Siegel Modular Forms Lecture #16

Gerard van der Geer Universiteit van Amsterdam YMSC, Tsinghua University

December 3, 2020

The Case g = 3

For $g=1\ \mathrm{we}$ have the formula

$$e_c(\mathcal{A}_1, \mathbf{V}_a) = -S[a+2] - 1$$

and for $g=2\ \mathrm{we}$ found a formula

$$e_c(\mathcal{A}_2, \mathbf{V}_{a,b}) = -S[a-b, b+3] + e_{2,\text{extra}}(a, b)$$

where S[a-b, b+3] is a motive or bookkeeping device such that the trace of T(p) on $S_{a-b,b+3}(\Gamma_2)$ equals

$$\operatorname{Tr}(F_p, S[a-b, b+3])$$

Moreover,

$$\operatorname{rk} S[a+2] = 2 \dim S_{a+2}(\Gamma_1)$$

1

$$\operatorname{rk} S[a - b, b + 3] = 4 \dim S_{a-b,b+3}(\Gamma_2).$$

We calculate the trace of F_p on $e_c(\mathcal{A}_2, \mathbf{V}_{a,b})$ and $e_{2,\text{extra}}(a, b)$ and then deduce the trace of T(p) on $S_{a-b,b+3}(\Gamma_2)$.

Now g = 3. We have the universal abelian variety

$$\pi: \mathcal{X}_3 \to \mathcal{A}_3$$

and the corresponding local system

$$\mathbf{V} = R^1 \pi_* \mathbf{Q}$$

of rank 6. For each triple $\lambda = (a, b, c)$ with $a \ge b \ge c \ge 0$ we have a local system \mathbf{V}_{λ} .

We want an analogue of this formula to calculate the trace of T(p) on

$$S_{a-b,b-c,c+4}(\Gamma_3)$$
.

We put

$$e_c(\mathcal{A}_3, \mathbf{V}_{\lambda}) = \sum_i (-1)^i H_c^i(\mathcal{A}_3, \mathbf{V}_{\lambda})$$

We call this the motivic Euler characteristic of the local system V_{λ} . We sometimes use the numerical Euler characteristic

$$n_c(\mathcal{A}_3, \mathbf{V}_{\lambda}) = \sum_i (-1)^i \dim H_c^i(\mathcal{A}_3, \mathbf{V}_{\lambda})$$

These numbers are known (by Bini-vdG).

Based on numerical evidence we (B-F-vdG) conjectured the following.

Conjecture 1. The motivic Euler characteristic $e_c(\mathcal{A}_3 \otimes \overline{\mathbf{F}}_p, \mathbf{V}_{\lambda})$ is equal to

 $S[a - b, b - c, c + 4] + e_{3,\text{extra}}(a, b, c)$

with $e_{3,\text{extra}}(a,b,c)$ defined by

$$\begin{array}{c} -e_{c}(\mathcal{A}_{2},\mathbf{V}_{a+1,b+1}) \\ +e_{c}(\mathcal{A}_{2},\mathbf{V}_{a+1,c}) \\ -e_{c}(\mathcal{A}_{2},\mathbf{V}_{b,c}) \\ -e_{2,\mathrm{extra}}(a+1,b+1)\otimes S[c+2] \\ +e_{2,\mathrm{extra}}(a+1,c)\otimes S[b+3] \\ -e_{2,\mathrm{extra}}(b,c)\otimes S[a+4] \end{array}$$

Here S[a - b, b - c, c + 4] is a hypothetical motive or bookkeeping device such that $Tr(T(p), S_{a-b,b-c,c+4}(\Gamma_3))$ is equal to

$$\operatorname{Tr}(F_p, S[a-b, b-c, c+4]).$$

4

This was found by using the Torelli map $t : \mathcal{M}_3 \to \mathcal{A}_3$ and calculating Frobenius eigenvalues for curves over finite fields. We have a stratification of \mathcal{A}_3 :

$$t(\mathcal{M}_3^0) \sqcup t(H_3) \sqcup (t(\mathcal{M}_2) \times \mathcal{A}_1) \sqcup \mathcal{A}_{1,1,1}$$

and \mathcal{M}_3 is stratified by $\mathcal{M}_3^0 \sqcup H_3$, non-hyperelliptic (ternary quartics) and hyperelliptic. Thus all abelian varieties corresponding to points of \mathcal{A}_3 can be described by products of Jacobians of smooth curves.

For each isomorphism class of an abelian variety X of dimension g over \mathbf{F}_q we can calculate the eigenvalues of Frobenius acting on the Tate module:

$$\alpha_1(X), \ldots, \alpha_g(X), \overline{\alpha}_1(X), \ldots, \overline{\alpha}_g(X)$$

5

By the Lefschetz trace formule we see that

$$\operatorname{Tr}(F_q, e_c(\mathcal{A}_g \otimes \overline{\mathbf{F}}_q), \mathbf{V}_{\lambda})$$

equals

$$\sum_{[X]\in\mathcal{A}_g(\mathbf{F}_q)}\frac{s_{\lambda}(\alpha_1(X),\ldots,\alpha_g(X))}{\#\operatorname{Aut}_{\mathbf{F}_q}(X)}$$

where s_{λ} is a symmetric polynomial in the $\alpha_i(X)$ and $\bar{\alpha}_i(X)$, a Schur polynomial.

We carried out this counting for g = 3 and $p \leq 17$. This means we can calculate (conjecturally) the trace of T(p) on $S_{a-b,b-c,c+4}$ for $p \leq 17$ and all $a \geq b \geq c \geq 0$.

The evidence is overwhelming.

Some arguments:

1) results are integers

2) dimensions fit (cf. Taïbi's work).

3) the numerical Euler characteristic of S[a-b, b-c, c=4] is divisible by 8

- 4) consistency with other results
- 5) Harder type congruences

Two examples:

 $e_c(\mathcal{A}_3, \mathbf{V}_{11,5,2}) = S[6, 3, 6] - S[12]L^3 + L^7 - L^3 + 1$

We know dim $S_{6,3,6}(\Gamma_3) = 1$. Assuming this we calculate the eigenvalues

 $\lambda(2) = 0, \, \lambda(3) = -453600, \dots,$

 $\lambda(17) = -107529004510200$

We can construct the eigenform generating $S_{6,3,6}$ using concomitants and check a few eigenvalues.

Another example:

 $e_c(\mathcal{A}_3, \mathbf{V}_{10,6,4}) = S[4, 2, 8] + L^8 - S[4, 10] - 1$

December 3, 2020

p	$\lambda(q)$ on $S_{6,3,6}$	$\lambda(q)$ on $S_{4,2,8}$
2	0	9504
3	-453600	970272
4	10649600	89719808
5	-119410200	-106051896
7	12572892800	112911962240
8	0	1156260593664
9	-29108532600	5756589166536
11	-57063064032	44411629220640
13	-25198577349400	209295820896008
16	341411782197248	-369164249202688
17	-107529004510200	1230942201878664
19	1091588958605600	51084504993278240

Liftings

For g = 2 we have the Saito-Kurokawa lifting for odd a

$$S_{2a+4}(\Gamma_1) \to S_{0,a+3}(\Gamma_2), \quad f \mapsto \tilde{f}$$

e.g. $f_{18} \mapsto \chi_{10}$. Hecke eigenvalue for T(p)

$$\lambda_{\tilde{f}}(p) = p^{a+1} + a(p) + p^{a+2}$$

Motive: $L^{a+1} + S[2a+4] + L^{a+2}$. But only S[2a+4] fits in $H^3_!(\mathcal{A}_2, \mathbf{V}_{a,a})$;

For g = 1 the space $S_k(\Gamma_1)$ is conjectured to be irreducible as Hecke module (Maeda conjecture). For $g \ge 2$ we see submodules. If we have elliptic modular forms $f_i \in S_{k_i}(\Gamma_1)$ for $i = 1, \ldots, m$, eigenforms with Satake parameters at p

$$(\alpha_{p,0}(f_i), \alpha_{p,1}(f_i))$$

we can define an L-series

$$L(\otimes_{i=1}^{m} \operatorname{Sym}^{r_i}(f_i), s)$$

by an Euler product with p-factors. For example for $f \in S_k(\Gamma_1)$ with Euler p-factor of L(f,s) given by

$$((1 - \alpha p^{-s})(1 - \bar{\alpha} p^{-s}))^{-1}$$

the Euler *p*-factor of $L(\text{Sym}^2(f), s)$ is

$$\left((1 - \alpha^2 p^{-s})(1 - \alpha \bar{\alpha} \, p^{-s})(1 - \bar{\alpha}^2 p^{-s})\right)^{-1}$$

11

and if $h \in S_l(\Gamma_1)$ has the Euler *p*-factor

$$\left((1 - \beta p^{-s})(1 - \bar{\beta} p^{-s})\right)^{-1}$$

the inverse of the Euler $p\mbox{-}{\rm factor}$ of $L(f\otimes h,s)$ is

 $(1 - \alpha\beta p^{-s})(1 - \alpha\bar{\beta} p^{-s})(1 - \bar{\alpha}\bar{\beta} p^{-s})(1 - \bar{\alpha}\bar{\beta} p^{-s})$

$$g = 3$$

We find experimentally and conjecture generally the following motives/liftings in S[a-b, b-c, c+4]:

1) For a > b > c > 0 we find

$$s_{a-c+3}S[b+3] \otimes S[a+c+5]$$

That is, for eigenforms $f \in S_{b+3}(\Gamma_1)$, $g \in S_{a+c+5}(\Gamma_1)$ and $h \in S_{a-c+3}(\Gamma_1)$ there is $F \in S_{a-b,b-c,c+4}(\Gamma_3)$ with

 $L(F,s) = L(f \otimes g, s) L(f \otimes h, s - c - 1).$

2) For b = c we find

$$S[a+4] \otimes S[2b+4]$$

For eigenforms $f \in S_{a+4}(\Gamma_1)$ and $g \in S_{2b+4}(\Gamma_1)$ there is $F \in S_{a-b,0,b+4}(\Gamma_3)$ with

$$L(F,s) = L(f,s-b-1)L(f,s-b-2)L(f \otimes g,s)$$

3) For a = b and c > 0 we find

$$S[c+2] \otimes S[2a+6]$$

For eigenforms $f \in S_{c+2}(\Gamma_1)$ and $g \in S_{2a+6}(\Gamma_1)$ there is $F \in S_{0,a-c,c+4}(\Gamma_3)$ with

$$L(F,s) = L(f,s-a-2)L(f,s-a-3)L(f \otimes g,s)$$

December 3, 2020

Example. Take (a, b, c) = (8, 8, 8). Miyawaki observed for the generator $F \in S_{12}(\Gamma_3)$ that

 $L(F,s) = L(\Delta, s-9)L(\Delta, s-10)L(\Delta \otimes f_{20}, s)$

with $f_{20} \in S_{20}(\Gamma_1)$. This was proven by Ikeda.

Miyawaki conjectured the cases 2) and 3) for a = b = c.

Example. $\lambda = (12, 12, 12)$. We have dim $S_{0,0,16}(\Gamma_3) = 3$. There is supposedly a 2dimensional space of lifts. There should be a 'genuine' form in $S_{0,0,16}(\Gamma_3)$ with eigenvalues

 $\lambda(2) = -115200, \ \lambda(3) = 14457333600,$

 $\lambda(17) = -84643992509680105660020600.$

One may check for example that these eigenvalues grow like $p^{(a+b+c+6)/2}$.

The conjectures says that there should be 123 cases with a 1-dim. space of 'genuine' eigenforms (for $a + b + c \le 60$).

On the website smf.compositio.nl one can find numerical values of the traces of Hecke operators.

On \mathcal{M}_3

We can also carry out the counting on \mathcal{M}_3 for the cohomology

$$e_c(\mathcal{M}_3, \mathbf{V}'_{\lambda})$$

where \mathbf{V}'_{λ} is the pullback under $t : \mathcal{M}_3 \to \mathcal{A}_3$. For example, we found heuristically for $e_c(\mathcal{M}_3, \mathbf{V}'_{5,5,5})$ the result

 $L^7 + 2L^6 + 5L^5 + 6L^4 + 4L^3 + 3L^2 + 2L + 1 + S[4, 10]$

and the Hodge weight 21-part should be the Hodge weight 21-part of S[4, 10] and this should be generated by Teichmüller modular form χ_9 .

But it is a mystery which new motives (of 'level 1') will turn up in this cohomology.

For example, in $e_c(\mathcal{M}_3, \mathbf{V}'_{11,3,3})$ we see a 6-dimensional motive of weight 23 first identified by Chenevier-Renard. It has Hodge degrees 0, 5, 9, 14, 18, 23. It cannot come from Siegel modular form. It should correspond to a Teichmüller modular form of weight (8, 0, 7). We can construct such a form.

L-series of Modular Forms

If $f = \sum a_n q^n$ is a normalized eigen cusp form of weight k we set

$$L(f,s) = \sum_{n=1}^{\infty} a_n n^{-s}$$
 Re(s) > k/2 + 1,

or better, we take

$$\Lambda(f,s) = \frac{\Gamma(s)}{(2\pi)^s} L(f,s) = \int_0^\infty f(iy) y^{s-1} dy$$

 $\Lambda(f,s)$ can be extended holomorphically to all s and satisfies

$$\Lambda(f,s) = i^k \Lambda(f,k-s).$$

19

We can look at the critical values

 $\Lambda(f, k-1), \Lambda(f, k-2), \ldots, \Lambda(f, k/2).$

MANIN AND VISHNIK: there are two real numbers ω_+ and ω_- (*the periods*) such that the numbers

$$\frac{\Lambda(f,k-1)}{\omega_{-}}, \frac{\Lambda(f,k-2)}{\omega_{+}}, \dots, \frac{\Lambda(f,k/2)}{\omega_{\pm}}$$

lie in \mathbf{Q}_f with $\mathbf{Q}_f = \mathbf{Q}(a_1, a_2, \ldots)$, the field generated by the Fourier coefficients of f.

Example. Take $f = \Delta$. We get $(\Lambda(f, 10) : \Lambda(f, 8) : \Lambda(f, 6)) = (48 : 25 : 20)$

In general we find only small primes as entries. But occasionally a 'large' prime divides these values: for $f \in S_{22}$ we get

$$(\Lambda(f,20):\ldots:\Lambda(f,14):\Lambda(f,12))$$

equals

 $(2^5 \cdot 3^3 \cdot 5 \cdot 19 : 2^3 \cdot 7 \cdot 13^2 : 3 \cdot 5 \cdot 7 \cdot 13 : 2 \cdot 3 \cdot 41 : 2 \cdot 3 \cdot 7)$

and we see $41 | \Lambda(f_{22}, 14)$. Question: What is the meaning of such primes?

Example: Large Primes ℓ (or their norms) dividing critical values $\Lambda(f, t)$

weight k	t	ℓ
22	14	41
24	19	73
24	17	179
26	19	29
26	21	97
26	23	43
28	23	367
28	22	647
28	21	4057
28	19	2027
28	20	157
:	:	:
38	36	67 and 83

Harder's Conjecture. Let a > b and let $f = \sum a(n)q^n \in S_{a+b+4}(\Gamma_1)$ be an eigenform. If an ordinary prime ℓ (in \mathbf{Q}_f) divides a critical value $\Lambda(f, a + 3)$ then there exists an eigenform form $F \in S_{a-b,b+3}(\Gamma_2)$ with eigenvalue $\lambda(p)$ for T(p) such that for all primes p

$$\lambda(p) \equiv p^{a+2} + a(p) + p^{b+1} \pmod{\ell}.$$

Ordinary means that that if ℓ lies above the prime $l \in \mathbb{Z}$ then ℓ does not divide the eigenvalue a(l).

Example. Let
$$f \in S_{22}(\Gamma_1)$$
, $a = 11$, $b = 7$.
 $f = q - 288 q^2 - 128844 q^3 - 2014208 q^4$
 $+ 21640950 q^5 + \dots$

and $41|\Lambda(f, 14)$ and thus $\ell = 41$. There should exist an eigenform $F \in S_{4,10}$ with eigenvalues $\lambda(p)$ such that for all p

$$\lambda(p) \equiv p^8 + a(p) + p^{13} \pmod{41}.$$

We find dim $S_{4,10}(\Gamma_2) = 1$ and we have

p	2	3	5
a(p)	-288	-128844	21640950
$\lambda(p)$	-1680	55080	-7338900

and one checks

$$2^8 - 288 + 2^{13} = -1680 + 9840$$

with

$$9840 = 2^4 \cdot 3 \cdot 5 \cdot 41$$

We checked it for all $p \leq 37$. This example was later proved by Chenevier and Lannes using unimodular lattices of rank 24.

Note that $19|\Lambda(f_{22}, 20)$. But a(19) = -7920788351740 is divisible by 19.

Many more examples can be checked numerically.

December 3, 2020

weight r	weight (j,k)	$N(\ell)$
22	(4, 10)	41
24	(12,7)	73
24	(8,9)	179
26	(10,9)	29
26	(14,7)	97
26	(18, 5)	43
28	(16,7)	367
28	(8, 11)	2027
28	(20,5)	193
30	(10, 11)	97
30	(24, 4)	97
32	(4, 15)	61
34	(28, 4)	103

The philosophy is that direct sum decompositions of rational cohomology stable under the Hecke algebra do not necessarily hold for integral cohomology. This gives rise to congruences.

The best-known congruence is

$$\tau(p) \equiv 1 + p^{11} \pmod{691}$$

which is a congruence between Δ and the Eisenstein series E_{12} . Kurokawa found a first example between eigenforms in $S_{20}(\Gamma_2)$ and a Klingen-type Eisenstein series $E(f_{20})$ with $f_{20} \in S_{20}(\Gamma_1)$.

We found experimentally congruences for g = 3.

Harder Type Congruences g = 3.

Example. Let $f \in S_{a+4}(\Gamma_1)$, $g \in S_{b+c+4}(\Gamma_1)$ eigenforms. If a 'large' prime ℓ in $\mathbf{Q}_{f,g}$ divides the critical value of

$$\Lambda(\operatorname{Sym}^2(f) \otimes g, a+b+6)$$

then there should be an eigenform $F \in S_{a-b,b-c,c+4}(\Gamma_3)$ such that

$$\lambda_p(F) \equiv \lambda_p(f)(p^{b+2} + \lambda_p(g) + p^{c+1}) \pmod{\ell}$$

for all primes p.

Another example.

Let $f \in S_{c+2}(\Gamma_1)$ and $g \in S_{a+b+6}(\Gamma_1)$ be eigenforms and ℓ an ordinary prime in $\mathbf{Q}_{f,g}$ dividing the critical value

$$\Lambda(\operatorname{Sym}^2(f)\otimes g, a+c+5).$$

Then there should be a Siegel modular eigenform $F \in S_{a-b,b-c,c+4}(\Gamma_3)$ such that

 $\lambda_F(p) \equiv \lambda_f(p) \left(p^{b+2} + \lambda_g(p) + p^{a+3} \right) \mod \ell$

for all primes p.

December 3, 2020

Take (a, b, c) = (13, 11, 10); then $\dim S_{2,1,14}(\Gamma_3) = 1$. We predict that

$$e_c(\mathcal{A}_3, \mathbf{V}_{13,11,10}) = 2(L^{13}S[12] + 1) - 2L^{11} + S[2, 1, 14]$$

We let $f = \Delta$ and $g \in S_{30}(\Gamma_1)$ with

$$g = 1 + (4320 + 96\sqrt{51349}) q + \cdots$$

The prime $\ell = 199$ divides the critical value $\Lambda(\text{Sym}^2(f) \otimes g, 28)$. (Calculation by Mellit.) One checks that for $F \in S_{2,1,14}(\Gamma_3)$ we have $\lambda_F(2) = -2073600$ and

$$-2073600 + 24(2^{13} + 4320 + 96\sqrt{51349} + 2^{16})$$

has norm

$$-232402452480 \equiv 0 \mod 199$$

These conjectured congruences have been generalized vastly by Bergström and Dummigan in line with the Bloch-Kato conjectures.

Literature

J. Bergström, C. Faber, G. van der Geer: *Siegel modular forms of degree three and the cohomology of local systems.* Selecta Math. 2013.

G. Harder: *A congruence between a Siegel and an elliptic modular form.* In: The 1-2-3 of modular forms. Springer, Berlin (2008)

T. Ikeda: *Pullback of the lifting of elliptic cusp forms and Miyawaki's conjecture.* Duke Math. J. 131, 469-497 (2006).

S. Mizumoto: *Congruences for eigenvalues of Hecke operators on Siegel modular forms of degree two.* Math. Ann. 275(1), 149-161 (1986).

December 3, 2020

Thank you for your attention