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1. Introduction

In the well-known analogy between the theory of function fields of curves over
finite fields and the arithmetic of algebraic number fields, the number–theoretical
analogue of a divisor on a curve is an Arakelov divisor. In this paper we introduce
the notion of an effective Arakelov divisor; more precisely, we attach to every
Arakelov divisor D its effectivity, a real number between 0 and 1. This notion
naturally leads to another quantity associated to D. This is a positive real number
h0(D) which is the arithmetic analogue of the dimension of the vector space H0(D)
of sections of the line bundle associated to a divisor D on an algebraic curve. It
can be interpreted as the logarithm of a value of a theta function. Both notions
can be extended to higher rank Arakelov bundles.

In this paper we show that the effectivity and the numbers h0(D) behave in
several respects like their traditional geometric analogues. We prove an analogue of
the fact that h0(D) = 0 for any divisor D on an algebraic curve with deg(D) < 0.
We provide evidence for a conjecture that would imply an analogue of the fact
that h0(D) ≤ deg(D) + 1 for divisors D on an algebraic curve with deg(D) ≥ 0.
The Poisson summation formula implies a Riemann–Roch Theorem involving the
numbers h0(D) and h0(κ − D) with κ the canonical class; it is a special case
of Tate’s Riemann–Roch formula. Unfortunately, we do not have a definition of
h1(D) := h0(κ − D) for an Arakelov divisor without recourse to duality. Following
K. Iwasawa [Iw] or J. Tate [T] one derives in a natural way the finiteness of the class
group and the unit theorem of Dirichlet from this analogue of the Riemann–Roch
Theorem, avoiding the usual arguments from geometry of numbers.
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The notion of effectivity naturally leads to a definition of the zeta function of
a number field which is closely analogous to the zeta function of a curve over a
finite field. In this way the Dedekind zeta function, multiplied by the usual gamma
factors, is recovered as an integral over the Arakelov class group.

There is a close connection between Arakelov divisors and certain lattices. The
numbers h0(D) are closely related to the Hermite constants of these lattices. The
value of h0 on the canonical class is an invariant of the number field that can be
viewed as an analogue of the genus of a curve. The quantity h0(D) defines a real
analytic function on the Arakelov divisor class group. Its restriction to the group
of Arakelov divisors of degree 1

2 deg(κ) can be viewed as the analogue of the set of
rational points of the theta divisor of an algebraic curve over a finite field.

It is natural to try to obtain arithmetic analogues of various basic geometric
facts like Clifford’s theorem. As explained at the end of Section 5, this comes down
to studying the behaviour of the function h0 on a space parametrizing bundles of
rank 2.

We suggest in the same spirit a definition for an invariant h0(L) for a metrized
line bundle L on an arithmetic surface. The definition for h0 provided here hints
at a further theory and we hope this paper will stimulate readers to develop it.

In Section 2 we recall some well known facts concerning Arakelov divisors. In
Section 3 we introduce the notion of effectivity and the definition of h0. We apply
them to the zeta function of a number field in Section 4. In Section 5 we give some
estimates on h0(D). We introduce the analogue of the genus for number fields in
Section 6. In Section 7 we briefly discuss a two variable zeta function. Finally, in
Sections 8 and 9, we make some remarks about the higher dimensional theory.
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2. Arakelov divisors

The similarity between the class group Cl(OF ) of the ring of integers of a number
field F and the Jacobian of an irreducible smooth curve is a particular aspect of
the deep analogy between number fields and function fields of curves. However,
the class group classifies isomorphism classes of line bundles on the affine scheme
Spec(OF ), and algebraic geometry tells us that the Jacobian of a projective or com-
plete curve is much better behaved than that of an affine one. Following S. Arakelov
[A1], [A2] one arrives at an improved analogy via a sort of compactification of the
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scheme Spec(OF ) by taking the archimedean primes of F into account. One thus
obtains a generalization of the class group which is a compact group; it is an ex-
tension of the usual (finite) ideal class group by a real torus. In this section we
recall the definitions and briefly discuss a variant of this theory.

Let F be a number field. An Arakelov divisor is a formal finite sum
∑

P xP P +∑
σ xσσ, where P runs over the prime ideals of the ring of integers OF and σ runs

over the infinite, or archimedean primes of the number field F . The coefficients
xP are in Z but the xσ are in R. The Arakelov divisors form an additive group
Div(F ) isomorphic to

∑
P Z ×∑σ R. The first sum is infinite but the second is

a real vector space of dimension r1 + r2. Here r1 and r2 denote the number of
real and complex infinite primes, respectively. We have that r1 + 2r2 = n where
n = [F : Q]. The degree deg(D) of an Arakelov divisor D is given by

deg(D) =
∑
P

log
(
N(P )

)
xP +

∑
σ

xσ.

The norm of D is given by N(D) = edeg(D).
An Arakelov divisor D =

∑
P xP P +

∑
σ xσσ is determined by the associated

fractional ideal I =
∏

P−xP and by the r1 + r2 coefficients xσ ∈ R at the infinite
primes. For every f ∈ F ∗ the principal Arakelov divisor (f) is defined by (f) =∑

P xP P +
∑

σ xσσ, where xP = ordP (f) and xσ = − log |σ(f)| or −2 log |σ(f)|
depending on whether σ is real or complex. The ideal associated to D is the
principal fractional ideal f−1OF . By the product formula we have deg(f) = 0. The
principal Arakelov divisors form a subgroup of the group Div(F ). The quotient
group is called the Arakelov divisor class group or Arakelov–Picard group denoted
by Pic(F ). There is an exact sequence

1 −→ µF −→ F ∗ −→ Div(F ) −→ Pic(F ) −→ 0.

Here µF denotes the group of roots of unity in F ∗. Since the degree of a principal
divisor is zero, the degree map Div(F ) −→ R factors through Pic(F ). For d ∈ R,
we denote by Pic(d)(F ) the set of divisor classes of degree d. Forgetting the infinite
components, we obtain a surjective homomorphism from Pic(0)(F ) to the ideal
class group Cl(OF ) of the ring of integers OF which fits into an exact sequence

0 −→ V/φ(O∗
F ) −→ Pic(0)(F ) −→ Cl(OF ) −→ 0.

Here V = {(xσ) ∈ ∏
σ R :

∑
σ xσ = 0} and φ : O∗

F −→ ∏
σ R is the natural

map O∗
F −→ Div(F ) followed by the projection on the infinite components. The

vector space V has dimension r1 +r2 −1 and φ(O∗
F ) is a discrete subgroup of V . In

Section 4 we show that the group Pic(0)(F ) is compact. This statement is equivalent
to Dirichlet’s Unit Theorem and the fact that the ideal class group Cl(OF ) is finite.
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The volume of Pic(0)(F ) is equal to hR, where h = #Cl(OF ) and R denotes the
regulator of F .

It is natural to associate a lattice to an Arakelov divisor
∑

P xP P +
∑

σ xσσ.
When σ is real, the coefficient xσ determines a scalar product on R by setting
||1||2σ = e−2xσ . When σ is complex, xσ determines a hermitian product on C by
setting ||1||2σ = 2e−xσ . Taken together, these metrics induce a metric on the product
Rr1 × Cr2 by

||(zσ)||2D =
∑

σ

|zσ|2||1||2σ.

We view, as usual, the number field F as a subset of Rr1×Cr2 via the embeddings σ.
With these metrics the covolume of the lattice I is equal to

√|∆|/N(D), where ∆
denotes the discriminant of F .

It is not difficult to see that the classes of two Arakelov divisors D and D′ in
Pic(F ) are the same if and only if there is an OF -linear isomorphism I −→ I ′ that
is compatible with the metrics on the associated lattices. Therefore, the group
Pic(F ) parametrizes isometry classes of lattices with compatible OF -structures.
The cosets Pic(d)(F ) parametrize such lattices of covolume

√|∆|e−d.
For an Arakelov divisorD one defines the Euler–Poincaré characteristic (cf. [Sz]):

χ(D) = − log
(
covol(I)

)
= deg(D) − 1

2
log|∆|,

where the covolume is that of the ideal associated to D, viewed as a lattice I ⊂
Rr1 ×Cr2 equipped with the metrics induced by D. Since χ(OF ) = − 1

2 log |∆|, we
have for an Arakelov divisor D that

χ(D) = deg(D) + χ(OF ).

Variant. We may also consider the following variant of Arakelov theory. Let

W =
∏
σ

C/Z(1),

with Z(1) = 2πiZ, where the product runs over all embeddings. Define a complex
conjugation c op W via

c : zσ 7→ zσ.

We have
W c =

{
(zσ)σ : zσ = zσ

}
=
(
R × πiZ/2πiZ

)r1 × (C/2πiZ
)r2

.

Consider Arakelov divisors similar to those above but now of the form

D =
∑
P

xP P +
∑

σ

λσσ, with λσ = λσ,
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where the sum is again over all embeddings σ. The principal divisor (f) of an
element f ∈ F ∗ is defined by

(f) =
∑
P

ordP (f)P +
∑

σ

log
(
σ(f)

)
.

The resulting class group is denoted by P̃ic(F ). We have an exact sequence

1 −→ O∗
F −→ W c −→ P̃ic(F ) −→ Cl(OF ) −→ 1.

The real dimension of P̃ic(F ) is n = [F : Q]. Comparison with the usual Arakelov–
Picard group can be done by mapping the infinite coefficients λσ to their real parts.
This induces a surjective map P̃ic(F ) → Pic(F ) whose kernel is isomorphic to the
group

∏
σ(iR/2πiZ)c ∼= (Z/2Z)r1 × (R/2πZ)r2 modulo the group µF of the roots

of unity of F .

Remark. Instead of the full ring of integers one can also consider orders A ⊂ OK

and regard them as analogues of singular curves. Define

∂−1
A/Z := HomZ(A,Z) =

{
x ∈ K : Tr(xA) ⊂ Z

}
.

If A is Gorenstein this is a locally free A-module of rank 1, and we can define the
canonical divisor to be the ideal (∂−1

A/Z)−1 together with the standard metrics. For
instance, if A = Z[α] = Z[x]/(f(x)), the canonical divisor is (f ′(α)) by Euler’s
identity. We can now develop the theory for the order A instead of OF . But we
can also change the metrics on ∂F/Q which means a change of model at the infinite
places. The interpretation of this is less clear.

3. Effectivity and an analogue of the theta divisor

A divisor D =
∑

P xP P of a smooth complete absolutely irreducible algebraic
curve X over a field k is called effective when nP ≥ 0 for all points P . The vector
space H0(D) of sections of the associated line bundle is defined as

H0(D) =
{
f ∈ k(X)∗ : (f) + D is effective

} ∪ {0}.

Here (f) denotes the principal divisor associated to a non-zero function f ∈ k(X).
The usual generalization [Sz] of the space H0(D) to Arakelov divisors D =∑

P xP P +
∑

σ xσσ of a number field F is given by

H0(D) =
{
f ∈ F ∗ : all coefficients of the divisor (f)+D are non-negative

} ∪ {0},

=
{
f ∈ I: ‖f‖σ ≤ 1 for all infinite primes σ

}
.
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Here I =
∏

P P−xP denotes the ideal associated to D. The set H0(D) is the
intersection of a lattice and a compact set. Therefore it is finite and one then puts

h0(D) := log
(
#H0(D)

)
.

This is not very satisfactory. We introduce here a new notion of h0(D) for Arakelov
divisors D. First we introduce the notion of effectivity of an Arakelov divisor. Let D
be an Arakelov divisor of a number field F . We view F as a subset of the Euclidean
space Rr1 × Cr2 via its real and complex embeddings σ. For an element f ∈ F we
write ||f ||D for ||(σ(f))||D.

We define the effectivity e(D) of an Arakelov divisor D by

e(D) =
{

0, if OF 6⊂ I;
exp

(−π||1||2D
)
, if OF ⊂ I.

We have that 0 ≤ e(D) < 1. Explicitly, for D =
∑

P xP P +
∑

σ xσσ we have that
e(D) = 0 whenever xP < 0 for some prime P . If xP ≥ 0 for all P , we have that

e(D) = exp
(−π||1||2D

)
= exp

(
−π

∑
σ real

e−2xσ − π
∑

σ complex

2e−xσ

)
.

The effectivity of D is close to 1 when each xσ is large. If one of the xσ becomes
negative, however, the effectivity of D tends doubly exponentially fast to 0. For
instance, for F = Q the effectivity of the Arakelov divisor Dx with finite part Z
and infinite coordinate xσ = x is given by the function e(Dx) = e−πe−2x

; see Fig. 1.

0
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0.4

0.6

0.8

1

-1 1 2 3 4
x

Fig. 1. The function e(D) for Q.

We can use the notion of effectivity to define the analogue of the dimension h0(D)
of the vector space H0(D) of sections of the line bundle associated to a divisor D
of a curve. It seems natural to put for an Arakelov divisor D

H0(D) =
{
f ∈ F ∗ : e

(
(f) + D

)
> 0
} ∪ {0}.
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The effectivity of (f) + D is positive if and only if f ∈ I. Here I denotes the
fractional ideal associated to D. Therefore H0(D) is equal to the infinite group I.
The function e attaches a weight (“the effectivity”) to non-zero functions f ∈
H0(D) viewed as sections of the bundle O(D) via f 7→ e((f) + D). We consider
H0(D) together with the effectivity as the analogue of the geometric H0(D). To
measure its size, we weight the divisors (f) + D to which the elements f give rise
with their effectivity

e
(
(f) + D

)
= e−π||1||2(f)+D = e−π||f ||2D .

When we count elements f rather than the ideals they generate and add the element
0 ∈ I to the sum, we obtain the analogue of the order of the group H0(D):

k0(D) =
∑
f∈I

e−π||f ||2D .

See also [Mo, 1.4]. The analogue of the dimension of H0(D) is given by

h0(D) = log

∑
f∈I

e−π||f ||2D

 ,

which we call the size of H0(D). Since two Arakelov divisors in the same class in
Pic(F ) have isometric associated lattices, the function h0(D) only depends on the
class [D] of D in Pic(F ) and we may write h0[D]. This is a function on the Picard
group.

There is an analogue of the Riemann–Roch theorem for the numbers h0(D).
We define the canonical divisor κ as the Arakelov divisor whose ideal part is the
inverse of the different ∂ of F and whose infinite components are all zero. We have
that N(∂) = |∆|, so that deg(κ) = log |∆|. Therefore 1

2 log |∆| may be seen as
the analogue of the quantity g − 1 that occurs in the Riemann–Roch formula for
curves of genus g.

Proposition 1 (Riemann–Roch). Let F be a number field with discriminant ∆
and let D be an Arakelov divisor. Then

h0(D) − h0(κ − D) = deg(D) − 1
2

log |∆|.

Proof. This is Hecke’s functional equation for the theta function. The lattices
associated to D and κ−D are Z-dual to one another and the formula follows from
an application of the Poisson summation formula∑

f∈I

e−π||f ||2D =
N(D)√|∆|

∑
f∈∂I−1

e−π||f ||2κ−D .
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This Riemann–Roch theorem is a special case of Tate’s [T]. Just as Tate had
many choices for his zeta functions, we had a choice for our effectivity function.
We chose the function e−π||x||2 because it gives rise to a symmetric form of the
Riemann–Roch theorem and because it leads to the functional equation of the
Dedekind zeta function. This is analogous to the geometric case, where there is
a unique function h0. We do not have a definition of h1(D) without recourse to
duality. However, recently A. Borisov [Bo] proposed a direct definition of h1(D).

Recall that in the geometric case the Jacobian of a curve X of genus g, together
with its theta divisor Θ ⊂ Pic(g−1)(X), determines the curve, and recall that the
geometry of the curve (e.g. existence of linear systems) can be read from the theta
divisor. In particular, Riemann showed that the singularities of Θ determine the
linear systems on X of degree g − 1:

h0(D) = ord[D](Θ),

where ord[D](Θ) is the multiplicity of Θ at the point [D] ∈ Picg−1(X).
Let d = 1

2 log |∆|. We view the restriction of the function h0 to Pic(d)(F ) as the
analogue of the theta divisor Θ. The function h0 is a real analytic function on the
space Pic(d)(F ). It should be possible to reconstruct the arithmetic of the number
field F from Pic(d) together with this function.

We give some numerical examples.

Example 1. For F = Q the function h0 looks as follows. Since Z has unique
factorization, the degree map Pic(Q) −→ R is an isomorphism. To x ∈ R cor-
responds the divisor Dx whose associated ideal is equal to Z and whose infinite
coordinate xσ is equal to x. We have that h0(Dx) = log(

∑
n∈Z e−πn2e−2x

). This
function tends very rapidly to zero when x becomes negative. For instance, for
x = −3 its value is smaller than 10−500. The Riemann–Roch Theorem says in this
case that h0(Dx) − h0(D−x) = x for all x ∈ R.
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x

Fig. 2. The function h0(D) for Q.
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Since Dx is the Arakelov divisor xσ where σ is the unique infinite prime of Q, the
function h0(Dx) is the analogue of the function h0(nP ) = dim H0(nP ), where
P is a point on the projective line P1. In this case one has that h0(nP ) =
max(0, n + 1).

Example 2. For a real quadratic field of class number 1, the Picard group is an
extension of R by Pic(0)(F ). The group Pic(0)(F ) is isomorphic to R/RZ where
R is the regulator of F . We take F = Q(

√
41) and we plot the function h0(Dx)

on Pic(0)(F ). Here Dx denotes the divisor whose ideal part is the ring of integers
OF of F and whose infinite part has coordinates x and −x. It is periodic mod-
ulo R = 4.15912713462618001310854497 . . . Note the relatively big maximum for
x = 0. This phenomenon is the analogue of the geometric fact that for a divisor D
of degree 0 on a curve, we have h0(D) = 0 unless D is the trivial divisor, for which
h0(D) = 1.
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x

Fig. 3. The function h0(D) on Pic(0)(Q(
√

41)).

Example 3. We now take F = Q(
√

73). The class number of F is 1 and the
group Pic(F ) is isomorphic to a cylinder. For every d ∈ R, the coset Pic(d)

of classes of degree d is a circle whose circumference is equal to the regulator
R = 7.666690419258287747402075701 . . . of F . The classes of Pic(d) are repre-
sented by the divisors Dx whose integral part is OF and whose infinite compo-
nents are d/2 − x and d/2 + x, respectively. We depict the functions h0(Dx)
restricted to Pic(d)(F ) for d = i

10 log |∆| with i = 0, 1, . . . , 9. The Riemann–Roch
theorem says that the functions for i and 10 − i are translates of one another
by |5−i|

10 log(73).
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R/2 R
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Fig.4. The function h0(x) for Q(
√

73).

4. Zeta functions

In this section we recover the zeta function ζF (s) of a number field F as a certain
integral of the “effectivity” function on the group of Arakelov divisors. It is a
natural adaptation of the definition of the zeta function of a curve over a finite
field. Following Iwasawa [Iw] and Tate [Ta], we use the Riemann–Roch theorem
to prove that the topological group Pic(0)(F ) is compact. This gives a proof of
the finiteness of the class group and of Dirichlet’s Unit Theorem that only makes
use of the functional equation of the Theta function and is not based on the usual
techniques from geometry of numbers. The geometric analogue of this result is the
theorem that, for a curve over a finite field, the group Pic(0) is finite. The usual
proof of this fact exploits the Riemann–Roch theorem and the fact that the number
of effective divisors of fixed degree is finite. From our point of view, the proof by
Iwasawa and Tate is a natural generalization of this argument.

We briefly discuss the zeta function of an algebraic curve over a finite field.
Let X be an absolutely irreducible complete smooth algebraic curve of genus g
over Fq. We denote the group of Fq-rational divisors by Div(X). The degree of
a point is the degree of its residue field over Fq. The degree of a divisor D =∑

P nP ·P ∈ Div(X) is given by deg(D) =
∑

P nP deg(P ). We let N(D) = qdeg(D)

denote the norm of D. The zeta function ZX(s) of X is defined by

ZX(s) =
∑
D≥0

N(D)−s,
(
s ∈ C, Re(s) > 1

)
.

Here the sum runs over the effective divisors D of X . The sum converges absolutely
when Re(s) > 1. In order to analyze the zeta function, one considers the Picard
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group Pic(X) of X . This is the group Div(X) modulo the group of Fq-rational
principal divisors {(f) : f ∈ Fq(X)∗}. Since the degree of a principal divisor is
zero, the degree deg(D) and the norm N(D) only depend on the class [D] of D in
the Picard group. By Pic(d)(X) we denote the divisor classes in the Picard group
that have degree d.

We rewrite the sum, by first summing over divisor classes [D] ∈ Pic(X) and
then counting the effective divisors in each [D], i.e. counting |D|, the projectivized
vector space of sections

H0(D) =
{
f ∈ Fq(X)∗ : div(f) + D ≥ 0

} ∪ {0}

of dimension h0(D). We let k0(D) = #H0(D). Since the norm N(D) only depends
on the divisor class [D] of D, we write N [D]. We have

ZX(s) =
∑

[D]∈Pic(X)

#
{
D′ ∈ [D] : D′ effective

}
N [D]−s =

∑
[D]∈Pic(X)

k0(D) − 1
q − 1

N [D]−s.

The Riemann–Roch theorem implies that k0(D) = qdeg(D)−g+1 when deg(D) >
2g − 2 and it relates k0(D) to k0(κ − D). Here κ denotes the canonical divisor
of X . These facts imply that one can sum the series explicitly and that ZX(s)
admits a meromorphic continuation to all of C. Moreover, ZX(s) has a simple pole
at s = 1 with residue given by

Res
s=1

ZX(s) =
#Pic(0)(X)

(q − 1)qg−1 log(q)
.

In this way one can actually prove that Pic(0)(X) is finite. In some sense, this
proof is an analytic version of the usual argument that there are only finitely many
effective divisors of fixed degree. The fact that the zeta function converges for
s > 1 is a stronger statement that generalizes better to number fields.

Next we turn to the arithmetic situation. First we give a definition of the zeta
function associated to a number field F that is natural from the point of view of
Section 3. Rather than summing N(I)−s over all non-zero ideals I of OF , we take
— as we did for curves — the sum over all effective Arakelov divisors D. More
precisely,

ZF (s) =
∫

Div(F )
N(D)−sdµeff ,

where µeff denotes the measure on Div(F ) that weights the Arakelov divisors with
their effectivity. To see that this integral converges absolutely for s ∈ C with
Re(s) > 1, we split the integral into a product of an infinite sum and a multiple
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integral. Writing J for the inverse of the ideal associated to D and tσ for e−xσ ,
where the xσ denote the infinite components of D, we find that

ZF (s) =
∫

Div(F )
e(D)N(D)−sdD,

=
∑

06=J⊂OF

N(J)−s

∫
tσ

(∏
σ

tsσ

)
exp

−π
∑

σ real

t2σ − π
∑

σ complex

2tσ

∏
σ

dtσ
tσ

,

=
(
2π−s/2Γ(s/2)

)r1 (
(2π)−sΓ(s)

)r2
∑

06=J⊂OF

N(J)−s.

We see that our zeta function is precisely the Dedekind zeta function multiplied
by the usual gamma factors. Therefore the integral converges absolutely for s ∈ C
with Re(s) > 1.

This way of writing ZF (s) may serve to motivate the definition of the effectiv-
ity e. As we remarked above, a priori other definitions of ‘effectivity’ are possible,
and this leads to modified zeta functions similar to the integrals in Tate’s thesis [T].
Our choice is the one made by Iwasawa in his 1952 letter to Dieudonné [Iw]. In this
letter Iwasawa also showed that one can establish the compactness of Pic(0)(F ) by
adapting the computations with the zeta function of a curve over a finite field that
we indicated above. We briefly sketch his arguments.

As we did for curves, we write the zeta function as a repeated integral

ZF (s) =
∫

Pic(F )
N [D]−s

(∫
[D]

e−π||1||2DdD

)
d[D].

The divisors in the coset [D] have the form (f) + D. Only the ones for which f
is contained in I, where I is the ideal associated to D, have non-zero effectivity.
Therefore ∫

[D]

e−π||1||2DdD =
∑

(0) 6=(f)⊂I

e−π||1||2(f)+D =
∑

(0) 6=(f)⊂I

e−π||f ||2D ,

=
1
w

−1 +
∑
f∈I

e−π||f ||2D

 ,

where w is the number of roots of 1 in OF . This gives the following expression for
ZF (s):

ZF (s) =
1
w

∫
Pic(F )

(
k0[D] − 1

)
N [D]−sd[D].
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An application of Proposition 1 (i.e., the arithmetic Riemann–Roch formula) easily
implies that

wZF (s) =
∫

[D]∈Pic(X)
N [D]<

√
|∆|

(
k0(D) − 1

)
N [D]−sd[D]+

+
∫

[D]∈Pic(X)
N [D]≤

√
|∆|

(
k0(D) − 1

) N [D]s−1√|∆|(2s−1) d[D] +
vol(Pic(0)(F ))

s(s − 1)
√|∆|s

.

For s ∈ R, s > 1, all three summands are positive. Since ZF (s) converges for
s > 1, substituting any such s therefore gives an upper bound for the volume
of Pic(0)(F ). As explained in Section 2, the fact that Pic(0)(F ) has finite volume
implies Dirichlet’s Unit theorem and the finiteness of the ideal class group ClF .

In contrast to the situation for curves over finite fields, this time the effective
Arakelov divisors D of negative degree or, equivalently, with N(D) < 1, contribute
to the integrals. However their contribution is very small because they have been
weighted with their effectivity. We estimate the integrals in the next section. This
estimate is also used there to deduce the meromorphic continuation of ZF (s).

5. Estimates for h0(D)

In this section we give an estimate on h0(D) and discuss an analogue of the in-
equality h0(D) ≤ deg(D)+1 for divisors D with deg(D) ≥ 0. We also describe the
relation between h0(D) and the Hermite constant of the lattice associated to D.

Proposition 2. Let F be a number field of degree n. Let D be an Arakelov divisor
D of F with deg(D) ≤ 1

2 log |∆| and let f0 ∈ I be the shortest non-zero vector in
the lattice I associated to D. Then

k0(D) − 1 ≤ βe−π||f0||2D .

for some constant β depending only on the field F .

Proof. Let D be a divisor with N(D) ≤ √|∆|, or equivalently, deg(D) ≤ 1
2 log |∆|.

We define a positive real number u by u = (1
2 log(|∆|)−deg(D))/n with n = [F : Q].

Define a new divisor D′ of degree 1
2 log |∆| by

D′ = D +
∑

σ real

uσ +
∑

σ complex

2uσ.

For 0 6= f ∈ I, the ideal associated to D, we have ||f ||2D − ||f ||2D′ = ||f ||2D(1 − e−2u),
hence

e−π||f ||2D = e−π||f ||2D′ · e−π(||f ||2D−||f ||2D′)

≤ e−π||f ||2D′ · e−π(||f0||2D−||f0||2D′),
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where f0 is a shortest non-zero vector for D, hence also for D′. We get

k0(D) − 1 ≤ (k0(D′) − 1
) · e−π||f0||2D · eπ||f0||2D′ .

In Section 4 we showed that the cosets Pic(d)(F ) are compact. The functions
k0(D′) − 1 and eπ||f0||2D′ are continuous on the coset of divisor classes of degree
d = 1

2 log |∆|, hence are bounded. This implies the proposition.

Corollary 1. Let F be a number field of degree n. Let D be an Arakelov divisor
D of F with deg(D) ≤ 1

2 log |∆|. Then

h0(D) < k0(D) − 1 ≤ βe−πne− 2
n

deg(D)

for some constant β depending only on the field F .

Proof. Let xσ denote the infinite components of D and put tσ = exσ . Let 0 6= f ∈ I
be a non-zero vector in I. By the geometric-arithmetic mean inequality we have

||f ||2 =
∑

σ real

t−2
σ |σ(f)|2 +

∑
σ complex

2t−1
σ |σ(f)|2

≥ n
(|N(f)|2

∏
σ

t−2
σ

)1/n ≥ n
(|N(I)|2

∏
σ

t−2
σ

)1/n = nN(D)−2/n.

It follows that e−π||f ||2D is bounded from above by e−πne− 2
n

deg(D)
. Proposition 2

now implies the result.
Corollary 1 is the analogue of the geometric fact that H0(D) = 0 whenever D

is a divisor on a curve with deg(D) < 0. Indeed, if deg(D) becomes negative, then
the proposition implies that h0(D) tends doubly exponentially fast to zero.

The estimate of Corollary 1 leads to the meromorphic continuation of the zeta
function ZF (s). Indeed, since there exists a constant β only depending on the
number field F so that 0 ≤ k0(D) − 1 ≤ βe−πnN(D)−2/n

whenever N(D) <
√|∆|,

the two integrals in the last expression for wZf (s) in Section 4 converge rapidly
to functions that are holomorphic in s ∈ C. This implies that the zeta function
extends to a meromorphic function on C. The function |∆|s/2ZF (s) is invariant
under the substitution s 7→ 1− s. It is not difficult to see that the residue of ZF (s)
at the pole in s = 1 is given by

vol
(
Pic(0) )

w
√|∆| .
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Corollary 2. Let F be a number field of degree n and let w = #µF denote the
number of roots of unity in F . Then there is a constant β depending only on F so
that ∣∣∣∣∣ log

( 1
w h0(D)

)
covol(I)2/n

+ πγ(I)

∣∣∣∣∣ < βe2 deg(D)/n,

for all divisors D with deg(D) < 0.

Here I denotes the ideal associated to D and γ(I) denotes the Hermite constant of
the lattice associated to I. In other words γ(I) is the square of the length of the
shortest non-zero vector in I divided by covol(I)2/n.

Proof. Let f0 denote the shortest non-zero vector of I. We obviously have that
h0(D) ≥ log(1 + we−π||f0||2). Combining this with the inequality of Proposition 2
and using the compactness of Pic(0)(F ) to bound ||f0||2 from below, we find that

β′e−π||f0||2 ≤ h0(D) ≤ β′′e−π||f0||2

for certain β′, β′′ > 0. Dividing these quantities by w, taking the logarithm and
dividing by covol(I)2/n easily implies the corollary.

The Hermite constant only depends on the lattice modulo homothety. The
corollary says that the function − 1

π log( 1
wh0(D)) covol(I)−2/n approaches the Her-

mite constant γ(I) of I when deg(D) tends to −∞. In practice the convergence is
rather fast. We give a numerical example.

Example. As in Section 3, we consider F = Q(
√

73) and the function h0 on
Pic(F ). We depict a graph of the function

B0(d, x) = − log
( 1

2h0(Dx)
)

2π exp(−d)

for d = 0 and for d = − 1
2 log |∆|. Here Dx denotes the divisor whose integral part

is OF and whose infinite coordinate are d
2 + x and d

2 − x, respectively. Its divisor
class is contained in Pic(d)(F ). The lattice associated to Dx is denoted by Ix. Its
covolume is equal to

√|∆| exp(−d). It follows from Corollary 2 that B0(d, x) tends
to γ(Ix)

√
73
2 as d tends to −∞. We see that the graphs for d = 0 and d = − 1

2 log |∆|
are extremely close. The graph for d = − 1

2 log |∆| visibly outdoes the one for d = 0
only near its local maxima.
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Fig.5. The function B0(d, x) for Q(
√

73).

For every d ∈ R, the function B0(d, x) is periodic modulo the regulator R =
log(1068 + 125

√
73) = 7.666690419258287747402075701 . . . and symmetric with

respect to 0. The graph reflects properties of the lattice OF ⊂ R × R. The
maxima of the function h0(Dx), and hence the minima of B0(x), are attained
at 1

2 log |f/f | where f is very near one of the successive minima 1, (9 +
√

73)/2,
17+2

√
73, (77+9

√
73)/2 or one of their conjugates. Here f denotes the Gal(F/Q)-

conjugate of f . Because of our normalization, the value of B0(d, x) in these points
is approximately equal to |ff |.

In the geometric case the function h0 on Pic0(X) assumes the value 1 in the
trivial class and is 0 elsewhere. We conjecture a similar behaviour in the arithmetic
case. Roughly speaking, we expect that the function h0 assumes a pronounced
maximal value in or very close to the trivial class [OF ]. Computations suggest that
this does indeed usually happen. However, if there is a unit in O∗

F of infinite order,
all of whose absolute values are relatively close to 1, the function h0 may assume
its maximum value rather far away from [OF ]. In this case however it seems that
h0[OF ] is nevertheless rather close to the maximum value of h0.

If the number field F admits many automorphisms, we dare be more precise.

Conjecture. Let F be a number field that is Galois over Q or over an imaginary
quadratic number field. Then the function h0 on Pic0 assumes its maximum in the
trivial class OF .

It is easy to see that under these conditions the function h0 has a local max-
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imum in the trivial class [OF ] ∈ Pic(F ). The conjecture has been proved by
P. Francini [Fr] for quadratic number fields.

The analogue of the geometric fact dimH0(D) ≤ deg(D) + 1 if deg(D) ≥ 0
follows from this conjecture:

Proposition 3. If the function h0(D) on Pic0(F ) assumes its maximum in the
origin [OF ], then for every D with deg(D) ≥ 0 we have h0(D) ≤ deg(D)+h0(OF ).

Proof. We set u = deg(D)/n and we define a divisor D′ of degree 0 by

D′ = D −
∑

σ real

uσ −
∑

σ complex

2uσ.

Then deg(D′) = 0. By a term-by-term comparison for D and D′ we get h0(κ−D) ≤
h0(κ − D′). But then we have

h0(D) − deg(D) = h0(κ − D) − log(
√

|∆|) (by Riemann–Roch)

≤ h0(κ − D′) − log(
√

|∆|)
= h0(D′) (by Riemann–Roch)

≤ h0(OF ) (by assumption).

This proves the proposition.

Finally we mention Clifford’s theorem. This classical result is a statement about
the function h0(D) for divisors D of an algebraic curve of genus g. It says that for
every divisor D with 0 ≤ deg(D) ≤ 2g − 2 one has that h0(D) ≤ 1

2 deg(D) + 1.
We conjecture that in the arithmetic case the function h0(D) behaves in a similar
way. In the proof of Clifford’s theorem one estimates the sum h0(D) + h0(κ − D).
This suggests that in the arithmetic case one should study the orthogonal sum of
the two lattices associated to D and κ − D and show that the “size” of this rank 2
lattice is maximal when D = OF .

6. A new invariant

By evaluating the function k0 at the trivial Arakelov divisor OF with trivial metrics,
we obtain a new invariant of a number field.

Definition. The invariant η of a number field F is defined by

η(F ) := k0(OF ) =
∑

x∈∂−1

e−π||x||2triv .
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Since by the Riemann–Roch theorem we have that

h0(κ) = h0(OF ) +
1
2

log |∆| = exp
(
η(F )

√
|∆|),

the η-invariant is directly related to h0(κ). The latter should be viewed as the
arithmetic analogue of the genus of an algebraic curve.

It turns out that the invariant η(F ) has interesting properties. First we intro-
duce a ‘period’

ω =
π1/4

Γ(3/4)
= 1.086434811213308014575316121 . . .

Proposition 4. We have η(Q) = ω. If F is a totally real number field or a CM-
field of degree n then η(F ) = ωn · x, where x is an algebraic number lying in an
abelian extension of Q(i).

Proof. Let θ(τ) be the theta function θ(τ) =
∑

n∈Z eπin2τ , (τ ∈ C, Im(τ) > 0).
The modular function E4(τ)/θ(τ)8, with E4 the Eisenstein series of weight 4, is a
rational function on the theta group Γϑ, hence assumes by the theory of complex
multiplication a rational value at τ = i, which is 3/4, as a short calculation shows.
Let ω0 be the period of the elliptic curve y2 = 4x3 − 4x defined by

ω0 =
∫ ∞

1

dx√
4x3 − 4x

=
∫ 1

0

dt√
1 − t4

=
1
4
B(1/4, 1/2) =

Γ(1/4)2

4
√

2π
,

where B is the beta function. Since this elliptic curve has multiplication by Z[i],
the quotient π4E4(i)/ω4

0 is rational (= 48) and the first statement follows by using
the distribution relation satisfied by the gamma function. For the second statement
consider the quotient ∑

x∈OF
eπiτ ||x||2

θ(τ)n
.

This is a modular function with rational coefficients with respect to some congru-
ence subgroup Γ0(N). Hence by the theory of complex multiplication, its value at
τ = i is an algebraic number lying in an abelian extension of Q(i).

Examples. By computer calculation one finds heuristically:

η
(
Q(i)

)
= ω2 · 2 +

√
2

4
,

η
(
Q(

√−3)
)

= ω2 ·
(

2 +
√

3
4
√

3

) 1
4

,

η
(
Q(ζ7 + ζ−1

7 )
)

= ω3 7 + 3
√

7 + 3
√

2
√

7
28

,

η
(
Q(ζ5)

)
= ω4 · 23 +

√
5

20

√
1 +

√
5

10
.
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7. The two-variable zeta function

In this section we briefly discuss an alternative expression for the zeta function
ZX(s) of a curve X over Fq, which is suggested by the expression for (q − 1)ZX(s)
obtained in Section 4. It is related to the two variable zeta function of Pellikaan [P].
We also describe the analogue for number fields.

Proposition 5. The function

ζX(s, t) =
∑

[D]∈Pic(X)

qsh0(D)+th1(D)

converges for complex s, t satisfying Re(s) < 0, Re(t) < 0. It can be continued to a
meromorphic function on the whole (s, t)-plane. Its restriction to the line s+ t = 1
is equal to (q − 1)q(g−1)sZX(s).

Proof. By the Riemann–Roch theorem, the function consists of a finite sum
∑′

and two infinite parts:∑
[D],deg(D)>2g−2

qs(deg(D)+1−g) +
∑

[D],deg(D)<0

qt(− deg(D)+g−1).

Summing the two series, we find

ζX(s, t) =
∑ ′ + #Pic(0)(X)

(
qsg

1 − qs
+

qtg

1 − qt

)
.

This shows that the function admits a meromorphic continuation. Using the
Riemann–Roch theorem to eliminate the terms h1(D) in the finite sum, one finds
that the restriction to the line s+ t = 1 is equal to (q −1)q(g−1)sZX(s) as required.

Note that the line s+ t = 1 lies entirely outside the domain of convergence. The
following analogue of this result for a number field F can be proved in a similar
way.

Proposition 6. The function

ζF (s, t) =
∫

Pic(F )
es h0(D)+t h1(D)d[D]

converges for complex s, t, satisfying Re(s) < 0, Re(t) < 0. It can be continued to a
meromorphic function on the whole (s, t)-plane. Its restriction to the line s+ t = 1

is equal to w
√|∆|s/2

ZF (s).

For instance, for F = Q, the function

ζQ(s, t) =
∫ ∞

0
Θ(x)sΘ(1/x)t dx

x

converges for Re(s) < 0, Re(t) < 0. Here Θ(x) =
∑

n∈Z e−πn2x2
is a slight modifi-

cation of the usual theta function. The restriction of the analytic continuation to
the line s + t = 1 is equal to the Riemann zeta function times a gamma factor.
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8. The higher rank case

We can extend the definition of Section 3 to higher rank bundles. Let F be a number
field and consider projective OF -modules M of rank r together with hermitian
metrics at the infinite places. By a theorem of Steinitz, a projective OF -module
of rank r is isomorphic to Or−1

F ⊕ I for some ideal OF -ideal I. We define an
Arakelov bundle of rank r to be a projective OF -module M of rank r together with
a hermitian metric on M ⊗σ C at the infinite places σ. This defines a metric ||x||2M
on M ⊗Z R as it did for fractional ideals.

For such an Arakelov bundle we can define an effectivity on the module H0(M)=
M of sections by putting

e(x) = exp
(− π||x||2M

)
for x ∈ M,

and define the size h0(M) of H0(M) by

h0(M) = log

(∑
x∈M

e(x)

)
.

We then have as before a Riemann–Roch theorem. Let

χ(M) = − log covol(M).

An easy induction yields χ(M) = deg(M) + rχ(OF ), where the degree of M is
the degree of the Arakelov line bundle det(M) = ∧rM . Then the Riemann–Roch
theorem is

h0(M) − h0(κ ⊗ M∨) = χ(M),

where M∨ is the dual of M with respect to the trace map. This is again a conse-
quence of the Poisson summation formula.

In order to have reasonable moduli we consider only admissible bundles. This
means that the metrics at all infinite places σ are obtained by applying an element
of SL(r, OF ) to the standard metric

∑
zizi on M ⊗σ C.

For simplicity we assume that the projective OF -module det(M) is actually
free. We fix a trivialization det(M) ∼= OF . At the infinite places we put a (special)
hermitian metric on M ⊗σ C. Since the admissible metrics are defined to be the
transforms under SL(r, Fσ) of the standard metric, the data at infinity amount to
a point of

SL(M)\
∏
σ

SL(M ⊗ Fσ)/K,

where K is the stabilizer of a fixed allowable metric at all places σ. This quotient
can be written as a quotient under SL(M) of∏

σ real

SL(r,R)/ O(r) ×
∏

σ complex

SL(r,C)/ SU(r).
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For example, for r = 2 we find the upper half plane for the real σ and the hyperbolic
upper half space SL(2,C)/ SU(2) for the complex infinite places σ. In the particular
case that F is totally real and r = 2, we find the Hilbert modular varieties associated
to F .

As in the geometric case, one can now study for a fixed Arakelov line bundle L
of degree d and for varying bundles M of rank r with χ(M) = 0, the function
ΨL = h0(M ⊗ L) on the moduli space of Arakelov bundles of fixed rank r with
χ(M) = 0. This can be viewed as the analogue of the theta divisors introduced in
the geometric case.

9. Some remarks on higher dimensions

We finish with some remarks about generalizations. The first remark concerns the
definition of h0(L) for a metrized line bundle on an arithmetic surface.

Let X be a smooth projective geometrically irreducible curve over F and assume
that X extends to a semi-stable model X over OF . Moreover, we assume that we
are given probability measures µσ on all Xσ(C). We consider metrized line bundles
L on X which are provided with hermitian metrics at all primes σ such that their
curvature forms are multiples of dµσ. One can associate to L the cohomology
modules H0(X , L) and H1(X , L). These are finitely generated OF -modules. It is
not possible to define good metrics on them, but Faltings defined a good metric
on the determinant of the cohomology, see [F, p. 394]. We propose defining an
effectivity on H0(L) as follows. For s ∈ H0(L) and for each infinite prime σ the
norm ||s||σ is defined on Xσ(C); the divisor of s is of the form D(s) = Df +

∑
σ xσFσ

with Df a divisor on X , with Fσ the fibre over σ, and

xσ = −
∫

Xσ(C)
log ||s||2σdµσ.

We define the effectivity of s by e(s) = e(D(s)) with

e
(
D(s)

)
= exp

−π
∑

σ real

e−2xσ − π
∑

σ complex

2e−xσ


and the size of H0(L) by

h0(L) = log

 ∑
s∈H0(X,L)

e
(
D(s)

) .

Note that for the trivial line bundle L we get h0(OF ). Although we do not have a
definition of h1(L), and we can define h2(L) only via duality h2(L) = h0(L−1⊗ωX ),
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one could test whether this definition is reasonable for suitable very ample line
bundles L. Then h1(L) and h2(L) should be exponentially small, hence our h0(L)
should be close to the Faltings invariant χ(L).

As a final remark we point out that a good notion of effectivity for codimension 2
cycles in the sense of Gillet–Soulé (cf. [G-S]) on an arithmetic surface might yield
a way to write the Hasse–Weil zeta function as an integral over a Chow group.
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