Siegel Modular Forms of Degree Two and Three and Invariant Theory

Gerard van der Geer

Dedicated to Ciro Ciliberto on the occasion of his 70th birthday

Abstract

This is a survey based on the construction of Siegel modular forms of degree 2 and 3 using invariant theory in joint work with Fabien Cléry and Carel Faber.

Keywords Modular form • Siegel modular form • Invariant theory • Algebraic curves

1991 Mathematics Subject Classification. 10D • 11F46 • 14H10 • 14H45 14J15 • 14K10

1 Introduction

Modular forms are sections of naturally defined vector bundles on arithmetic quotients of bounded symmetric domains. Often such quotients can be interpreted as moduli spaces and sometimes this moduli interpretation allows a description as a stack quotient under the action of an algebraic group like GL_{n}. In such cases, classical invariant theory can be used for describing modular forms.

In the 1960s, Igusa used the close connection between the moduli of principally polarized complex abelian surfaces and the moduli of algebraic curves of genus two to describe the ring of scalar-valued Siegel modular forms of degree two (and level 1) in terms of invariants of the action of GL_{2} acting on binary sextics, see [20, 21]. Igusa

[^0]used theta functions and a crucial step in Igusa's approach was provided by Thomae's formulas from the nineteenth century that link theta constants for hyperelliptic curves to the cross ratios of the branch points of the canonical map of the hyperelliptic curve to \mathbb{P}^{1}.

In the 1980s Tsuyumine, continuing the work of Igusa, used the connection between the moduli of abelian threefolds and curves of genus 3 to describe generators for the ring of scalar-valued Siegel modular forms of degree 3 (and level 1). He used the moduli of hyperelliptic curves of genus 3 as an intermediate step and used theta functions and the invariant theory of binary octics as developed by Shioda, see [26, 30].

The description of the moduli of curves of genus 2 (resp. 3) in terms of a stack quotient of GL_{2} acting on binary sextics (resp. of GL_{3} acting on ternary quartics) makes it possible to construct the modular forms directly from the stack quotient without the recourse to theta functions or cross ratios. This applies not only to scalarvalued modular forms, but to vector-valued modular forms as well. Covariants (or concomitants) yield explicit modular forms in an efficient way. This is in contrast to earlier and more laborious methods of constructing vector-valued Siegel modular forms of degree 2 and 3 that use theta functions.

In joint work with Fabien Cléry and Carel Faber [7-9] we exploited this for the construction of Siegel modular forms of degree 2 and 3. In degree 2 the universal binary sextic, the most basic covariant, defines a meromorphic Siegel modular form $\chi_{6,-2}$ of weight $(6,-2)$. Substituting the coordinates of $\chi_{6,-2}$ in a covariant produces a meromorphic modular form that becomes holomorphic after multiplication by an appropriate power of χ_{10}, a cusp form of weight 10 associated to the discriminant. For degree 3 we can play a similar game, now involving the universal ternary quartic and a meromorphic Teichmüller modular form $\chi_{4,0,-1}$ of weight $(4,0,-1)$ that becomes a holomorphic Siegel modular form $\chi_{4,0,8}$ of weight $(4,0,8)$ after multiplication with χ_{9}, a Teichmüller form of weight 9 related to the discriminant.

With this approach it is easy to retrieve Igusa's result on the ring of scalar modular forms of degree 2. Another advantage of this direct approach is that one can treat modular forms in positive characteristic as well. Thus it enabled the determination of the rings of scalar-valued modular forms of degree 2 in characteristic 2 and 3, two cases that were unaccounted for so far, see [6, 33].

In this survey we sketch the approach and indicate how one constructs Siegel modular forms of degree 2 and 3 . We show how to derive the results on the rings of scalar-valued modular forms of degree 2 .

2 Siegel Modular Forms

Classically, Siegel modular forms are described as functions on the Siegel upper half space. We recall the definition.

For $g \in \mathbb{Z}_{\geq 0}$ we set $\mathcal{L}=\mathbb{Z}^{2 g}$ with generators $e_{1}, \ldots, e_{g}, f_{1}, \ldots, f_{g}$ and define a symplectic form \langle,$\rangle on \mathcal{L}$ via $\left\langle e_{i}, f_{j}\right\rangle=\delta_{i j}$. The Siegel modular group $\Gamma_{g}=$
$\operatorname{Aut}(\mathcal{L},\langle\rangle$,$) of degree g$ is the automorphism group of this symplectic lattice. Here we write an element $\gamma \in \Gamma_{g}$ as a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of four $g \times g$ blocks using the basis e_{i} and f_{i}; we often abbreviate this as $\gamma=(a, b ; c, d)$. The group Γ_{g} acts on the Siegel upper half space

$$
\mathfrak{H}_{g}=\left\{\tau \in \operatorname{Mat}(g \times g, \mathbb{C}): \tau^{t}=\tau, \operatorname{Im}(\tau)>0\right\}
$$

via $\tau \mapsto \gamma(\tau)=(a \tau+b)(c \tau+d)^{-1}$.
A scalar-valued Siegel modular form of weight k and degree $g>1$ is a holomorphic function $f: \mathfrak{H}_{g} \rightarrow \mathbb{C}$ satisfying $f(\gamma(\tau))=\operatorname{det}(c \tau+d)^{k} f(\tau)$ for all $\gamma=$ $(a, b ; c, d) \in \Gamma_{g}$. If $\rho: \mathrm{GL}(g) \rightarrow \mathrm{GL}(V)$ is a complex representation of GL_{g} then a vector-valued Siegel modular form of weight ρ and degree $g>1$ is a holomorphic map $f: \mathfrak{H}_{g} \rightarrow V$ satisfying

$$
\begin{equation*}
f(\gamma(\tau))=\rho(c \tau+d) f(\tau) \quad \text { for all } \gamma=(a, b ; c, d) \in \Gamma_{g} \tag{1}
\end{equation*}
$$

We may restrict to irreducible representations ρ. For $g=1$ we have to require an additional growth condition for $y=\operatorname{Im}(\tau) \rightarrow \infty$.

However, for an algebraic geometer modular forms are sections of vector bundles. Let \mathcal{A}_{g} be the moduli space of principally polarized abelian varieties of dimension g. This is a Deligne-Mumford stack of relative dimension $g(g+1) / 2$ over \mathbb{Z}. It carries a universal principally polarized abelian variety $\pi: \mathcal{X}_{g} \rightarrow \mathcal{A}_{g}$. This provides \mathcal{A}_{g} with a natural vector bundle $\mathbb{E}=\mathbb{E}^{(g)}$, the Hodge bundle, defined as

$$
\mathbb{E}=\pi_{*}\left(\Omega_{\mathcal{X}_{g} / \mathcal{A}_{g}}^{1}\right)
$$

Starting from \mathbb{E} we can create new vector bundles. Each irreducible representation ρ of GL_{g} defines a vector bundle \mathbb{E}_{ρ} by applying a Schur functor (or just by applying ρ to the transition functions of \mathbb{E}). In particular, we have the determinant line bundle $L=\operatorname{det}(\mathbb{E})$. Scalar-valued modular forms of weight k are sections of $L^{\otimes k}$ and these form a graded ring. In fact, for $g \geq 2$ and each commutative ring F we have the ring

$$
R_{g}(F)=\oplus_{k} H^{0}\left(\mathcal{A}_{g} \otimes F, L^{\otimes k}\right)
$$

The moduli space \mathcal{A}_{g} can be compactified. There is the Satake compactification, in some sense a minimal compactification, based on the fact that L is an ample line bundle on \mathcal{A}_{g}. This compactification \mathcal{A}_{g}^{*} is defined as $\operatorname{Proj}\left(R_{g}\right)$ and satisfies the inductive property

$$
\mathcal{A}_{g}^{*}=\mathcal{A}_{g} \sqcup \mathcal{A}_{g-1}^{*}
$$

Restriction to the 'boundary' \mathcal{A}_{g-1}^{*} induces a map called the Siegel operator

$$
\Phi: R_{g}(F) \rightarrow R_{g-1}(F)
$$

We will also use (smooth) Faltings-Chai type compactifications $\tilde{\mathcal{A}}_{g}$ and over these the Hodge bundle extends [14]. We will denote the extension also by \mathbb{E}.

For $g>1$ the Koecher principle holds: sections of \mathbb{E}_{ρ} over \mathcal{A}_{g} extend to regular sections of the extension of \mathbb{E}_{ρ} over $\tilde{\mathcal{A}}_{g}$, see [14, Prop 1.5, p. 140]. For $g=1$ this does not hold since the boundary in \mathcal{A}_{1}^{*} is a divisor, and we define modular forms of weight k as sections of $L^{\otimes k}$ over $\tilde{\mathcal{A}}_{1}$. If D denote the divisor added to $\tilde{\mathcal{A}}_{g}$ to compactify \mathcal{A}_{g}, then elements of $H^{0}\left(\tilde{\mathcal{A}}_{g}, \mathbb{E}_{\rho} \otimes \mathcal{O}(-D)\right)$ are called cusp forms.

We will write $M_{\rho}\left(\Gamma_{g}\right)(F)$ for $H^{0}\left(\tilde{\mathcal{A}}_{g} \otimes F, \mathbb{E}_{\rho}\right)$ or simply $M_{\rho}\left(\Gamma_{g}\right)$ when F is clear. The space of cusp forms is denoted by $S_{\rho}\left(\Gamma_{g}\right)$. By the Koecher principle the spaces $M_{\rho}\left(\Gamma_{g}\right)(F)$ and $S_{\rho}\left(\Gamma_{g}\right)(F)$ do not depend on the choice of a Faltings-Chai compactification.

Over the complex numbers if $\rho: \mathrm{GL}(g) \rightarrow \mathrm{GL}(V)$ is an irreducible representation, elements of $H^{0}\left(\tilde{\mathcal{A}}_{g} \otimes \mathbb{C}, \mathbb{E}_{\rho}\right)$ correspond to holomorphic functions $f: \mathfrak{H}_{g} \rightarrow V$ satisfying (1). Such a function allows a Fourier expansion

$$
f(\tau)=\sum_{n \geq 0} a(n) q^{n}
$$

where the sum is over symmetric $g \times g$ half-integral matrices (meaning $2 n$ is integral and even on the diagonal) which are positive semi-definite, $a(n) \in V$ and q^{n} is shorthand for $e^{2 \pi i \operatorname{Tr}(n \tau)}$.

The definition

$$
R_{g}(F)=\oplus_{k} H^{0}\left(\tilde{\mathcal{A}}_{g} \otimes F, L^{\otimes k}\right)
$$

for a commutative ring F allows one speak of modular forms in positive characteristic by taking $F=\mathbb{F}_{p}$. One cannot define such modular forms by Fourier series.

We summarize what is known about the rings $R_{g}(F)$. It is a classical result that the ring $R_{1}(\mathbb{C})$ is freely generated by two Eisenstein series E_{4} and E_{6} of weights 4 and 6. Deligne determined in [10] the ring $R_{1}(\mathbb{Z})$ and the rings $R_{1}\left(\mathbb{F}_{p}\right)$. He showed that

$$
R_{1}(\mathbb{Z})=\mathbb{Z}\left[c_{4}, c_{6}, \Delta\right] /\left(c_{4}^{3}-c_{6}^{2}-1728 \Delta\right)
$$

where Δ is a cusp form of weight 12 and c_{4} and c_{6} are of weight 4 and 6 . Reduction modulo p gives a surjection of $R_{1}(\mathbb{Z})$ to $R_{1}\left(\mathbb{F}_{p}\right)$ for $p \geq 5$. Moreover, Deligne showed that $R_{1}\left(\mathbb{F}_{p}\right)$ in characteristic 2 and 3 is given by

$$
R_{1}\left(\mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[a_{1}, \Delta\right], \quad R_{1}\left(\mathbb{F}_{3}\right)=\mathbb{F}_{3}\left[b_{2}, \Delta\right]
$$

where in each case Δ is a cusp form of weight 12 and a_{1} (resp. b_{2}) is a modular form of weight 1 (resp. 2).

In [20] Igusa determined the ring $R_{2}(\mathbb{C})$. He showed that the subring $R_{2}^{\text {ev }}(\mathbb{C})$ of even weight modular forms is generated freely by modular forms of weight $4,6,10$, and 12 and $R_{2}(\mathbb{C})$ is generated over $R_{2}^{\text {ev }}(\mathbb{C})$ by a cusp form of weight 35 whose
square lies in $R_{2}^{\text {ev }}(\mathbb{C})$; see also [21]. Later [22] he also determined the ring $R_{2}(\mathbb{Z})$; it has 15 generators of weights ranging from 4 to 48 .

In characteristic $p \geq 5$ the structure of the rings $R_{2}\left(\mathbb{F}_{p}\right)$ is similar to that of $R_{2}(\mathbb{C})$, see [2, 24]; these are generated by forms of weight $4,6,10,12$, and 35 . The structure of $R_{2}\left(\mathbb{F}_{p}\right)$ for $p=2$ and 3 was determined recently in [6,33]. All these cases can be dealt with easily using the approach with invariant theory.

In degree 2 one can provide the R_{2}-module

$$
M=\oplus_{j, k} M_{j, k}\left(\Gamma_{2}\right) \quad \text { with } M_{j, k}\left(\Gamma_{2}\right)=H^{0}\left(\tilde{\mathcal{A}}_{2}, \operatorname{Sym}^{j}(\mathbb{E}) \otimes \operatorname{det}(\mathbb{E})^{k}\right)
$$

with the structure of a ring using the projection of GL_{2}-representations $\operatorname{Sym}^{m}(V) \otimes$ $\operatorname{Sym}^{n}(V) \rightarrow \operatorname{Sym}^{m+n}(V)$ with V the standard representation by interpreting $\operatorname{Sym}^{j}(V)$ as the space of homogeneous polynomials of degree j in two variables, say x_{1}, x_{2} and performing multiplication of polynomials. The ring M is not finitely generated as Grundh showed, see [3, p. 234]. The dimensions of the spaces $S_{j, k}\left(\Gamma_{2}\right)(\mathbb{C})$ are known by Tsushima [29] for $k \geq 4$; for $k=3$ they were obtained independently by Petersen and Taïbi [25, 28].

For fixed j the $R_{2}^{\mathrm{ev}}(\mathbb{C})$-modules

$$
\oplus_{k} M_{j, 2 k}\left(\Gamma_{2}\right)(\mathbb{C}) \quad \text { and } \quad \oplus_{k} M_{j, 2 k+1}\left(\Gamma_{2}\right)(\mathbb{C})
$$

are finitely generated modules and their structure has been determined in a number of cases by Satoh, Ibukiyama and others, see the references in [8]. Invariant theory makes it easier to obtain such results.

For $g=3$ the results are less complete. Tsuyumine showed in 1985 [30] that the ring $R_{3}(\mathbb{C})$ is generated by 34 generators. Recently Lercier and Ritzenthaler showed in [23] that 19 generators suffice.

3 Moduli of Curves of Genus Two as a Stack Quotient

We start with $g=2$. Let F be a field of characteristic $\neq 2$ and $V=\left\langle x_{1}, x_{2}\right\rangle$ the F-vector space with basis x_{1}, x_{2}. The algebraic group GL_{2} acts on V via $\left(x_{1}, x_{2}\right) \mapsto$ $\left(a x_{1}+b x_{2}, c x_{1}+d x_{2}\right)$ for $(a, b ; c, d) \in \mathrm{GL}_{2}(F)$. We will write $V_{j, k}=\operatorname{Sym}^{j}(V) \otimes$ $\operatorname{det}(V)^{\otimes k}$ for $j \in \mathbb{Z}_{\geq 0}$ and $k \in \mathbb{Z}$. This is an irreducible representation of GL_{2}. The underlying vector space can be identified with the space of homogeneous polynomials of degree j in x_{1}, x_{2}. We will denote by $V_{j, k}^{0}$ the open subspace of polynomials with non-vanishing discriminant.

The moduli space \mathcal{M}_{2} of smooth projective curves of genus 2 over F allows a presentation as an algebraic stack

$$
\mathcal{M}_{2} \xrightarrow{\sim}\left[V_{6,-2}^{0} / \mathrm{GL}_{2}\right]
$$

Here the action of $(a, b ; c, d) \in \mathrm{GL}_{2}(F)$ is by $f\left(x_{1}, x_{2}\right) \mapsto(a d-b c)^{-2} f\left(a x_{1}+\right.$ $b x_{2}, c x_{1}+d x_{2}$.

Indeed, if C is a curve of genus 2 the choice of a basis ω_{1}, ω_{2} of $H^{0}(C, K)$ with $K=\Omega_{C}^{1}$ defines a canonical map $C \rightarrow \mathbb{P}^{1}$. Let ι denote the hyperelliptic involution of C. Choosing a non-zero element $\eta \in H^{0}\left(C, K^{3}\right)^{\iota=-1}$ yields eight elements η^{2}, $\omega_{1}^{6}, \omega_{1}^{5} \omega_{2}, \ldots, \omega_{2}^{6}$ in the 7 -dimensional space $H^{0}\left(C, K^{6}\right)^{l=1}$ and thus a non-trivial relation.

In inhomogeneous terms, this gives us an equation $y^{2}=f$ with $f \in F[x]$ of degree 6 with non-vanishing discriminant. The space $H^{0}(C, K)$ has a basis $x d x / y, d x / y$. If we let GL_{2} act on (x, y) via $(x, y) \mapsto((a x+b) /(c x+d), y(a d-$ $\left.b c) /(c x+d)^{3}\right)$ then this action preserves the form of the equation $y^{2}=f$ if we take f in $V_{6,-2}$. Then $\lambda \operatorname{Id}_{V}$ acts via λ^{2} on $V_{6,-2}$. Thus the stabilizer of a generic element f is of order 2. Moreover $-\operatorname{Id}_{V}$ acts by $y \mapsto-y$ on y and the action of GL_{2} on the differentials is by the standard representation.

Conclusion 3.1 The pull back of the Hodge bundle \mathbb{E} on \mathcal{M}_{2} under the composition $V_{6,-2}^{0} \rightarrow\left[V_{6,-2}^{0} / \mathrm{GL}_{2}\right] \xrightarrow{\sim} \mathcal{M}_{2}$ is the equivariant bundle V.

The moduli space $\overline{\mathcal{M}}_{2}$ can be constructed from the projectivized space $\mathbb{P}\left(V_{6,-2}\right)$ of binary sextics. The discriminant defines a hypersurface \mathbb{D} whose singular locus has codimension 1 in \mathbb{D}. The locus of binary sectics with three coinciding roots forms an irreducible component \mathbb{D}^{\prime} of the singular locus. To illustrate the relation between $\mathbb{P}\left(V_{6,-2}\right)$ at a general point of \mathbb{D}^{\prime} and $\overline{\mathcal{M}}_{2}$ at a point of the locus δ_{1} in $\overline{\mathcal{M}}_{2}$ of stable curves whose Jacobian is a product of two elliptic curves, we reproduce the picture of [12, p. 80].

Here we look at a plane Π intersecting \mathbb{D} transversally at a general point of \mathbb{D}^{\prime}. One blows up three times, starting at $\Pi \cap \mathbb{D}^{\prime}$, and then blows down the exceptional divisors E_{1} and E_{2}; after that E_{3} corresponds to the locus δ_{1} in $\overline{\mathcal{M}}_{2}$; in \mathcal{A}_{2} this corresponds to the locus $\mathcal{A}_{1,1}$ of products of elliptic curves.

4 Invariant Theory of Binary Sextics

We review the invariant theory of GL_{2} acting on binary sextics. Let $V=\left\langle x_{1}, x_{2}\right\rangle$ be a 2-dimensional vector space over a field F. By definition an invariant for the action of GL_{2} acting on the space $\operatorname{Sym}^{6}(V)$ of binary sextics is an element invariant under $\mathrm{SL}_{2}(F) \subset \mathrm{GL}_{2}(F)$. If we write

$$
\begin{equation*}
f=\sum_{i=0}^{6} a_{i} x_{1}^{6-i} x_{2}^{i} \tag{2}
\end{equation*}
$$

for an element of $\operatorname{Sym}^{6}(V)$ and thus take $\left(a_{0}, \ldots, a_{6}\right)$ as coordinates on $\operatorname{Sym}^{6}(V)$, then an invariant is a polynomial in a_{0}, \ldots, a_{6} invariant under $\mathrm{SL}_{2}(F)$. The discriminant of a binary sextic, a polynomial of degree 10 in the a_{i}, is an example.

For $F=\mathbb{C}$ the ring of invariants was determined by Clebsch, Bolza and others in the 19th century. It is generated by invariants A, B, C, D, E of degrees $2,4,6,10$ and 15 in the a_{i}. Also for $F=\mathbb{F}_{p}$ we have generators of these degrees. We refer to [15, 20].

A covariant for the action of GL_{2} on binary sextics is an element of $V \oplus \operatorname{Sym}^{6}(V)$ invariant under the action of SL_{2}. Such an element is a polynomial in a_{0}, \ldots, a_{6} and x_{1}, x_{2}. One way to make such covariants is to consider equivariant embeddings of an irreducible GL_{2}-representation U into $\operatorname{Sym}^{d}\left(\operatorname{Sym}^{6}(V)\right)$. Equivalently, we consider an equivariant embedding

$$
\varphi: \mathbb{C} \hookrightarrow \operatorname{Sym}^{d}\left(\operatorname{Sym}^{6}(V)\right) \otimes U^{\vee}
$$

Then $\Phi=\varphi(1)$ is a covariant. If U has highest weight $\left(\lambda_{1} \geq \lambda_{2}\right)$ then Φ is homogeneous of degree d in a_{0}, \ldots, a_{6} and degree $\lambda_{1}-\lambda_{2}$ in x_{1}, x_{2}. We say that Φ has degree d and order $\lambda_{1}-\lambda_{2}$.

The simplest example is the universal binary sextic f given by (2); it corresponds to taking $U=\operatorname{Sym}^{6}(V)$.

Another example is the Hessian of f. Indeed, we decompose in irreducible representations

$$
\operatorname{Sym}^{2}\left(\operatorname{Sym}^{6}(V)\right)=V[12,0] \oplus V[10,2] \oplus V[8,4] \oplus V[6,6],
$$

where $V[a, b]=\operatorname{Sym}^{a-b}(V) \otimes \operatorname{det}(V)^{b}$ is the irreducible representation of highest weight (a, b). By taking $U=V[12,0]$ we find the covariant $\Phi=f^{2}$ and by taking $U=V[10,2]$ we get the Hessian; $U=V[6,6]$ gives the invariant A.

The covariants form a ring \mathcal{C} and the invariants form a subring $I=I(2,6)$. The ring of covariants \mathcal{C} was studied intensively at the end of the nineteenth century and the beginning of the twentieth century. The ring \mathcal{C} is finitely generated and Grace and Young presented 26 generators for the ring \mathcal{C}, see [16]. These 26 covariants are constructed as transvectants by differentiating in a way similar to the construction
of the Hessian. The k th transvectant of two forms $g \in \operatorname{Sym}^{m}(V), h \in \operatorname{Sym}^{n}(V)$ is defined as

$$
(g, h)_{k}=\frac{(m-k)!(n-k)!}{m!n!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{\partial^{k} g}{\partial x_{1}^{k-j} \partial x_{2}^{j}} \frac{\partial^{k} h}{\partial x_{1}^{j} \partial x_{2}^{k-j}}
$$

and the index k is usually omitted if $k=1$. Examples of the generators are $C_{1,6}=f$, $C_{2,0}=(f, f)_{6}, C_{2,4}=(f, f)_{4}, C_{3,2}=\left(f, C_{2,4}\right)_{4}$. We refer to [8] for a list of these 26 generators.

5 Covariants of Binary Sextics and Modular Forms

The Torelli morphism induces an embedding $\mathcal{M}_{2} \hookrightarrow \mathcal{A}_{2}$. The complement of the image is the locus $\mathcal{A}_{1,1}$ of products of elliptic curves. As a compactification we can take $\tilde{\mathcal{A}}_{2}=\overline{\mathcal{M}}_{2}$.

We now fix the field F to be \mathbb{C} or a finite prime field \mathbb{F}_{p}.
In the Chow ring $\mathrm{CH}_{\mathbb{Q}}^{*}\left(\tilde{\mathcal{A}}_{2}\right) \otimes F$ we have the cycle relation

$$
10 \lambda_{1}=2\left[\mathcal{A}_{1,1}\right]+[D]
$$

with $\lambda_{1}=c_{1}(\mathbb{E})$ the first Chern class of \mathbb{E} and D the divisor that compactifies $\mathcal{A}_{2} \otimes F$. This implies that there exists a modular form of weight 10 with divisor $2 \mathcal{A}_{1,1}+D$, hence a cusp form. It is well-defined up to a non-zero multiplicative constant. We will normalize it later. We denote it by $\chi_{10} \in R_{2}(F)$.

We let V be the F-vector space with basis x_{1}, x_{2}. The fact that the pullback of the Hodge bundle \mathbb{E} under

$$
\begin{equation*}
V_{6,-2}^{0} \rightarrow\left[V_{6,-2}^{0} / \mathrm{GL}_{2}\right] \rightarrow \mathcal{M}_{2} \otimes F \hookrightarrow \mathcal{A}_{2} \otimes F \tag{3}
\end{equation*}
$$

is the equivariant bundle V implies that a section of $L^{k}=\operatorname{det}(\mathbb{E})^{k}$ pulls back to an invariant of degree k. We thus get an embedding of the ring of scalar-valued modular forms of degree 2 into the ring of invariants

$$
R_{2}(F) \hookrightarrow I(2,6)(F)
$$

Conversely, an invariant of degree d defines a section of L^{d} on $\mathcal{M}_{2} \otimes F$, hence a rational (meromorphic) modular form of weight d that is holomorphic outside $\mathcal{A}_{1,1} \otimes F$. By multiplying it with an appropriate power of χ_{10} it becomes holomorphic on $\mathcal{A}_{2} \otimes F$, hence on all of $\tilde{\mathcal{A}}_{2} \otimes F$. We thus get maps

$$
\begin{equation*}
R_{2}(F) \hookrightarrow I(2,6)(F) \xrightarrow{\nu} R_{2}(F)\left[1 / \chi_{10}\right] \tag{4}
\end{equation*}
$$

the composition of which is the identity on $R_{2}(F)$.
From the description of the moduli $\overline{\mathcal{M}}_{2}$ given above one sees that the image of a cusp form is an invariant divisible by the discriminant D. The image of χ_{10} is a nonzero multiple of the discriminant D. We may fix χ_{10} by requiring that $\nu(D)=\chi_{10}$.

This extends to the case of vector-valued modular forms. Let

$$
M(F)=\oplus_{j, k} M_{j, k}\left(\Gamma_{2}\right)(F)
$$

denote the ring of vector-valued modular forms of degree 2 .
Proposition 5.1 Pullback via (3) defines homomorphisms

$$
M(F) \hookrightarrow \mathcal{C}(2,6)(F) \xrightarrow{\nu} M(F)\left[1 / \chi_{10}\right],
$$

the composition of which is the identity.
A modular form of weight (j, k) corresponds to a covariant of degree $d=j / 2+k$ and order j. A covariant of degree d and order r gives rise to a meromorphic modular form of weight $(r, d-r / 2)$.

The most basic covariant is the universal binary sextic f. By construction $\nu(f)$ is a meromorphic modular form of weight $(6,-2)$. Therefore the central question is: Which rational modular form is $\nu(f)$?

Let $\mathcal{A}_{1,1} \subset \mathcal{A}_{2}$ be the locus of products of elliptic curves. Under the map

$$
\mathcal{A}_{1} \times \mathcal{A}_{1} \rightarrow \mathcal{A}_{1,1} \rightarrow \mathcal{A}_{2}
$$

the pullback of the Hodge bundle $\mathbb{E}=\mathbb{E}^{(2)}$ is $p_{1}^{*} \mathbb{E}^{(1)} \oplus p_{2}^{*} \mathbb{E}^{(1)}$ with p_{1} and p_{2} the projections of $\mathcal{A}_{1} \times \mathcal{A}_{1}$ on its factors. The pullback of an element $h \in M_{j, k}\left(\Gamma_{2}\right)$ thus can be identified with an element of

$$
\bigoplus_{i=0}^{j} M_{k+j-i}\left(\Gamma_{1}\right) \otimes M_{k+i}\left(\Gamma_{1}\right) .
$$

Near a point of $\mathcal{A}_{1,1}$ we can write such an element symbolically as

$$
h=\sum_{i=0}^{j} \eta_{j} X_{1}^{j-i} X_{2}^{i},
$$

where the X_{i} are dummy variables to indicate the vector coordinates, and such that the coefficient η_{j} defines the element of $M_{k+j-i}\left(\Gamma_{1}\right) \otimes M_{k+i}\left(\Gamma_{1}\right)$.

In particular, we have

$$
\nu(f)=\sum_{i=0}^{6} \alpha_{i} X_{1}^{6-i} X_{2}^{i}
$$

where α_{i} are rational functions near a point of $\mathcal{A}_{1,1}$. By interchanging x_{1} and x_{2} (that corresponds to the element $\gamma \in \Gamma_{2}$ that interchanges e_{1} and e_{2}) we see that $\alpha_{6-i}=\alpha_{i}$ for $i=0, \ldots, 3$.
Proposition 5.2 If $\operatorname{char}(F) \neq 2$ and $\neq 3$, then $\operatorname{dim} S_{6,8}\left(\Gamma_{2}\right)(F)=1$ and $\chi_{10} \nu(f)$ is a generator of $S_{6,8}\left(\Gamma_{2}\right)(F)$.

Proof We shall use that $\operatorname{dim} S_{6,8}\left(\Gamma_{2}\right)(\mathbb{C}) \geq 1$. Indeed, we know an explicit cusp form of weight $(6,8)$, see below. (Alternatively, we know the dimensions of $S_{j, k}\left(\Gamma_{2}\right)(\mathbb{C})$ for $k \geq 4$, see [29]; in particular we know $\operatorname{dim} S_{6,8}\left(\Gamma_{2}\right)(\mathbb{C})=1$.) By semi-continuity this implies that $\operatorname{dim} S_{6,8}\left(\Gamma_{2}\right)(F) \geq 1$.

The restriction of an element of $S_{6,8}\left(\Gamma_{2}\right)(F)$ to the locus $\mathcal{A}_{1,1} \otimes F$ lands in

$$
\bigoplus_{i=0}^{6} S_{8+6-i}\left(\Gamma_{1}\right)(F) \otimes S_{8+i}\left(\Gamma_{1}\right)(F)
$$

and as we have $\operatorname{dim} S_{k}\left(\Gamma_{1}\right)(F)=0$ for $k<12$ it vanishes on $\mathcal{A}_{1,1} \otimes F$.
The tangent space to \mathcal{A}_{2} at a point [$X=X_{1} \times X_{2}$] of $\mathcal{A}_{1,1}$, with X_{i} elliptic curves, can be identified with

$$
\operatorname{Sym}^{2}\left(T_{X}\right)=\operatorname{Sym}^{2}\left(T_{X_{1}}\right) \oplus\left(T_{X_{1}} \otimes T_{X_{2}}\right) \oplus \operatorname{Sym}^{2}\left(T_{X_{2}}\right)
$$

with T_{X} (resp $T_{X_{i}}$) the tangent space at the origin of X (resp. X_{i}), and with the middle term corresponding to the normal space. Thus we see that the pullback of the conormal bundle of $\mathcal{A}_{1,1}$ to $\mathcal{A}_{1} \times \mathcal{A}_{1}$ is the tensor product of the pullback of the Hodge bundles on the two factors \mathcal{A}_{1}.

Let $h \in S_{6,8}\left(\Gamma_{2}\right)(F)$ and write h as

$$
h=\sum_{i=0}^{6} \eta_{i} X_{1}^{6-i} X_{2}^{i}
$$

locally at a general point of $\mathcal{A}_{1,1} \otimes F$. If we consider the Taylor development in the normal direction of $\mathcal{A}_{1,1}$ of the form h that vanishes on $\mathcal{A}_{1,1} \otimes F$ then the first non-zero Taylor term of η_{i}, say the r th term, is an element of

$$
S_{14-i+r}\left(\Gamma_{1}\right)(F) \otimes S_{8+i+r}\left(\Gamma_{1}\right)(F)
$$

Since $S_{k}\left(\Gamma_{1}\right)(F)=(0)$ for $k<12$, a non-zero r th Taylor term of η_{i} can occur only for $14-i+r \geq 12$ and $8+i+r \geq 12$. We thus find:

$$
\operatorname{ord}_{\mathcal{A}_{1,1}}\left(\eta_{0}, \ldots, \eta_{6}\right) \geq(4,3,2,1,2,3,4)
$$

Lemma 5.3 We have $\operatorname{ord}_{\mathcal{A}_{1,1}}\left(\eta_{3}\right)=1$.
Proof If $\operatorname{ord}_{\mathcal{A}_{1,1}}\left(\eta_{3}\right) \geq 2$ then h / χ_{10} is a regular form in $S_{6,-2}\left(\Gamma_{2}\right)$ and we write it as $h / \chi_{10}=\sum_{i=0}^{6} \xi_{i} X_{1}^{6-i} X_{2}^{i}$ with $\xi_{i}=\eta_{i} / \chi_{10}$ regular. Then the invariant $A=$ $120 a_{0} a_{6}-20 a_{1} a_{5}+8 a_{2} a_{4}-3 a_{3}^{2}$ defines a non-zero regular modular form

$$
\nu(A)=120 \xi_{0} \xi_{6}-20 \xi_{1} \xi_{5}+8 \xi_{2} \xi_{4}-3 \xi_{3}^{2}
$$

in $M_{2}\left(\Gamma_{2}\right)(F)$. But restriction to $\mathcal{A}_{1,1}$ gives for even k an exact sequence

$$
\begin{equation*}
0 \rightarrow M_{k-10}\left(\Gamma_{2}\right)(F) \rightarrow M_{k}\left(\Gamma_{2}\right)(F) \rightarrow \operatorname{Sym}^{2}\left(M_{k}\left(\Gamma_{1}\right)(F)\right) \tag{5}
\end{equation*}
$$

with the second arrow multiplication by χ_{10}. This implies that $\operatorname{dim} M_{2}\left(\Gamma_{2}\right)(F)=0$ for $\operatorname{char}(F) \neq 2$ and $\neq 3$. This proves the lemma.

The image of a non-zero element $\chi_{6,8}$ of $S_{6,8}$ in $\mathcal{C}(2,6)$ is a covariant of degree 11 and order 6 . But since $\chi_{6,8}$ is a cusp form, this covariant is divisible by the discriminant which is of degree 10 . Therefore, $\chi_{6,8} / \chi_{10}$ corresponds to a covariant of degree 1 , hence is a non-zero multiple of f. This implies that $\operatorname{dim} S_{6,8}\left(\Gamma_{2}\right)(F)=1$.

Corollary 5.4 If we write $\nu(f)=\sum_{i=0}^{6} \alpha_{i} X_{1}^{6-i} X_{2}^{i}$ then

$$
\operatorname{ord}_{\mathcal{A}_{1,1}}\left(\alpha_{0}, \ldots, \alpha_{6}\right) \geq(2,1,0,-1,0,1,2)
$$

and $\operatorname{ord}_{\mathcal{A}_{1,1}}\left(\alpha_{3}\right)=-1$.

6 Constructing Vector-Valued Modular Forms of Degree 2

Now that we know $\nu(f)$ by Proposition 5.2 we can describe the map $\nu: \mathcal{C}(2,6) \rightarrow$ $M\left[1 / \chi_{10}\right]$ explicitly. Recall that a covariant is a polynomial in a_{0}, \ldots, a_{6} and x_{1}, x_{2}. We arrive at the following conclusion.

Proposition 6.1 The map $\nu: \mathcal{C}(2,6) \rightarrow M\left[1 / \chi_{10}\right]$ is substitution of α_{i} for a_{i} (and X_{i} for x_{i}).

In order to efficiently apply the proposition we need to know the coordinates of a generator $\chi_{6,8}$ of $S_{6,8}$ very explicitly.
Remark 6.2 If $F \neq \mathbb{F}_{2}$ the moduli space \mathcal{A}_{2} [2] of level 2 is a Galois cover of \mathcal{A}_{2} with group $\operatorname{Sp}(2, \mathbb{Z} / 2 \mathbb{Z})$. This group is isomorphic to the symmetric group \mathfrak{S}_{6}. The sign character of \mathfrak{S}_{6} defines a character ϵ of Γ_{2}. The pullback of χ_{10} under $\pi: \mathcal{A}_{2}[2] \rightarrow \mathcal{A}_{2}$ is a square χ_{5}^{2} since the pullback of D under $\tilde{\mathcal{A}}_{2}[2] \rightarrow \tilde{\mathcal{A}}_{2}$ is divisible by 2 as a divisor. Thus χ_{5} is a modular form of weight 5 with character ϵ.

Let now $F=\mathbb{C}$. Recall that $\chi_{6,8}$ vanishes on $\mathcal{A}_{1,1}$. Dividing $\chi_{6,8}$ by χ_{5} provides a holomorphic vector-valued modular form $\chi_{6,3} \in M_{6,3}\left(\Gamma_{2}, \epsilon\right)(F)$ with character ϵ. Such a form can be constructed as follows.

We consider the six odd order two theta functions $\vartheta_{i}(\tau, z)$ with $(\tau, z) \in \mathfrak{H}_{2} \times \mathbb{C}^{2}$. The gradient $G_{i}=\left(\partial \vartheta_{i} / \partial z_{1}, \partial \vartheta_{i} / \partial z_{2}\right)(\tau, 0)$ is a modular form of weight $(1,1 / 2)$ on some congruence subgroup, but the product of the transposes of these six gradients defines a vector-valued modular form of weight $(6,3)$ on Γ_{2} with character ϵ. The product $\chi_{6,8}=\chi_{5} \chi_{6,3}$ is a cusp form of weight $(6,8)$ on Γ_{2}. A non-zero multiple of its Fourier expansion starts with (with $q_{1}=e^{2 \pi i \tau_{11}}, q_{2}=e^{2 \pi i \tau_{22}}$ and $r=e^{2 \pi i \tau_{12}}$)

$$
\begin{aligned}
\chi_{6,8}(\tau)= & \left(\begin{array}{c}
0 \\
0 \\
r^{-1}-2+r \\
2\left(r-r^{-1}\right) \\
r^{-1}-2+r \\
0 \\
0
\end{array}\right) q_{1} q_{2}+\left(\begin{array}{c}
0 \\
0 \\
-2\left(r^{-2}+8 r^{-1}-18+8 r+r^{2}\right) \\
8\left(r^{-2}+4 r^{-1}-4 r-r^{2}\right) \\
-2\left(7 r^{-2}-4 r^{-1}-6-4 r+7 r^{2}\right) \\
12\left(r^{-2}-2 r^{-1}+2 r-r^{2}\right) \\
-4\left(r^{-2}-4 r^{-1}+6-4 r+r^{2}\right)
\end{array}\right) q_{1} q_{2}^{2} \\
& +\left(\begin{array}{c}
-4\left(r^{-2}-4 r^{-1}+6-4 r+r^{2}\right) \\
12\left(r^{-2}-2 r^{-1}+2 r-r^{2}\right) \\
-2\left(7 r^{-2}-4 r^{-1}-6-4 r+7 r^{2}\right) \\
8\left(r^{-2}+4 r^{-1}-4 r-r^{2}\right) \\
-2\left(r^{-2}+8 r^{-1}-18+8 r+r^{2}\right) \\
0 \\
0
\end{array}\right) q_{1}^{2} q_{2}+\left(\begin{array}{c}
16\left(r^{-3}-9 r^{-1}+16-9 r+r^{3}\right) \\
-72\left(r^{-3}-3 r^{-1}+3 r-r^{3}\right) \\
+128\left(r^{-3}-2+r^{3}\right) \\
-144\left(r^{-3}+5 r^{-1}-5 r-r^{3}\right) \\
+128\left(r^{-3}-2+r^{3}\right) \\
-72\left(r^{-3}-3 r^{-1}+3 r-r^{3}\right) \\
16\left(r^{-3}-9 r^{-1}+16-9 r+r^{3}\right)
\end{array}\right) q_{1}^{2} q_{2}^{2}+\ldots
\end{aligned}
$$

Proposition 6.1 provides an extremely effective way of constructing complex vector-valued Siegel modular forms of degree 2. Let us give a few examples. In the decomposition

$$
\operatorname{Sym}^{2}\left(\operatorname{Sym}^{6}(V)\right)=V[12,0] \oplus V[10,2] \oplus V[8,4] \oplus V[6,6]
$$

of $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{6}(V)\right)$ the covariant H defined by $V[10,2]$ is the Hessian and by Corollary 5.4 gives rise to a form $\chi_{8,8}=\nu(H) \chi_{10} \in S_{8,8}\left(\Gamma_{2}\right)$ and using the Fourier expansion of $\chi_{6,8}$ we obtain the Fourier expansion of $\chi_{8,8}$. Similarly, the covariant corresponding to $V[8,4]$ gives a form $\chi_{4,10}$ after multiplication with χ_{10}. Finally, the covariant defined by $V[6,6]$ is the invariant A and defines the cusp form $\chi_{12}=\nu(A) \chi_{10}$. We refer to [7] for more details.

As an illustration of this we refer to the website [1] that gives the Fourier series for generators for all cases where $\operatorname{dim} S_{j, k}\left(\Gamma_{2}\right)=1$.

Another illustration of the efficacity of the construction of modular forms appears when one considers the modules $\oplus_{k} M_{j, k}\left(\Gamma_{2}\right)$ and $\oplus_{k} M_{j, k}\left(\Gamma_{2}, \epsilon\right)$. Let $R_{2}^{\text {ev }}$ be the ring of scalar-valued modular forms of even weight. The structure of the R_{2}^{ev}-modules

$$
\oplus_{k} M_{j, 2 k}\left(\Gamma_{2}\right), \quad \oplus_{k} M_{j, 2 k+1}\left(\Gamma_{2}\right)
$$

has been determined for $j=2,4,6,8,10$ by Satoh, Ibukiyama, Kiyuna, van Dorp and Takemori using various methods. Using covariants one can uniformly treat these cases and the cases of modular forms with character for the same values of j

$$
\oplus_{k} M_{j, 2 k}\left(\Gamma_{2}, \epsilon\right), \quad \oplus_{k} M_{j, 2 k+1}\left(\Gamma_{2}, \epsilon\right) .
$$

For example, the R_{2}-module $\oplus_{k} M_{2,2 k+1}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(2,9),(2,11)$, and $(2,17)$ and the module $\oplus_{k} M_{10}^{10,2 k}\left(\Gamma_{2}, \epsilon\right)$ is free with 10 generators. We refer to [8].

Yet another application of the construction of modular forms via covariants deals with small weights. It is known by Skoruppa [27] that $\operatorname{dim} S_{j, 1}\left(\Gamma_{2}\right)=0$. He proved this using Fourier-Jacobi forms. We conjecture $\operatorname{dim} S_{j, 2}\left(\Gamma_{2}\right)=0$ and proved this for $j \leq 52$ using covariants. We refer to [5].

As a final illustration, for $k=3$ the smallest j such that $\operatorname{dim} S_{j, 3}\left(\Gamma_{2}\right) \neq 0$ is 36 . It is not difficult to construct a generator of $S_{36,3}\left(\Gamma_{2}\right)$ using covariants, see [5].

7 Rings of Scalar-Valued Modular Forms

The approach explained in the preceding section makes it easy to find generators for the rings $R_{2}(F)=\oplus_{k} M_{k}\left(\Gamma_{2}\right)(F)$ of modular forms of degree 2 for $F=\mathbb{C}$ or $F=$ \mathbb{F}_{p}. We write ν_{F} for the map $I(2,6)(F) \rightarrow R_{2}(F)\left[1 / \chi_{10}\right]$. We denote by $R_{2}^{\text {ev }}(F)$ the subring of even weight modular forms.

The degree 2 invariant A of a binary sextic $f=\sum_{i=0}^{6} a_{i} x_{1}^{6-i} x_{2}^{i}$ can be written as

$$
120 a_{0} a_{6}-20 a_{1} a_{5}+8 a_{2} a_{4}-3 a_{3}^{2} .
$$

Corollary 5.4 implies that $\nu_{F}(A)$ cannot be regular for $F=\mathbb{C}$ or \mathbb{F}_{p} with $p \geq 5$, but also that $\nu_{F}(A D)$ is a cusp form $\chi_{12} \in S_{12}\left(\Gamma_{2}\right)(F)$ of weight 12 .

In degree 4 there is the invariant B given by
$\left(81 a_{0} a_{6}+9 a_{1} a_{5}\right) a_{3}^{2}-3\left(15 a_{0} a_{4} a_{5}+15 a_{1} a_{2} a_{6}+a_{1} a_{4}^{2}+a_{2}^{2} a_{5}\right) a_{3}+\cdots+a_{2}^{2} a_{4}^{2}$
and Corollary 5.4 implies that it defines a regular modular form $\psi_{4}=\nu_{F}(B)$ of weight 4.

The invariant C of degree 6 is given by

$$
18\left(9 a_{0} a_{6}+4 a_{1} a_{5}\right) a_{3}^{4}-6\left(33 a_{0} a_{4} a_{5}+33 a_{1} a_{2} a_{6}+4 a_{1} a_{4}^{2}+4 a_{2}^{2} a_{5}\right) a_{3}^{3}+\cdots
$$

and in a similar way one sees that $A B-3 C$ starts with

$$
1458 a_{0} a_{6} a_{3}^{4}-486\left(a_{0} a_{4} a_{5}+a_{1} a_{2} a_{6}\right) a_{3}^{3}+\cdots
$$

and defines a regular modular form $\psi_{6}=\nu_{F}(A B-3 C)$ of weight 6 .
The discriminant D starts as

$$
729 a_{0}^{2} a_{6}^{2} a_{3}^{6}-54\left(9 a_{0}^{2} a_{4} a_{5} a_{6}-2 a_{0}^{2} a_{5}^{3}+9 a_{0} a_{1} a_{2} a_{6}^{2}-2 a_{1}^{3} a_{6}^{2}\right) a_{3}^{5}+\cdots
$$

and is seen to have order 2 along $\mathcal{A}_{1,1}$. It defines a cusp form that is a non-zero multiple of χ_{10}.

Proposition 7.1 For $F=\mathbb{C}$ or $F=\mathbb{F}_{p}$ with $p \geq 5$ the modular forms $\psi_{4}, \psi_{6}, \chi_{10}$ and χ_{12} generate $R_{2}^{\mathrm{ev}}(F)$.

Proof The algebraic independence of A, B, C, D shows that the generators are algebraically independent. Therefore $\psi_{4}, \psi_{6}, \chi_{10}, \chi_{12}$ generate a graded subring $T(F) \subseteq R_{2}^{\text {ev }}(F)$ such that for even k we have

$$
\operatorname{dim} T_{k}(F)=\frac{k^{3}}{17280}+O\left(k^{2}\right)
$$

Now by Riemann-Roch we have for even k

$$
\operatorname{dim} M_{k}\left(\Gamma_{2}\right)(F)=\frac{c_{1}(L)^{3}}{3!} k^{3}+O\left(k^{2}\right)
$$

since $c_{1}(L)^{3}=1 / 2880$, [32, p. 72]. Therefore there cannot be more generators. Note that $4 \cdot 6 \cdot 10 \cdot 12=2880$.

Remark 7.2 Restriction to $\mathcal{A}_{1,1}$ shows that $\psi_{4}, \psi_{6}, \chi_{10}, \chi_{12}$ generate $M_{k}\left(\Gamma_{2}\right)(F)$ for $k \leq 12$. Let $d(k)=\operatorname{dim}_{F} M_{k}\left(\Gamma_{2}\right)(F)$ and $t(k)=\operatorname{dim}_{F} T_{k}(F)$. Then $t(k) \leq d(k)$ and for even k the exact sequence (5) yields

$$
d(k) \leq d(k-10)+\frac{c(k)(c(k)+1)}{2}
$$

with $c(k)=\operatorname{dim}_{F} M_{k}\left(\Gamma_{1}\right)(F)$. Now one easily sees $t(k)-t(k-10)=c(k)(c(k)+$ 1) $/ 2$. Thus if we assume $d(k-10)=t(k-10)$ we get

$$
t(k) \leq d(k) \leq d(k-10)+\frac{c(k)(c(k)+1)}{2}=t(k)
$$

and this provides via induction another proof that $\psi_{4}, \psi_{6}, \chi_{10}$ and χ_{12} generate $R_{2}^{\mathrm{ev}}(F)$ for $F=\mathbb{C}$ or \mathbb{F}_{p} with $p \geq 5$.

The odd degree invariant E (of degree 15) of binary sextics starts with

$$
-729\left(a_{0}^{2} a_{5}^{3}-a_{1}^{3} a_{6}\right) a_{3}^{10}+\ldots
$$

and one checks that it has order -3 along $\mathcal{A}_{1,1}$. So $\chi_{10}^{2} \nu_{F}(E)$ defines a regular cusp form $\chi_{35} \in S_{35}\left(\Gamma_{2}\right)(F)$ with order 1 along $\mathcal{A}_{1,1}$.

Let now $\operatorname{char}(F) \neq 2$. The locus in $\mathcal{A}_{2} \otimes F$ of principally polarized abelian surfaces X with $\operatorname{Aut}(X)$ containing $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ consists of two irreducible divisors $H_{1}=\mathcal{A}_{1,1}$ and H_{4}, the Humbert surface of degree 4 of abelian surfaces isogenous with a product by an isogeny of degree 4 . In terms of moduli of curves, H_{4} is the
locus of curves that are double covers of elliptic curves. We know that the cycle class of $H_{1}+H_{4}$ is $35 \lambda_{1}$ in $\operatorname{Pic}_{\mathbb{Q}}\left(\mathcal{A}_{2}\right)$, see [31, p. 218].

Lemma 7.3 Suppose that $\operatorname{char}(F) \neq 2$. A modular form $f \in M_{k}\left(\Gamma_{2}\right)(F)$ with k odd vanishes on H_{1} and H_{4}.

Proof An abelian surface $[X] \in H_{1}$ or $[X] \in H_{4}$ possesses an involution that acts by -1 on $H^{0}\left(X, \Omega_{X}^{2}\right)$.
Corollary 7.4 The form χ_{35} as a section of $L^{\otimes 35}$ has as divisor $H_{1}+H_{4}+D$ with D the divisor at infinity.

We can now easily derive the results of Igusa and Nagaoka (see [20, 24], and also [19]).

Theorem 7.5 Let $F=\mathbb{C}$ or $F=\mathbb{F}_{p}$ with $p \geq 5$. Then the ring $R_{2}\left(\mathbb{F}_{p}\right)$ is generated $\operatorname{over} R_{2}^{\mathrm{ev}}\left(\mathbb{F}_{p}\right)=F\left[\psi_{4}, \psi_{6}, \chi_{10}, \chi_{12}\right]$ by the cusp form χ_{35} of weight 35 with $\chi_{35}^{2} \in$ $R_{2}^{\mathrm{ev}}(F)$.

Proof Any odd weight modular form vanishes on H_{1} and H_{4}, hence is divisible by χ_{35}.

Remark 7.6 The same argument proves Theorem 7.5 for any commutative ring F in which 6 is invertible. It can also be used to obtain Igusa's result on the ring $R_{2}(\mathbb{Z})$.

Now positive characteristic sometimes allows more modular forms than characteristic zero. We know that the locus in $\mathcal{A}_{g} \otimes \mathbb{F}_{p}$ of abelian varieties of p-rank $<g$ has cycle class $(p-1) \lambda_{1},[13,32]$. This implies that there is a non-zero modular form of weight $p-1$ in characteristic p. This modular form is called the Hasse invariant of degree g and weight $p-1$. The image of the Hasse invariant of degree g under the Siegel operator is the Hasse invariant of degree $g-1$.

The Hasse invariants for degree 1 and characteristic 2 and 3 appear as the generators a_{1} and b_{2} in

$$
R_{1}\left(\mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[a_{1}, \Delta\right], \quad R_{1}\left(\mathbb{F}_{3}\right)=\mathbb{F}_{3}\left[b_{2}, \Delta\right] .
$$

The degree 2 invariant A of binary sextics reduces to $a_{1} a_{5}-a_{2} a_{4}$ modulo 3 and in view of Conclusion 5.4 defines a form $\nu_{\mathbb{F}_{3}}(A) \in M_{2}\left(\Gamma_{2}\right)\left(\mathbb{F}_{3}\right)$ and it must agree with the Hasse invariant (up to a non-zero multiplicative scalar) as there is only one invariant of degree 2 (up to multiplicative scalars). A careful analysis of the invariants in characteristic 3 leads to the description of the ring $R_{2}\left(\mathbb{F}_{3}\right)$ given in [33].

Theorem 7.7 The subring $\mathcal{R}_{2}^{\mathrm{ev}}\left(\mathbb{F}_{3}\right)$ of modular forms of even weight is generated by forms of weights 2, 10, 12, 14, and 36 and has the form

$$
\mathcal{R}_{2}^{\mathrm{ev}}\left(\mathbb{F}_{3}\right)=\mathbb{F}_{3}\left[\psi_{2}, \chi_{10}, \psi_{12}, \chi_{14}, \chi_{36}\right] / J
$$

with J the ideal generated by the relation $\psi_{2}^{3} \chi_{36}-\chi_{10}^{3} \psi_{12}-\psi_{2}^{2} \chi_{10} \chi_{14}^{2}+\chi_{14}^{3}$. Moreover, $\mathcal{R}_{2}\left(\mathbb{F}_{3}\right)$ is generated over $\mathcal{R}_{2}^{\text {ev }}$ by a form χ_{35} of weight 35 whose square lies in $R_{2}^{\mathrm{ev}}\left(\mathbb{F}_{3}\right)$. The ideal of cusp forms is generated by $\chi_{10}, \chi_{14}, \chi_{35}, \chi_{36}$.

The case of characteristic 2 was treated in joint work with Cléry in [5]. In the case of characteristic 2 a curve of genus 2 is not described by a binary sextic. Instead we find an equation

$$
y^{2}+a y+b=0
$$

with a (resp. b) in $k[x]$ of degree ≤ 3 (resp. ≤ 6) and the hyperelliptic involution is $y \mapsto y+a$. It comes with a basis $x d x / a, d x / a$ of regular differentials. In this case we look at pairs $(a, b) \in V_{3,-1} \times V_{6,-2}$ with $V_{n, m}=\operatorname{Sym}^{n}(V) \otimes \operatorname{det}(V)^{m}$. Let $\mathcal{V}^{0} \subset V_{3,-1} \times V_{6,-2}$ be the open subset defining smooth hyperelliptic curves. Now we have an action of GL_{2} and an action of $\operatorname{Sym}^{3}(V)$ via

$$
(a, b) \mapsto\left(a, b+v^{2}+v a\right)
$$

Together this defines a stack quotient

$$
\left[\mathcal{V}^{0} / \mathrm{GL}_{2} \ltimes V_{3,-1}\right]
$$

Now by an invariant we mean a polynomial in the coefficients a_{0}, \ldots, a_{3} and b_{0}, \ldots, b_{6} that is invariant under $\operatorname{SL}(V) \ltimes \operatorname{Sym}^{3}(V)$. Let \mathcal{K} be the ring of invariants. A first example is the square root of the discriminant of a :

$$
K_{1}=a_{0} a_{3}+a_{1} a_{2} .
$$

As an analog of (5) we now get homomorphisms

$$
R_{2}\left(\mathbb{F}_{2}\right) \hookrightarrow \mathcal{K} \xrightarrow{\nu} R_{2}\left(\mathbb{F}_{2}\right)\left[1 / \chi_{10}\right]
$$

the composition of which is the identity.
In order to construct characteristic 2 invariants one can still use binary sextics as Igusa suggested in [20]. Indeed, one lifts the curve given by $y^{2}+a y+b=0$ to the Witt ring, say defined by $y^{2}+\tilde{a} y+\tilde{b}=0$ and takes an invariant of the binary sextic given by $\tilde{a}^{2}+4 \tilde{b}$, then divides these by the appropriate power of 2 and reduces modulo 2.

For example, the degree 2 invariant of binary sextics yields in this way an invariant K_{2} that equals K_{1}^{2}. A degree 4 invariant yields an invariant K_{4} that turns out to be divisible by K_{1}. We thus find an invariant K_{3} of degree 3 .

The Hasse invariant ψ_{1} must map to K_{1}. As in characteristic 3 a careful analysis gives the orders of a_{i} and b_{i} along $\mathcal{A}_{1,1}$ and we can deduce for an invariant K the order of $\nu(K)$ along $\mathcal{A}_{1,1}$. The ring $R_{2}\left(\mathbb{F}_{2}\right)$ was described in [5].

Theorem 7.8 The ring $\mathcal{R}_{2}\left(\mathbb{F}_{2}\right)$ is generated by modular forms of weights $1,10,12$, 13 , and 48 satisfying one relation of weight 52 :

$$
\mathcal{R}_{2}\left(\mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[\psi_{1}, \chi_{10}, \psi_{12}, \chi_{13}, \chi_{48}\right] /(R)
$$

with $R=\chi_{13}^{4}+\psi_{1}^{3} \chi_{10} \chi_{13}^{3}+\psi_{1}^{4} \chi_{48}+\chi_{10}^{4} \psi_{12}$. The ideal of cusp forms is generated by χ_{10}, χ_{13} and χ_{48}.

8 Moduli of Curves of Genus Three and Invariant Theory of Ternary Quartics

Now we turn to genus 3 treated in [9] and consider the moduli space $\mathcal{M}_{3}^{\mathrm{nh}}$ of nonhyperelliptic curves of genus 3 over a field F. This is an open part of the moduli space \mathcal{M}_{3} with as complement the divisor \mathcal{H}_{3} of hyperelliptic curves. Let now $V=$ $\left\langle x_{0}, x_{1}, x_{2}\right\rangle$ be the 3-dimensional F-vector space with basis x_{0}, x_{1}, x_{2}. We let $V_{4,0,-1}$ be the irreducible representation $\operatorname{Sym}^{4}(V) \otimes \operatorname{det}(V)^{-1}$. The underlying space is the space of ternary quartics. It contains the open subset $V_{4,0,-1}^{0}$ of ternary quartics with non-vanishing discriminant; that is, the ternary quartics that define smooth plane quartic curves.

It is known that $\mathcal{M}_{3}^{\text {nh }}$ has a description as stack quotient

$$
\mathcal{M}_{3}^{\mathrm{nh}} \xrightarrow{\sim}\left[V_{4,0,-1}^{0} / \mathrm{GL}_{3}\right]
$$

Indeed, if C is a non-hyperelliptic curve of genus 3 then a choice of basis of $H^{0}(C, K)$ defines an embedding of C into \mathbb{P}^{2} and the image satisfies an equation $f\left(x_{0}, x_{1}, x_{2}\right)=$ 0 with f homogeneous of degree 4. In order that the action on the space of differentials with basis

$$
x_{i}\left(x_{0} d x_{1}-x_{1} d x_{0}\right) /\left(\partial f / \partial x_{2}\right), \quad i=0,1,2
$$

is the standard representation V we need to twist $\operatorname{Sym}^{4}(V)$ by $\operatorname{det}(V)^{-1}$. Then $\lambda \operatorname{Id} \in$ $\mathrm{GL}_{3}(F)$ acts by λ on $V_{4,0,-1}$ and we arrive at the familiar stack quotient [Q / PGL_{3}] with Q the space of smooth projective curves of degree 4 in \mathbb{P}^{2} by first dividing by the multiplicative group of multiples of the diagonal.

Conclusion 8.1 The pull back of the Hodge bundle \mathbb{E} on $\mathcal{M}_{3}^{\mathrm{nh}}$ under

$$
\left.V_{4,0,-1}^{0} \rightarrow\left[V_{4,0,-1}^{0}\right] / \mathrm{GL}_{2}\right] \xrightarrow{\sim} \mathcal{M}_{3}^{\mathrm{nh}}
$$

is the equivariant bundle V.
Therefore we now look at the invariant theory of GL_{3} acting on ternary quartics $\operatorname{Sym}^{4}(V)$ with $V=\langle x, y, z\rangle$ the standard representation of $\mathrm{GL}_{3}(V)$. We write the universal ternary quartic f as

$$
f=a_{0} x^{4}+a_{1} x^{3} y+\cdots+a_{14} z^{4}
$$

in a lexicographic way. We fix coordinates for $\wedge^{2} V$

$$
\hat{x}=y \wedge z, \hat{y}=z \wedge x, \hat{z}=x \wedge y
$$

Recall that an irreducible representation ρ of GL_{3} is determined by its highest weight ($\rho_{1} \geq \rho_{2} \geq \rho_{3}$). This representation appears in

$$
\operatorname{Sym}^{\rho_{1}-\rho_{2}}(V) \otimes \operatorname{Sym}^{\rho_{2}-\rho_{3}}\left(\wedge^{2} V\right) \otimes \operatorname{det}(V)^{3}
$$

An invariant for the action of GL_{3} on $\operatorname{Sym}^{4}(V)$ is a polynomial in a_{0}, \ldots, a_{14} invariant under SL_{3}. Instead of the notion of covariant we consider here the notion of a concomitant. A concomitant is a polynomial in a_{0}, \ldots, a_{14} and in x, y, z and $\hat{x}, \hat{y}, \hat{z}$ that is invariant under the action of SL_{3}. The most basic example is the universal ternary quartic f.

Concomitants can be obtained as follows. One takes an equivariant map of $\mathrm{GL}_{3}-$ representations

$$
U \hookrightarrow \operatorname{Sym}^{d}\left(\operatorname{Sym}^{4}(V)\right)
$$

or equivalently the equivariant embedding

$$
\varphi: \mathbb{C} \longrightarrow \operatorname{Sym}^{d}\left(\operatorname{Sym}^{4}(V)\right) \otimes U^{\vee}
$$

Then $\Phi=\varphi(1)$ is a concomitant. If U is an irreducible representation of highest weight $\rho_{1} \geq \rho_{2} \geq \rho_{3}$ then Φ is of degree d in a_{0}, \ldots, a_{14}, of degree $\rho_{1}-\rho_{2}$ in x, y, z and degree $\rho_{2}-\rho_{3}$ in $\hat{x}, \hat{y}, \hat{z}$.

The invariants form a ring $I(3,4)$ and the concomitants $\mathcal{C}(3,4)$ form a module over $I(3,4)$. For more on the ring $I(3,4)$ see [11].

9 Concomitants of Ternary Quartics and Modular Forms of Degree 3

The starting point for the construction of modular forms of degree 3 is the Torelli morphism

$$
t: \mathcal{M}_{3} \rightarrow \mathcal{A}_{3}
$$

defined by associating to a curve of genus 3 its Jacobian. This is a morphism of Deligne-Mumford stacks of degree 2 ramified along the hyperelliptic locus \mathcal{H}_{3}. Indeed, every abelian variety has an automorphism of order 2, but a generic curve of genus 3 does not have non-trivial automorphisms. Hyperelliptic curves have an automorphism of order 2 that induces -1_{Jac} on the Jacobian.

There is a Siegel modular form $\chi_{18} \in S_{18}\left(\Gamma_{3}\right)$ constructed by Igusa [21]. It is defined as the product of the 36 even theta constants of order 2 . The divisor of χ_{18} in the standard compactification (defined by the second Voronoi fan) $\tilde{\mathcal{A}}_{3}$ is

$$
\mathcal{H}_{3}+2 D
$$

with D the divisor at infinity.
The pullback under the Torelli morphism of the Hodge bundle \mathbb{E} on \mathcal{A}_{3} is the Hodge bundle of \mathcal{M}_{3}. The Hodge bundle on \mathcal{M}_{3} extends to the Hodge bundle over $\overline{\mathcal{M}}_{3}$, denoted again by \mathbb{E}. For each irreducible representation ρ of GL_{3} have a bundle \mathbb{E}_{ρ} on $\overline{\mathcal{M}}_{3}$ constructed by applying a Schur functor. We thus can consider

$$
T_{\rho}=H^{0}\left(\overline{\mathcal{M}}_{3}, \mathbb{E}_{\rho}\right)
$$

and elements of it are called Teichmüller modular forms of weight ρ and genus (or degree) 3. There is an involution ι acting on the stack \mathcal{M}_{3} associated to the double cover $\mathcal{M}_{3} \rightarrow \mathcal{A}_{3}$. If the characteristic is not 2 we can thus split T_{ρ} into ± 1-eigenspaces under ι

$$
T_{\rho}=T_{\rho}^{+} \oplus T_{\rho}^{-} .
$$

We can identify the invariants under ι with Siegel modular forms

$$
\begin{equation*}
T_{\rho}^{+}=M_{\rho}\left(\Gamma_{3}\right) \tag{6}
\end{equation*}
$$

while the space T_{ρ}^{-}consists of the genuine Teichmüller modular forms.
The pullback of χ_{18} to \mathcal{M}_{3} is a square χ_{9}^{2} with χ_{9} a Teichmüller modular form of weight 9 constructed by Ichikawa [17, 18].

Using the identification (6) we have

$$
\chi_{9} T_{\rho}^{-} \subset S_{\rho^{\prime}}\left(\Gamma_{3}\right) \quad \text { with } \rho^{\prime}=\rho \otimes \operatorname{det}^{9} .
$$

We will now use the invariant theory of ternary quartics Conclusion 8.1 implies that the pullback of a scalar-valued Teichmüller modular form of weight k is an invariant of weight $3 k$ in $I(3,4)$. An invariant of degree $3 d$ defines a meromorphic Teichmüller modular form of weight d on $\overline{\mathcal{M}}_{3}$ that becomes holomorphic after multiplication by an appropriate power of χ_{9}. Indeed, an invariant of degree $3 d$ is defined by an equivariant embedding $\operatorname{det}(V)^{4 d} \hookrightarrow \operatorname{Sym}^{3 d}\left(\operatorname{Sym}^{4}(V)\right)$ or taking care of the necessary twisting by

$$
\operatorname{det}(V)^{d} \hookrightarrow \operatorname{Sym}^{3 d}\left(\operatorname{Sym}^{4}(V)\right) \otimes \operatorname{det}(V)^{-3 d} .
$$

We thus get

$$
T \longrightarrow I(3,4) \longrightarrow T\left[1 / \chi_{9}\right],
$$

where the composition of the arrows is the identity. In particular, the Teichmüller modular form χ_{9} maps to an invariant of degree 27 and since it is a cusp form one can check that it must be divisible by the discriminant, hence is a multiple of the discriminant.

We can extend this to vector-valued Teichmüller modular forms

$$
\Sigma \longrightarrow \mathcal{C}(3,4) \xrightarrow{\nu} \Sigma\left[1 / \chi_{9}\right]
$$

with the T-module Σ defined as

$$
\Sigma=\oplus_{\rho} T_{\rho}
$$

with ρ running through the irreducible representations of GL_{3}.
We can ask what the image $\nu(f)$ of the universal ternary quartic is. By construction it is a meromorphic modular form of weight $(4,0,-1)$. Here the weight refers to the irreducible representation $\operatorname{Sym}^{4}(V) \otimes \operatorname{det}(V)^{-1}$ of GL_{3}.

We know that there exists a holomorphic modular cusp form $\chi_{4,0,8}$ of weight $(4,0,8)$, see [4] and below.

Proposition 9.1 Over \mathbb{C} the Siegel modular modular form $\chi_{9} \nu(f)$ is a generator of $S_{4,0,8}\left(\Gamma_{3}\right)(\mathbb{C})$.

Proof The cusp form $\chi_{4,0,8}$ maps to a concomitant of degree 28 that is divisible by the discriminant. Therefore, $\chi_{4,0,-1}=\chi_{4,0,8} / \chi_{9}$ corresponds to a concomitant of degree 1 . This must be a non-zero multiple of f.

If we write the universal ternary quartic lexicographically as

$$
f=a_{0} x^{4}+a_{1} x^{3} y+\cdots+a_{14} z^{4}
$$

and we write the meromorphic Teichmüller form $\chi_{4,0,-1}$ similarly lexicographically as

$$
\chi_{4,0,-1}=\alpha_{0} X^{4}+\alpha_{1} X^{3} Y+\cdots+\alpha_{14} Z^{4}
$$

with dummy variables X, Y, Z to indicate the coordinates of $\chi_{4,0,-1}$, we arrive at the analog for degree 3:

Proposition 9.2 The map $\nu: \mathcal{C}(3,4) \rightarrow T\left[1 / \chi_{9}\right]$ is given by substituting α_{i} for a_{i} (and X, Y, Z for x, y, z and $\hat{X}, \hat{Y}, \hat{Z}$ for $\hat{x}, \hat{y}, \hat{z}$).

In the following, we restrict to $F=\mathbb{C}$. One way to construct a generator of $S_{4,0,8}\left(\Gamma_{3}\right)(\mathbb{C})$ is to take the Schottky form of degree 4 and weight 8 that vanishes on the Torelli locus. We can develop it along $\mathcal{A}_{3,1}$, the locus in \mathcal{A}_{4} of products of abelian threefolds and elliptic curves. It restriction to $\mathcal{A}_{3,1}$ is a form in $S_{8}\left(\Gamma_{3}\right) \otimes S_{8}\left(\Gamma_{1}\right)$ and thus vanishes. The first non-zero term in the Taylor expansion along $\mathcal{A}_{3,1}$ is

$$
\chi_{4,0,8} \otimes \Delta \in S_{4,0,8}\left(\Gamma_{3}\right) \otimes S_{12}\left(\Gamma_{1}\right)
$$

Since the Schottky form can be constructed explicitly with theta functions we can easily obtain the beginning of the Fourier expansion. We refer to [4] for the details.

In [9] we formulated a criterion that tells us which elements of $\mathcal{C}(3,4)$ will give holomorphic modular forms. We can associate to a concomitant its order along the locus of double conics by looking at its order in t when we evaluate it on the ternary quartic $t f+q^{2}$ where q is a sufficiently general quadratic form in x, y, z. Then the result is the following, see [9].

Theorem 9.3 Let c be a concomitant of degree d and $v(c)$ its order along the locus of double conics. If d is odd then $\nu(c) \chi_{9}$ is a Siegel modular form with order $v(c)-(d-1) / 2$ along the hyperelliptic locus. If d is even, then the order of $\nu(c)$ is $v(c)-d / 2$.

We formulate a corollary. Let $M_{i, j, k}\left(\Gamma_{3}\right)^{(m)}$ be the space of Siegel modular forms of weight (i, j, k) vanishing with multiplicity $\geq m$ at infinity. (The weight (i, j, k) corresponds to the irreducible representation of GL_{3} of highest weight $(i+j+k, j+k, k)$.) Moreover, let $\mathcal{C}_{d, \rho}(-m D C)$ be the vector space of concomitants of type (d, ρ) that have order $\geq m$ along the locus of double conics. (Type (d, ρ) means belonging to an irreducible representation U of highest weight ρ occurring in $\operatorname{Sym}^{d}\left(\operatorname{Sym}^{4}(V)\right)$.)

Corollary 9.4 The exists an isomorphism

$$
\mathcal{C}_{d, \rho}(-m D C) \xrightarrow{\sim} M_{\rho_{1}-\rho_{2}, \rho_{2}-\rho_{3}, \rho_{3}+9(d-2 m)}^{(d d)}
$$

given by $c \mapsto \nu(c) \chi_{9}^{d-2 m}$.
This allows now the construction of Siegel modular forms and Teichmüller modular forms of degree 3. In fact, in principle, all of them. As a simple example, we decompose

$$
\operatorname{Sym}^{2}\left(\operatorname{Sym}^{4}(V)\right)=V[8,0,0]+V[6,2,0]+V[4,4,0] .
$$

The concomitant corresponding to $U=V[8,0,0]$ yields via ν the symmetric square of $\nu(f)$. The concomitant corresponding to $V[6,2,0]$ yields a form in that after multiplication by χ_{18} becomes a holomorphic form in $S_{4,2,16}$ vanishing with multiplicity 2 at infinity. Similarly, the concomitant c corresponding to $U=V[4,4,0]$ yields a cusp form $\nu(c) \chi_{18} \in S_{0,4,16}$ vanishing with multiplicity 2 at infinity. We refer for more examples to [9].

The method also allows to treat the positive characteristic case. We hope to come back to it on another occasion.

References

1. J. Bergström, F. Cléry, C. Faber, G. van der Geer, Siegel Modular Forms of Degree Two and Three (2017). http://smf.compositio.nl
2. S. Böcherer, S. Nagaoka, On mod p properties of Siegel modular forms. Math. Ann. 338, 421-433 (2007)
3. J. Bruinier, G. van der Geer, G. Harder, D. Zagier, The 1-2-3 of modular forms (Universitext, Springer, 2007)
4. F. Cléry, G. van der Geer, Constructing vector-valued Siegel modular forms from scalar-valued Siegel modular forms. Pure Appl. Math. Q. 11(1), 21-47 (2015)
5. F. Cléry, G. van der Geer, On vector-valued Siegel modular forms of degree 2 and weight $(j, 2)$. Documenta Mathematica 23, 1129-1156 (2018)
6. F. Cléry, G. van der Geer, Modular forms of degree two and curves of genus two in characteristic two. IMRN 2022(7), 5204-5218. arXiv:2003.00249
7. F. Cléry, C. Faber, G. van der Geer, Covariants of binary sextics and vector-valued Siegel modular forms of genus 2. Math. Ann. 369(3-4), 1649-1669 (2017)
8. F. Cléry, C. Faber, G. van der Geer, Covariants of binary sextics and modular forms of degree 2 with character. Math. Comp. 88(319), 2423-2441 (2019)
9. F. Cléry, C. Faber, G. van der Geer, Concomitants of ternary quartics and vector- valued modular forms of genus three. Selecta Math. 26, 55 (2020)
10. P. Deligne, Courbes elliptiques: Formulaire (d'après J. Tate), in Modular Functions IV, Lecture Notes in Mathematics, vol. 476 (Springer, Berlin, 1975), pp. 53-73
11. J. Dixmier, On the projective invariants of quartic plane curves. Adv. Math. 64, 279-304 (1987)
12. R. Donagi, R. Smith, The structure of the Prym map. Acta Math. 146, 25-102 (1981)
13. T. Ekedahl, G. van der Geer, Cycle classes of the E-O stratification on the moduli of abelian varieties, in Algebra, Arithmetic, and Geometry, ed. by Y. Tschinkel, Y. Zarhin. Progress in Mathematics, vol. 269 (Birkhäuser, Basel, 2010)
14. G. Faltings, C.-L. Chai, Degeneration of abelian varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 22. (Springer, Berlin, 1990)
15. W. Geyer, Invarianten binärer Formen, in Classification of Algebraic Varieties and Compact Complex Manifolds, Lecture Notes in Math, vol. 412 (Springer, Berlin, 1974), pp. 36-69
16. J.H. Grace, A. Young, The Algebra of Invariants (Cambridge University Press, Cambridge, 1903)
17. T. Ichikawa, On Teichmüller modular forms. Math. Ann. 299, 731-740 (1994)
18. T. Ichikawa, Teichmüller modular forms of degree 3. Amer. J. Math. 117, 1057-1061 (1995)
19. T. Ichikawa, Siegel modular forms of degree 2 over rings. J. Number Theory 129, 818-823 (2009)
20. J-I. Igusa, Arithmetic variety of moduli for genus two. Ann. Math. 72, 612-649 (1960)
21. J-I. Igusa, Modular forms and projective invariants. Am. J. Math. 89, 817-855 (1967)
22. J-I. Igusa, On the ring of modular forms of degree two over \mathbb{Z}. Am. J. Math. 101, 149-183 (1979)
23. R. Lercier, C. Ritzenthaler, Siegel modular forms of degree three and invariants of ternary quartics. Preprint (2019). arXiv:1907.07431
24. S. Nagaoka, Note on mod p Siegel modular forms. I, II. Math. Zeitschrift 235, 405-420 (2000), Math. Zeitschrift 251, 821-826 (2005)
25. D. Petersen, Cohomology of local systems on the moduli of principally polarized abelian surfaces. Pac. J. Math. 275, 39-61 (2015)
26. T. Shioda, On the graded ring of invariants of binary octavics. Am. J. Math. 89, 1022-1046 (1967)
27. N.-P. Skoruppa, Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts. Inaugural-Dissertation, Bonner Mathematische Schriften 159, Bonn (1984)
28. O. Taïbi, Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula. Ann. Sci. Éc. Norm. Supér. (4) 50(2), 269-344 (2017)
29. R. Tsushima, An explicit dimension formula for the spaces of generalized automorphic forms with respect to $\operatorname{Sp}(2, \mathbb{Z})$. Proc. Japan Acad. Ser. A Math. Sci. 59(4), 139-142 (1983)
30. S. Tsuyumine, On Siegel modular forms of degree three. Amer. J. Math. 108, 755-862 (1986). Addendum to "On Siegel modular forms of degree three." Amer. J. Math. 108, 1001-1003 (1986)
31. G. van der Geer, Hilbert Modular Surfaces (Springer, 1987)
32. G. van der Geer, Cycles on the moduli space of abelian varieties, in Moduli of Curves and abelian varieties, Aspects Math., vol. E33 (Vieweg, Braunschweig, 1999)
33. G. van der Geer, The ring of modular forms of degree two in characteristic three. Mathematische Zeitschrift. https://doi.org/10.1007/s00209-020-02621-6

[^0]: G. van der Geer (\triangle)

 Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
 e-mail: geer@science.uva.nl

