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NOTE ON TAUTOLOGICAL CLASSES
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Abstract. In this note, we prove some cycle class relations on moduli
of K3 surfaces.
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1. Introduction

This note deals with a few properties of tautological classes on moduli spaces of
K3 surfaces. Let M2d denote a moduli stack of K3 surfaces over an algebraically
closed field with a polarization of degree 2d prime to the characteristic of the field.
The Chern classes of the relative cotangent bundle Ω1

X/M of the universal K3
surface X2d = X define classes t1 and t2 in the Chow groups CHi

Q(X2d) of the
universal K3 surface over M2d. The class t1 is the pull-back from M2d of the
first Chern class v = c1(V ) of the Hodge line bundle V = π∗(Ω2

X/M). We use
Grothendieck–Riemann–Roch to determine the push-forwards of the powers of t2.
These are powers of v. We then prove that v18 = 0 in the Chow group with
rational coefficients of M2d. We show that this implies that a complete subvariety
of M2d has dimension at most 17 and that this bound is sharp. These results are
in line with those for moduli of abelian varieties. There the top Chern class λg

of the Hodge bundle vanishes in the Chow group with rational coefficients. The
idea is that if the boundary of the Baily–Borel compactification has codimension
r, then some tautological class of codimension r vanishes. Our result means that
v18 is a torsion class. It would be very interesting to determine the order of this
class as well as explicit representations of this class as a cycle on the boundary, cf.
[EvdG04a], [EvdGb].

2. The Moduli Space M2d

Let k be an algebraically closed field. We consider the moduli space M2d of
polarized K3 surfaces over k with a primitive polarization of degree 2d. This is a
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19-dimensional algebraic space. Over the complex numbers, we can describe it as
an orbifold quotient Γ2d\Ω2d, where Ω2d is a bounded symmetric domain and Γ2d

is the arithmetic subgroup of SO(3, 19) obtained as follows. Consider the lattice
U3⊕E2

8 , where U is the hyperbolic plane and E8 is the usual rank 8 lattice. Let h
be an element of this lattice with 〈h, h〉 = 2d. Then L2d = h⊥ ∼= U2⊥E2

8⊥Zu with
〈u, u〉 = −2d is a lattice of signature (2, 19), and we put

Ω2d = {[ω] ∈ P(L2d ⊗ C) : 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}.

The group Γ2d is the automorphism group of L2d. It acts on Ω2d, and the quotient
(an orbifold) is the analytic space of M2d. It is well known by Baily–Borel that
the sections of a sufficiently high power of V give an embedding of Γ2d\Ω2d as a
quasi-projective variety.

3. GRR Applied to the Sheaf Ωi
X/M

To determine the push-forward π∗(ta2) under π : X2d → M := M2d, we apply
Grothendieck–Riemann–Roch to the structure sheaf of the universal (polarized) K3
surface π : X →M. We work in the Chow ring with rational coefficients. We have

ch(π!OX ) = π∗(ch(OX ) Td∨(Ω1
X/M)) = π∗(Td∨(Ω1

X/M)).

As to the left-hand side, we have π!OX = 1+V ∨, where V = R0π∗Ω2
X/M is the line

bundle with fiber H0(X, Ω2
X) over [X]. We write v for the first Chern class of this

bundle on M. So the left-hand side is 1 + e−v. For the right-hand side, note that
the determinant bundle of Ω1

X/M is a line bundle that is trivial on each K3 surface
that is a fiber of π. Therefore, this line bundle is a pull-back from M, and we can
identify it with π∗(V ). If we denote the Chern classes of Ω1

X/M by ti = ci(Ω1
X/M),

then the right-hand side has the form

π∗(1− t1/2 + (t21 + t2)/12− t1t2/24 + · · · ).

Comparing the degree 0 terms gives 1+1 = 24/12, since c2
1(X) = 0 and c2(X) = 24

for a K3 surface. For the terms of degree 1, we find −v = π∗(−t1t2)/24 = −v ·
(π∗(t2)/24), and this is in agreement. The degree 2 terms yield π∗(t22) = 88 t21. This
is in agreement with the next term:

v3/6 =
1

1440
π∗(3t22t1 − t2t

3
1).

Continuing this way, we can determine π∗(t
j
2) for all j ≥ 1. More precisely, put

B(x) = x/(1− e−x) and write γ1 and γ2 for the Chern roots of Ω1
X/M. Then

Td∨(Ω1
X/M) = B(γ1)B(γ2) =

∑
n,j : 0≤2j≤n

c(n, j)(γ1 + γ2)n−2j(γ1γ2)j

with t1 = γ1 + γ2 and t2 = γ1γ2, and the Riemann–Roch identity says that if
π∗(tn+1

2 ) = anv2n, then the an satisfy the relation∑
j≥0

aj cn,j =

{
1/(n− 2)! for n ≡ 0 (mod 2), n > 2,

2 for n = 2.
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Denoting π∗(tn+1
2 ) = anv2n, we find the following values for an.

n π∗(tn+1
2 )/v2n

0 24
1 88
2 184
3 352
4 736
5 1295488/691
6 4292224/691
7 68418650624/2499347
8 17412311922527744/109638854849
9 22654813560476770158592/19144150084038739

Proposition 3.1. Write π∗(tn+1
2 ) = anv2n for n ≥ 0. The generating function

A(t) =
∞∑

n=0

an tn = 24 + 88 t + 184 t2 + · · ·

is uniquely characterized by the property that the coefficient of t2n−1 in

2− t

1− t
A

(
−t2

1− t

)
is equal to 4n/B2n for every n > 0. Here Bm is the mth Bernoulli number.

Although the numbers an are defined for all n ≥ 0, they apparently have a
geometric interpretation only for n ≤ 9.

We now apply Grothendieck–Riemann–Roch to the sheaf Ω1
X/M, or, equivalently,

to its dual ΘX/M. It says that

ch(π!ΘX/M) = π∗(ch(ΘX/M) Td∨(Ω1
X/M)).

Note that π!ΘX/M = R1π∗ΘX/M on the left-hand side, since a K3 surface has no
nonzero vector fields [RS81]. Since the push-forwards of powers of t2 are powers
of v and t1 = π∗(v), we see that ch(π!ΘX/M) is a polynomial in v. This can be
determined by looking at cohomology once we show that the tautological ring of
M2d is Q[v]/v18.

Note that the fiber of R1π∗ΘX/M is H1(X, ΘX), the space of infinitesimal defor-
mations of X. The tangent space to M at [X] can be identified with the orthogonal
complement of h, the hyperplane class in H1(X, Ω1

X) = H1(X, ΘX). On the other
hand, we know that Hodge theory gives the following description of this tangent
space. Let

0 ⊂ F 2 ⊂ F 1 = (F 2)⊥ ⊂ H2
dR

be the Hodge filtration on H2
dR(X), and let h be the hyperplane class that gives

a section of H2
dR ⊗ OM. Then the tangent space to M can be identified with

Hom(F 2, (F 1 ∩ h⊥)/F 2). Using the cup product, we can identify (F 2)∨ with
H2

dR/F 1; i.e., in the Grothendieck group we have [H2
dR] = V ∨ + V ⊥, where we

identify F 2 with V . Now consider the restriction to the orthogonal subbundle
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h⊥ of the hyperplane class h whose class in the Grothendieck group is [H2
dR] − 1.

Therefore, we find [ΘM] = [(H2
dR − 1− V − V −1)⊗ V −1].

Proposition 3.2. The relation [ΘM] = [H2
dR − 1] ⊗ V −1 − 1 − V −2 holds in the

Grothendieck group of M.

In view of the Gauss–Manin connection on H2
dR, we see that the Chern classes

vanish in cohomology, the total Chern class of the bundle F 1 on M is 1/(1 − v),
and ch(ΘM) = −1 + 21e−v − e−2v. In particular, we find that c1(ΘX/M) = −19v.
We have already seen that the total Chern class of R1π∗(Ω1

X/M) is 1/(1 − v2)
and so its first Chern class vanishes. This is in agreement with the global duality
(R1π∗ΘX/M)∨ ∼= (R1π∗Ω1

X/M)⊗ V .

4. Vanishing of Tautological Classes in Characteristic Zero

Let II3,19 be the unique even unimodular lattice of signature (3, 19), and let S
be some Lorentzian sublattice of II3,19, say, of signature (1, m). Recall that an
S-K3 surface X is a K3 surface with a fixed primitive embedding of S in the Picard
group such that the image of S contains a semi-ample class, i.e., a class D such
that D2 > 0 and D · C ≥ 0 for all curves C on the K3 surface X, cf. [BKPSB98].
The period space Y of marked S-K3 surfaces is an orbifold that is a quotient of an
Hermitian symmetric domain of dimension 19 − m by an arithmetic subgroup of
Aut(S⊥).

Theorem 4.1. For m ≤ 16, the cycle class v18−m vanishes in the Chow group
CH18−m

Q (Y ) with rational coefficients.

Proof. By imposing a level structure, we can replace our period space by a finite
cover and assume that we are working with a fine moduli space.

The proof is by descending induction on m. For m = 16, the period domain can
be identified with the Siegel upper half-space H2 and the orbifold Y can be viewed
as a moduli space of abelian surfaces. It thus carries a natural vector bundle, the
Hodge bundle π∗(Ω1

X/Y ) with Chern classes λ1 and λ2. One shows that λ1 = v by

comparing the factors of automorphy or by noticing that H0(X, Ω2
X) ∼=

∧2
H0(Ω1

X)
for an abelian surface. Furthermore, it is known that λ2

1 vanishes by [vdG99,
Prop. 2.2]. We conclude that v2 vanishes.

The induction step is now provided by Theorem 1.2 in [BKPSB98]. There exists
a modular form Φ of weight k ≥ 12 whose zero-divisor is of the form

∑
miWi with

mi ∈ Z>0 and with orbifolds Wi that are images in Y of quotients ΓLt\ΩLt under
finite maps. Here ΩLt is an Hermitian symmetric domain of dimension one less than
the original domain Ω, and the quotient parametrizes a family of S′-K3 surfaces
with S′ ⊃ S of signature (1, m + 1). We know by induction that the class v17−m

vanishes on each of the orbifolds ΓLt
\ΩLt

. The zero-divisor of Φ represents the
class k v. We thus find that a nonzero multiple of v18−m = v · v17−m vanishes. �

In characteristic 0, we can use the existence of the Satake compactification whose
boundary is 1-dimensional to conclude that intersecting twice with a sufficiently
general hyperplane yields a complete 17-dimensional subvariety of M. Since the
class v is ample by Baily–Borel, this shows that v17 6= 0.
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Corollary 4.2. The tautological ring of M2d is Q[v]/(v18).

Corollary 4.3. The maximal dimension of a complete subvariety of M2d is 17.

In positive characteristic, the locus of K3 surfaces with height ≥ 3 defines a
complete subvariety of dimension 17, cf. [vdGK00].

If M∗ is the Baily–Borel compactification of M, then the “boundary” is a
1-dimensional cycle. In the Chow group CH18

Q (M∗), the class v18 is represented
by a 1-cycle with support on the boundary.
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