a6 − 20 a1a5 + 8 a2a4 − 3 a2 3 . 

Corollary 5.4 implies that νF (A) cannot be regular for F = C or F p with p ≥ 5, but  
also that νF (AD) is a cusp form χ12 ∈ S12(Γ2)(F) of weight 12. 

In degree 4 there is the invariant B given by 

(81 a0a6 + 9 a1a5)a2 3 − 3 (15 a0a4a5 + 15 a1a2a6 + a1a2 4 + a2 2a5)a3 +  · · ·  +  a2 2a
2 
4 

and Corollary 5.4 implies that it defines a regular modular form ψ4 = νF (B) of 
weight 4. 

The invariant C of degree 6 is given by 

18 (9 a0a6 + 4 a1a5)a4 3 − 6 (33 a0a4a5 + 33 a1a2a6 + 4 a1a2 4 + 4a2 2a5)a
3 
3 +  · · ·  

and in a similar way one sees that AB  − 3 C starts with 

1458 a0a6a
4 
3 − 486 (a0a4a5 + a1a2a6)a3 3 +  · · ·  

and defines a regular modular form ψ6 = νF (AB  − 3C) of weight 6. 
The discriminant D starts as 

729 a2 0a
2 
6 a

6 
3 − 54(9 a2 0a4a5a6 − 2 a2 0a

3 
5 + 9 a0a1a2a2 6 − 2 a3 1a

2 
6 )a

5 
3 +  · · ·
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and is seen to have order 2 along A1,1. It defines a cusp form that is a non-zero 
multiple of χ10. 

Proposition 7.1 For F = C or F = F p with p ≥ 5 the modular forms ψ4, ψ6, χ10 

and χ12 generate Rev 
2 (F). 

Proof The algebraic independence of A, B, C, D shows that the generators are 
algebraically independent. Therefore ψ4, ψ6, χ10, χ12 generate a graded subring 
T (F) ⊆ Rev 

2 (F) such that for even k we have 

dim Tk(F) = 
k3 

17280 
+ O(k2 ) .  

Now by Riemann-Roch we have for even k 

dim Mk(Γ2)(F) = 
c1(L)3 

3! k3 + O(k2 ) 

since c1(L)3 = 1/2880, [  32, p. 72]. Therefore there cannot be more generators. Note 
that 4 · 6 · 10 · 12 = 2880. ☐

Remark 7.2 Restriction to A1,1 shows that ψ4, ψ6, χ10, χ12 generate Mk(Γ2)(F) 
for k ≤ 12. Let  d(k) = dimF Mk(Γ2)(F) and t (k) = dimF Tk(F). Then t (k) ≤ d(k) 
and for even k the exact sequence (5) yields 

d(k) ≤ d(k − 10) + 
c(k)(c(k) + 1) 

2 

with c(k) = dimF Mk(Γ1)(F). Now one easily sees t (k) − t (k − 10) = c(k)(c(k) + 
1)/2. Thus if we assume d(k − 10) = t (k − 10) we get 

t (k) ≤ d(k) ≤ d(k − 10) + 
c(k)(c(k) + 1) 

2
= t (k) 

and this provides via induction another proof that ψ4, ψ6, χ10 and χ12 generate 
Rev 
2 (F) for F = C or F p with p ≥ 5. 

The odd degree invariant E (of degree 15) of binary sextics starts with 

−729(a2 0a
3 
5 − a3 1a6)a

10 
3 + . . .  

and one checks that it has order −3 along A1,1. So  χ2 
10νF (E) defines a regular cusp 

form χ35 ∈ S35(Γ2)(F) with order 1 along A1,1. 

Let now char(F) /= 2. The locus in A2 ⊗ F of principally polarized abelian sur-
faces X with Aut(X) containing Z/2Z × Z/2Z consists of two irreducible divisors 
H1 = A1,1 and H4, the Humbert surface of degree 4 of abelian surfaces isogenous 
with a product by an isogeny of degree 4. In terms of moduli of curves, H4 is the
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locus of curves that are double covers of elliptic curves. We know that the cycle class 
of H1 + H4 is 35λ1 in PicQ(A2), see  [  31, p. 218]. 

Lemma 7.3 Suppose that char(F) /= 2. A modular form f ∈ Mk(Γ2)(F) with k odd 
vanishes on H1 and H4. 

Proof An abelian surface [X ] ∈  H1 or [X ] ∈  H4 possesses an involution that acts 
by −1 on H 0(X,Ω2 

X ). ☐

Corollary 7.4 The form χ35 as a section of L⊗35 has as divisor H1 + H4 + D with 
D the divisor at infinity. 

We can now easily derive the results of Igusa and Nagaoka (see [ 20, 24], and also 
[ 19]). 

Theorem 7.5 Let F = C or F = F p with p ≥ 5. Then the ring R2(F p) is generated 
over Rev 

2 (F p) = F[ψ4, ψ6, χ10, χ12] by the cusp form χ35 of weight 35 with χ2 
35 ∈ 

Rev 
2 (F). 

Proof Any odd weight modular form vanishes on H1 and H4, hence is divisible by 
χ35. ☐

Remark 7.6 The same argument proves Theorem 7.5 for any commutative ring F 
in which 6 is invertible. It can also be used to obtain Igusa’s result on the ring R2(Z). 

Now positive characteristic sometimes allows more modular forms than charac-
teristic zero. We know that the locus in Ag ⊗ F p of abelian varieties of p-rank < g 
has cycle class (p − 1)λ1, [  13, 32]. This implies that there is a non-zero modular 
form of weight p − 1 in characteristic p. This modular form is called the Hasse 
invariant of degree g and weight p − 1. The image of the Hasse invariant of degree 
g under the Siegel operator is the Hasse invariant of degree g − 1. 

The Hasse invariants for degree 1 and characteristic 2 and 3 appear as the gener-
ators a1 and b2 in 

R1(F2) = F2[a1,Δ], R1(F3) = F3[b2,Δ] . 

The degree 2 invariant A of binary sextics reduces to a1a5 − a2a4 modulo 3 and 
in view of Conclusion 5.4 defines a form νF3 (A) ∈ M2(Γ2)(F3) and it must agree 
with the Hasse invariant (up to a non-zero multiplicative scalar) as there is only one 
invariant of degree 2 (up to multiplicative scalars). A careful analysis of the invariants 
in characteristic 3 leads to the description of the ring R2(F3) given in [ 33]. 

Theorem 7.7 The subring Rev 
2 (F3) of modular forms of even weight is generated 

by forms of weights 2, 10, 12, 14, and 36 and has the form
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Rev 
2 (F3) = F3[ψ2, χ10, ψ12, χ14, χ36]/J 

with J the ideal generated by the relation ψ3 
2χ36 − χ3 

10ψ12 − ψ2 
2χ10χ

2 
14 + χ3 

14. More-
over, R2(F3) is generated over Rev 

2 by a form χ35 of weight 35 whose square lies in 
Rev 
2 (F3). The ideal of cusp forms is generated by χ10, χ14, χ35, χ36. 

The case of characteristic 2 was treated in joint work with Cléry in [ 5]. In the case 
of characteristic 2 a curve of genus 2 is not described by a binary sextic. Instead we 
find an equation 

y2 + a y  + b = 0 

with a (resp. b) in  k[x] of degree ≤ 3 (resp. ≤ 6) and the hyperelliptic involution 
is y |→ y + a. It comes with a basis xdx/a, dx/a of regular differentials. In this 
case we look at pairs (a, b) ∈ V3,−1 × V6,−2 with Vn,m = Symn (V ) ⊗ det(V )m . Let  
V0 ⊂ V3,−1 × V6,−2 be the open subset defining smooth hyperelliptic curves. Now 
we have an action of GL2 and an action of Sym3 (V ) via 

(a, b) |→ (a, b + v2 + va) 

Together this defines a stack quotient 

[V0 /GL2 ⋉ V3,−1] 

Now by an invariant we mean a polynomial in the coefficients a0, . . . ,  a3 and 
b0, . . . ,  b6 that is invariant under SL(V ) ⋉ Sym3 (V ). Let  K be the ring of invariants. 
A first example is the square root of the discriminant of a: 

K1 = a0a3 + a1a2 . 

As an analog of (5) we now get homomorphisms 

R2(F2) c→ K ν−→ R2(F2)[1/χ10] 

the composition of which is the identity. 
In order to construct characteristic 2 invariants one can still use binary sextics 

as Igusa suggested in [ 20]. Indeed, one lifts the curve given by y2 + ay + b = 0 to 
the Witt ring, say defined by y2 + ã y  + b̃ = 0 and takes an invariant of the binary 
sextic given by ã2 + 4b̃, then divides these by the appropriate power of 2 and reduces 
modulo 2. 

For example, the degree 2 invariant of binary sextics yields in this way an invariant 
K2 that equals K 2 1 . A degree 4 invariant yields an invariant K4 that turns out to be 
divisible by K1. We thus find an invariant K3 of degree 3. 

The Hasse invariant ψ1 must map to K1. As in characteristic 3 a careful analysis 
gives the orders of ai and bi along A1,1 and we can deduce for an invariant K the 
order of ν(K ) along A1,1. The ring R2(F2) was described in [ 5].
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Theorem 7.8 The ring R2(F2) is generated by modular forms of weights 1, 10, 12, 
13, and 48 satisfying one relation of weight 52: 

R2(F2) = F2[ψ1, χ10, ψ12, χ13, χ48]/(R) 

with R = χ4 
13 + ψ3 

1χ10χ
3 
13 + ψ4 

1χ48 + χ4 
10ψ12. The ideal of cusp forms is generated 

by χ10, χ13 and χ48. 

8 Moduli of Curves of Genus Three and Invariant Theory 
of Ternary Quartics 

Now we turn to genus 3 treated in [ 9] and consider the moduli space Mnh 
3 of non-

hyperelliptic curves of genus 3 over a field F . This is an open part of the moduli 
space M3 with as complement the divisor H3 of hyperelliptic curves. Let now V =
〈x0, x1, x2〉 be the 3-dimensional F-vector space with basis x0, x1, x2. We let  V4,0,−1 

be the irreducible representation Sym4 (V ) ⊗ det(V )−1. The underlying space is the 
space of ternary quartics. It contains the open subset V 0 4,0,−1 of ternary quartics with 
non-vanishing discriminant; that is, the ternary quartics that define smooth plane 
quartic curves. 

It is known that Mnh 
3 has a description as stack quotient 

Mnh 
3 

∼−→ [V 0 4,0,−1/GL3] 

Indeed, if C is a non-hyperelliptic curve of genus 3 then a choice of basis of H 0(C, K ) 
defines an embedding of C into P2 and the image satisfies an equation f (x0, x1, x2) = 
0 with f homogeneous of degree 4. In order that the action on the space of differentials 
with basis 

xi (x0dx1 − x1dx0)/(∂ f /∂x2), i = 0, 1, 2 

is the standard representation V we need to twist Sym4 (V ) by det(V )−1. Then λId ∈ 
GL3(F) acts by λ on V4,0,−1 and we arrive at the familiar stack quotient [Q/PGL3] 
with Q the space of smooth projective curves of degree 4 in P2 by first dividing by 
the multiplicative group of multiples of the diagonal. 

Conclusion 8.1 The pull back of the Hodge bundle E on Mnh 
3 under 

V 0 4,0,−1 → [V 0 4,0,−1]/GL2] ∼−→ Mnh 
3 

is the equivariant bundle V . 

Therefore we now look at the invariant theory of GL3 acting on ternary quartics 
Sym4 (V ) with V = 〈x, y, z〉 the standard representation of GL3(V ). We write the 
universal ternary quartic f as
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f = a0x4 + a1x3 y +  · · ·  +  a14z4 

in a lexicographic way. We fix coordinates for ∧2V 

x̂ = y ∧ z, ŷ = z ∧ x, ẑ = x ∧ y . 

Recall that an irreducible representation ρ of GL3 is determined by its highest weight 
(ρ1 ≥ ρ2 ≥ ρ3). This representation appears in 

Symρ1−ρ2 (V ) ⊗ Symρ2−ρ3 (∧2 V ) ⊗ det(V )3 

An invariant for the action of GL3 on Sym4 (V ) is a polynomial in a0, . . . ,  a14 invari-
ant under SL3. Instead of the notion of covariant we consider here the notion of a 
concomitant. A concomitant is a polynomial in a0, . . . ,  a14 and in x, y, z and x̂, ŷ, ẑ 
that is invariant under the action of SL3. The most basic example is the universal 
ternary quartic f . 

Concomitants can be obtained as follows. One takes an equivariant map of GL3-
representations 

U c→ Symd (Sym4 (V )) 

or equivalently the equivariant embedding 

ϕ : C −→ Symd (Sym4 (V )) ⊗ U∨ 

Then Φ = ϕ(1) is a concomitant. If U is an irreducible representation of highest 
weight ρ1 ≥ ρ2 ≥ ρ3 then Φ is of degree d in a0, . . . ,  a14, of degree  ρ1 − ρ2 in 
x, y, z and degree ρ2 − ρ3 in x̂, ŷ, ẑ. 

The invariants form a ring I (3, 4) and the concomitants C(3, 4) form a module 
over I (3, 4). For more on the ring I (3, 4) see [ 11]. 

9 Concomitants of Ternary Quartics and Modular Forms 
of Degree 3 

The starting point for the construction of modular forms of degree 3 is the Torelli 
morphism 

t : M3 → A3 

defined by associating to a curve of genus 3 its Jacobian. This is a morphism of 
Deligne-Mumford stacks of degree 2 ramified along the hyperelliptic locus H3. 
Indeed, every abelian variety has an automorphism of order 2, but a generic curve 
of genus 3 does not have non-trivial automorphisms. Hyperelliptic curves have an 
automorphism of order 2 that induces −1Jac on the Jacobian.
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There is a Siegel modular form χ18 ∈ S18(Γ3) constructed by Igusa [ 21]. It is 
defined as the product of the 36 even theta constants of order 2. The divisor of χ18 

in the standard compactification (defined by the second Voronoi fan) Ã3 is 

H3 + 2D 

with D the divisor at infinity. 
The pullback under the Torelli morphism of the Hodge bundle E on A3 is the 

Hodge bundle of M3. The Hodge bundle on M3 extends to the Hodge bundle over 
M3, denoted again by E. For each irreducible representation ρ of GL3 have a bundle 
Eρ on M3 constructed by applying a Schur functor. We thus can consider 

Tρ = H 0 (M3, Eρ) 

and elements of it are called Teichmüller modular forms of weight ρ and genus 
(or degree) 3. There is an involution ι acting on the stack M3 associated to the 
double cover M3 → A3. If the characteristic is not 2 we can thus split Tρ into 
±1-eigenspaces under ι 

Tρ = T + 
ρ ⊕ T − 

ρ . 

We can identify the invariants under ι with Siegel modular forms 

T + 
ρ = Mρ(Γ3) (6) 

while the space T −ρ consists of the genuine Teichmüller modular forms. 
The pullback of χ18 to M3 is a square χ2 

9 with χ9 a Teichmüller modular form of 
weight 9 constructed by Ichikawa [ 17, 18]. 

Using the identification (6) we have 

χ9 T 
− 
ρ ⊂ Sρ'(Γ3) with ρ' = ρ ⊗ det9 . 

We will now use the invariant theory of ternary quartics Conclusion 8.1 implies 
that the pullback of a scalar-valued Teichmüller modular form of weight k is an 
invariant of weight 3k in I (3, 4). An invariant of degree 3d defines a meromorphic 
Teichmüller modular form of weight d on M3 that becomes holomorphic after mul-
tiplication by an appropriate power of χ9. Indeed, an invariant of degree 3d is defined 
by an equivariant embedding det(V )4d c→ Sym3d (Sym4 (V )) or taking care of the 
necessary twisting by 

det(V )d c→ Sym3d (Sym4 (V )) ⊗ det(V )−3d . 

We thus get 
T −→ I (3, 4) −→ T [1/χ9] ,
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where the composition of the arrows is the identity. In particular, the Teichmüller 
modular form χ9 maps to an invariant of degree 27 and since it is a cusp form one 
can check that it must be divisible by the discriminant, hence is a multiple of the 
discriminant. 

We can extend this to vector-valued Teichmüller modular forms

Σ −→ C(3, 4) ν−→ Σ[1/χ9] 

with the T -module Σ defined as
Σ = ⊕ρTρ 

with ρ running through the irreducible representations of GL3. 
We can ask what the image ν( f ) of the universal ternary quartic is. By construction 

it is a meromorphic modular form of weight (4, 0, −1). Here the weight refers to the 
irreducible representation Sym4 (V ) ⊗ det(V )−1 of GL3. 

We know that there exists a holomorphic modular cusp form χ4,0,8 of weight 
(4, 0, 8), see  [  4] and below. 

Proposition 9.1 Over C the Siegel modular modular form χ9 ν( f ) is a generator 
of S4,0,8(Γ3)(C). 

Proof The cusp form χ4,0,8 maps to a concomitant of degree 28 that is divisible 
by the discriminant. Therefore, χ4,0,−1 = χ4,0,8/χ9 corresponds to a concomitant of 
degree 1. This must be a non-zero multiple of f . ☐

If we write the universal ternary quartic lexicographically as 

f = a0x4 + a1x3 y +  · · ·  +  a14z4 

and we write the meromorphic Teichmüller form χ4,0,−1 similarly lexicographically 
as 

χ4,0,−1 = α0 X
4 + α1 X

3 Y +  · · ·  +  α14 Z
4 

with dummy variables X, Y, Z to indicate the coordinates of χ4,0,−1, we arrive at the  
analog for degree 3: 

Proposition 9.2 The map ν : C(3, 4) → T [1/χ9] is given by substituting αi for ai 
(and X, Y, Z for x, y, z and X̂ , Ŷ , Ẑ for x̂, ŷ, ẑ). 

In the following, we restrict to F = C. One way to construct a generator of 
S4,0,8(Γ3)(C) is to take the Schottky form of degree 4 and weight 8 that vanishes on 
the Torelli locus. We can develop it along A3,1, the locus in A4 of products of abelian 
threefolds and elliptic curves. It restriction to A3,1 is a form in S8(Γ3) ⊗ S8(Γ1) and 
thus vanishes. The first non-zero term in the Taylor expansion along A3,1 is 

χ4,0,8 ⊗ Δ ∈ S4,0,8(Γ3) ⊗ S12(Γ1)
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Since the Schottky form can be constructed explicitly with theta functions we can 
easily obtain the beginning of the Fourier expansion. We refer to [ 4] for the details. 

In [ 9] we formulated a criterion that tells us which elements of C(3, 4) will give 
holomorphic modular forms. We can associate to a concomitant its order along the 
locus of double conics by looking at its order in t when we evaluate it on the ternary 
quartic t f  + q2 where q is a sufficiently general quadratic form in x, y, z. Then the 
result is the following, see [ 9]. 

Theorem 9.3 Let c be a concomitant of degree d and v(c) its order along the 
locus of double conics. If d is odd then ν(c)χ9 is a Siegel modular form with order 
v(c) − (d − 1)/2 along the hyperelliptic locus. If d is even, then the order of ν(c) is 
v(c) − d/2. 

We formulate a corollary. Let Mi, j,k(Γ3)
(m) be the space of Siegel modular 

forms of weight (i, j, k) vanishing with multiplicity ≥ m at infinity. (The weight 
(i, j, k) corresponds to the irreducible representation of GL3 of highest weight 
(i + j + k, j + k, k).) Moreover, let Cd,ρ(−m DC) be the vector space of concomi-
tants of type (d, ρ) that have order ≥ m along the locus of double conics. (Type (d, ρ) 
means belonging to an irreducible representation U of highest weight ρ occurring in 
Symd (Sym4 (V )).) 

Corollary 9.4 The exists an isomorphism 

Cd,ρ(−m DC)
∼−→ M (d−2m) 

ρ1−ρ2,ρ2−ρ3,ρ3+9(d−2m) 

given by c |→ ν(c)χd−2m 
9 . 

This allows now the construction of Siegel modular forms and Teichmüller mod-
ular forms of degree 3. In fact, in principle, all of them. As a simple example, we 
decompose 

Sym2 (Sym4 (V )) = V [8, 0, 0] +  V [6, 2, 0] +  V [4, 4, 0] . 

The concomitant corresponding to U = V [8, 0, 0] yields via ν the symmetric square 
of ν( f ). The concomitant corresponding to V [6, 2, 0] yields a form in that after mul-
tiplication by χ18 becomes a holomorphic form in S4,2,16 vanishing with multiplicity 
2 at infinity. Similarly, the concomitant c corresponding to U = V [4, 4, 0] yields a 
cusp form ν(c)χ18 ∈ S0,4,16 vanishing with multiplicity 2 at infinity. We refer for 
more examples to [ 9]. 

The method also allows to treat the positive characteristic case. We hope to come 
back to it on another occasion.
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