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Abstract
We construct vector-valued modular forms on moduli spaces of curves and
abelian varieties using effective divisors in projectivized Hodge bundles over
moduli of curves. Cycle relations tell us the weight of these modular forms. In
particular, we construct basic modular forms for genus 2 and 3. We also discuss
modular forms on the moduli of hyperelliptic curves. In that case, the relative
canonical bundle is a pull back of a line bundle on a ℙ1-bundle over the moduli
of hyperelliptic curves and we extend that line bundle to a compactification so
that its push down is (close to) the Hodge bundle and use this to construct mod-
ular forms. In the Appendix, we use our method to calculate divisor classes in
the dual projectivized 𝑘-Hodge bundle determined by Gheorghita–Tarasca and
by Korotkin–Sauvaget–Zograf.
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1 INTRODUCTION

Moduli spaces of curves and of abelian varieties come with a natural vector bundle, the Hodge bundle 𝔼. Starting from
this vector bundle, one can construct other natural vector bundles by applying Schur functors, like Sym𝑛(𝔼) or det(𝔼)⊗𝑚.
Sections of such bundles are called modular forms. For example, for the moduli space𝑔 of principally polarized abelian
varieties of dimension 𝑔 these are Siegel modular forms, and for the moduli space 𝑔 of curves of genus 𝑔 these are
Teichmüller modular forms. If the Schur functor corresponds to an irreducible representation 𝜌, we say that a section
of 𝔼𝜌 is a modular form of weight 𝜌. The Hodge bundle extends to appropriate compactifications of such moduli spaces
and in many cases the sections also extend automatically to the compactifications, for example, for𝑔 with 𝑔 ≥ 2 by the
so-called Koecher principle.
In this paper, we try to construct modular forms in a geometric way. It is well known that an effective divisor on 𝑔

or on 𝑔 with 𝑔 ≥ 2 representing the cycle class 𝑚𝜆 with 𝜆 = 𝑐1(det(𝔼)) and 𝑚 ∈ ℤ>0 yields a scalar-valued modular
form of weight𝑚, that is, a section of det(𝔼)⊗𝑚. We will exploit explicit effective divisors on projectivized vector bundles
to construct vector-valued modular forms. In particular, we will construct in this way certain modular forms that play a
pivotal role in low genera.
For example, in the case of 𝑔 = 2 there is the modular form 𝜒6,8, a section of Sym6(𝔼) ⊗ det(𝔼)8, that appeared in

[4] as follows. Recall that the Torelli morphism 2 ↪ 2 has a dense image and we have an equality of standard
compactifications2 = ̃2. The moduli space2 has another description as a stack quotient. This derives from the fact
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that a smooth complete curve of genus 2 over a field 𝑘 of characteristic not 2 is a double cover of ℙ1 ramified at six points,
so can be given as 𝑦2 = 𝑓 with 𝑓 a polynomial of degree 6 with nonvanishing discriminant. Writing 𝑓 as a homogeneous
polynomial in two variables, say 𝑓 ∈ Sym6(𝑊)with𝑊 the 𝑘-vector space generated by 𝑥1, 𝑥2, and observing that we may
change the basis of𝑊, we find a presentation of2 as a stack quotient

2 ∼ [𝑊
0
6,−2∕GL(𝑊)],

where we write𝑊𝑎,𝑏 for theGL(𝑊)-representation Sym𝑎(𝑊) ⊗ det(𝑊)𝑏. Here, the space𝑊6,−2 can be seen as the vector
space of binary sextics 𝑓 with an action of GL(𝑊) by

𝑓(𝑥1, 𝑥2) ↦ (𝑎𝑑 − 𝑏𝑐)−2𝑓(𝑎𝑥1 + 𝑏𝑥2, 𝑐𝑥1 + 𝑑𝑥2)

for a matrix
(
𝑎 𝑏
𝑐 𝑑

)
∈ GL(2). The subspace𝑊0

6,−2 of𝑊6,−2 is the space of 𝑓 with nonvanishing discriminant. The twisting
by det(𝑊)−2 is required to get the right stabilizer for the generic 𝑓, namely ±Id𝑊 .
This interpretation of2 was used in [4] to construct vector-valued Siegel modular forms of degree 2 by using invariant

theory of binary sextics, thus extending and simplifying the description of scalar-valued Siegelmodular forms by invariants
by Igusa [17, 18]. Covariants define vector-valued modular forms and all Siegel modular forms of degree 2 on 2 can be
constructed this way. In [4], it was shown that themost basic covariant, the universal binary sextic, defines ameromorphic
Siegel modular form 𝜒6,−2 of weight (6, −2), that is, it defines a meromorphic section of Sym

6(𝔼) ⊗ det(𝔼)−2 on2. After
multiplying 𝜒6,−2 by Igusa’s cusp form 𝜒10, one obtains the holomorphic modular form 𝜒6,8, the “first” vector-valued
Siegel modular cusp form of degree 2.
In the case of 𝑔 = 3, there is an analogous form 𝜒4,0,8, a section of Sym4(𝔼) ⊗ det(𝔼)8. Here, it derives from the

description of the moduli space𝑛ℎ
3 of nonhyperelliptic curves of genus 3 as a stack quotient

𝑛ℎ
3 ∼ [𝑊0

4,0,−1∕GL(𝑊)] ,

where𝑊 is now of dimension 3 and𝑊0
4,0,−1 ⊂ Sym

4(𝑊) ⊗ det(𝑊)−1 represents ternary quartics defining smooth curves.
In [5], this description led to the construction of a meromorphic Teichmüller modular form 𝜒4,0,−1 of weight (4, 0, −1)
and a (holomorphic) Siegel modular form 𝜒4,0,8 of degree 3 and weight (4,0,8). Also in this case all Teichmüller and Siegel
modular forms of genus 3 on3 and3 can be constructed from these forms by invariant theory.
This paper arises from the desire to construct these basic forms and similar forms in a geometric way. We use cycle

relations for effective divisors (or almost effective divisors) on the projectivized Hodge bundle to construct our forms. It
is based on the observation that an effective divisor 𝐷 on the projectivized Hodge bundle ℙ(𝔼) with cycle class

[𝐷] = [(𝑗)] + 𝑘 𝜆 − Δ

with positive integers 𝑗, 𝑘, and Δ an effective boundary class gives rise to a section of Sym𝑗(𝔼) ⊗ det(𝔼)𝑘 vanishing on
boundary divisors, that is, a modular form. This method produces the basic modular forms 𝜒6,8 and 𝜒4,0,8 of degree 2 and
3 in an efficient way.
This connection between divisors andmodular forms can also be used in the other direction, obtaining cycle classes for

divisors on projectivized Hodge bundles. We give some examples of this.
Another objective of this paper is to construct modular forms on moduli spaces of hyperelliptic curves of genus 𝑔.

For this we work with two descriptions of the moduli, a description as a stack quotient and a description as a Hurwitz
space. The latter space𝑔,2 has as compactification the space𝑔,2 of admissible degree 2 covers of genus 𝑔. In the stack
description, modular forms pull back to covariants for the action of GL(2) on the space of binary forms of degree 2𝑔 + 2.
In the Hurwitz space description, the relative canonical bundle of the universal curve over 𝑔,2 can be viewed as the

pull back of (𝑔 − 1) from the trivial ℙ1-bundle 𝑃 over 𝑔,2 equipped with 2𝑔 + 2 nonintersecting sections. Using the
theory of admissible covers, 𝑃 is compactified to a space 𝑃, a fibration of rational stable curves with 2𝑔 + 2marked points
over 𝑔,2, and we show that the line bundle (𝑔 − 1) on 𝑃 extends to a line bundle on 𝑃 with the property that its push
down to𝑔,2 is close to the Hodge bundle. This allows us to construct modular forms on𝑔,2.
When we consider projectivized bundles, projectivization is meant in the Grothendieck sense, so that for a vector space

𝑉 the projective space ℙ(𝑉) parameterizes hyperplanes in 𝑉.
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GEER and KOUVIDAKIS 3

In anAppendix, we apply amethod used in this paper to calculate the classes of certain divisors in the dual projectivized
𝑘-Hodge bundle that were determined by Gheorghita–Tarasca and by Korotkin–Sauvaget–Zograf.

2 THE CASE OF GENUS 2

Let 𝑘 be a field of characteristic not 2. We consider the moduli space2 of curves of genus 2 over 𝑘. This is a Deligne–
Mumford stack and it carries a universal curve 𝜋 ∶  →2 of genus 2. The relative dualizing sheaf 𝜔𝜋 is base point free
and thus defines a morphism 𝜑 ∶  → ℙ(𝔼). For a curve 𝐶, the map 𝜑 ∶ 𝐶 → ℙ(𝔼𝐶) associates to a point the space of
differentials vanishing in that point. We have a commutative diagram with 𝑢 the natural morphism

We let 2 be the Deligne–Mumford compactification and 𝜋 ∶  →2 the corresponding universal curve. However,
the extension 𝜔𝜋 of 𝜔𝜋 does not define an extension of the morphism 𝜑 to ℙ(𝔼) over the boundary component Δ1 that
parameterizes reducible curves.
We consider the branch divisor𝐷 ⊂ ℙ(𝔼) of themorphism 𝜑. The divisor𝐷 is of relative degree 6 in theℙ1-bundleℙ(𝔼)

over the base2. We define 𝐷 to be the closure of 𝐷 in ℙ(𝔼) over2. In the rational Picard group of ℙ(𝔼), we can write

[𝐷] = [(6)] + 𝑢∗(𝐴)

with 𝐴 a class in the rational Picard group of2 and 𝑢 ∶ ℙ(𝔼) →2 the natural projection.
We want to determine 𝐴 in terms of the generators 𝜆, 𝛿0 of the Picard group of2. We write 𝜆 for the first Chern class

of 𝔼 and 𝛿1 (resp. 𝛿0) for the class of Δ1 (resp. Δ0) in the Picard group of the stack2; here Δ0 is the boundary component
that parameterizes irreducible curves with a double point.
In order to do this, we extend themorphism𝜑. It extends over a Zariski open part ofΔ0 since𝜔𝜋 has no base points there.

However, over Δ𝑖 with 𝑖 > 0 this system has base points. We then use a base change as described in Appendix A. After a
base change, we have in an open neighborhood𝑈𝑖 of the generic point of Δ𝑖 a semistable family. If we take the base to be
1-dimensional, we get a semistable family 𝑓 ∶ ̃ → �̃� with as central fiber a chain 𝐶′ + 𝑅 + 𝐶′′ with 𝑅 a (−2)-curve and
𝐶′ and 𝐶′′ of genus 1. The extension 𝜑′ of 𝜑 is given by 𝜔𝑓(−𝑅) with 𝑓∗(𝜔𝑓(−𝑅)) = 𝔼�̃� and the morphism 𝜑′ ∶ �̃� → ℙ(𝔼)

contracts 𝐶′ and 𝐶′′ and is of degree 2 on 𝑅. We refer to Appendix A for the details. The morphism 𝜑′ has the property

𝜑′
∗
(ℙ(𝔼�̃�)(1)) = 𝜔𝑓(−𝑅) .

Proposition 2.1. We have [𝐷] = 6 [(1)] + 𝑢∗(8 𝜆 − 𝛿0 − 𝛿1).

Proof. We write [𝐷] = 6 [(1)] + 𝑢∗(𝐴). We work with the above two types of 1-dimensional families 𝑓 ∶ 𝐶 → 𝐵. The
morphism 𝜑 is ramified over 𝐷, and thus 𝜑′ is ramified over 𝐷 and contracts 𝐶′ and 𝐶′′. We denote the ramification
divisor by 𝑆. We thus get (writing abusively line bundles and divisors for the corresponding divisor classes)

𝜔𝑓 = 𝜑
′∗𝜔𝑢 + 𝑆 + 2 (𝐶

′ + 𝐶′′), 𝜑′
∗
𝐷∕2 = 𝑆 + 3 (𝐶′ + 𝐶′′) ,

where the first equation comes from adjunction 𝜔𝑓 + 𝐶′|𝐶′ = 𝐶′ for 𝐶′ and similarly for 𝐶′′, and the second one from
𝐶′ ⋅ 𝜑′

∗
𝐷 = 0 = 𝐶′′ ⋅ 𝜑′

∗
𝐷. This gives

𝜔𝑓 = 𝜑′
∗
(𝜔𝑢 + 𝐷∕2) − (𝐶

′ + 𝐶′′)

= 𝜑′
∗
((−2) + 𝑢∗(𝜆) + (3) + 𝑢∗(𝐴∕2)) − (𝐶′ + 𝐶′′)

= 𝜑′
∗
((1) + 𝑢∗(𝜆 + 𝐴∕2)) − (𝐶′ + 𝐶′′)

= 𝜔𝑓 − 𝑅 + 𝑓
∗(𝜆 + 𝐴∕2) − (𝐶′ + 𝐶′′)

= 𝜔𝑓 + 𝑓
∗(𝜆 + 𝐴∕2 − 𝑏1)
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4 GEER and KOUVIDAKIS

with 𝑏1 the special point of �̃�. This shows that 𝐴 = −2𝜆 + 2 𝑏1. Because of the base change that we executed, we have
2 𝑏1 = 𝛿1 and we obtain 𝐴 = −2𝜆 + 𝛿1. Now we use the well-known relation 10 𝜆 = 𝛿0 + 2 𝛿1 (see [24]) and thus get
𝐴 = −2𝜆 + 𝛿1 = 8𝜆 − 𝛿0 − 𝛿1. □

Remark 2.2. We indicate an alternative proof of this result in Remark 13.5.

An important remark is now that 𝑢∗((1)) = 𝔼 and 𝑢∗((𝑚)) = Sym
𝑚(𝔼) for𝑚 ≥ 1. The divisor 𝐷 with

[𝐷] = [(6)] + 𝑢∗(8𝜆 − 𝛿0 − 𝛿1)

is an effective divisor on ℙ(𝔼). We apply 𝑢∗ to the corresponding section 1 of(𝐷). By Proposition 2.1, we see that we get a
regular section 𝜒6,8 of the vector bundle Sym

6(𝔼) ⊗ det(𝔼)8 over2. Moreover, this section vanishes on the divisors Δ0
and Δ1. Note that the Torelli map extends to an isomorphism2 ≅ ̃2 with ̃2 the standard smooth compactification of
2. Therefore, our section defines a Siegel modular form 𝜒6,8 of weight (6,8) that is a cusp form.

Corollary 2.3. Let 𝐷 be the closure in ℙ(𝔼) of the branch divisor of the canonical map for the universal curve over2. The
push forward 𝑢∗(𝑠), with 𝑠 the natural section 1 of (𝐷) on ℙ(𝔼), defines a Siegel modular cusp form 𝜒6,8 of degree 2 and
weight (6,8).

The relation 10 𝜆 = 𝛿0 + 2 𝛿1 quoted above implies that there exists a Siegel modular cusp form 𝜒10 of degree 2 and
of weight 10 with divisor 𝛿0 + 2 𝛿1. The quotient 𝜒6,−2 ∶= 𝜒6,8∕𝜒10 defines a meromorphic section of Sym

6(𝔼) ⊗ det 𝔼−2

that is regular outside Δ1.
We now analyze the orders of vanishing along 𝛿1 of 𝜒6,8 and 𝜒6,−2. When identifying2 with �̃�2, we also write 1,1

for 𝛿1; it is the locus of products of elliptic curves.
We analyze the orders by working locally on a family over a local base 𝐵 with central fiber a general point 𝑏1 of the

boundary divisor Δ1. As we mentioned before, the map 𝜑 ∶  → ℙ(𝔼) defined over 2 does not extend to the whole 
over2 due to the fact that the canonical system has base points at the nodes of the curves over the boundary divisor Δ1.
On the other hand, by the theory of admissible covers, the ramification divisor of the abovemap 𝜑 extends to a divisor 𝑆 on
 in a way that avoids the above nodal locus. Namely, over 𝑏1 ∈ Δ1 the fiber is a nodal curve 𝐶, which is the union of two
elliptic curves 𝐶1 and 𝐶2 meeting at a point 𝑝. The restriction of the ramification divisor on each component is the union
of the three—additional to 𝑝—ramification points of the system |(2𝑝)|. Therefore, the extension of the map 𝜑 is defined
on the ramification divisor 𝑆. The map 𝜑maps 𝐶1∖{𝑝} and 𝐶2∖{𝑝} to two distinct points 𝑝1 and 𝑝2, respectively, which are
defined as follows. The fiber of ℙ(𝔼) over 𝑏1 can be identified with ℙ(𝐻0(𝐶, 𝜔𝐶)). The points of 𝐻0(𝐶, 𝜔𝐶) have the form
(𝑠1, 𝑠2), with 𝑠𝑖 a section of𝐻0(𝐶𝑖,(𝑝)). Then, the point 𝑝1 corresponds to the hyperplane {(0, 𝑠2), 𝑠2 ∈ 𝐻0(𝐶2,(𝑝))} and
the point 𝑝2 corresponds to the hyperplane {(𝑠1, 0), 𝑠1 ∈ 𝐻0(𝐶1,(𝑝))}.
The divisor 𝐷, the image of the ramification divisor under the extended map 𝜑, splits then into six irreducible com-

ponents denoted by 𝐷1,… , 𝐷6. Over our local base 𝐵, we thus have the six local sections 𝐷𝑖 (𝑖 = 1, … , 6) of the family
ℙ(𝔼) → 𝐵. By the above description of the extension of the map 𝜑, we may conclude that 𝐷1, 𝐷2, 𝐷3 pass through 𝑝1 and
𝐷4, 𝐷5, 𝐷6 through 𝑝2.
Lifting the sections 𝐷𝑖 locally to sections 𝜎𝑖 of 𝔼 and choosing a basis 𝑒1, 𝑒2 of 𝔼 over 𝐵 such that 𝑒1 and 𝑒2 determine 𝑝1

and 𝑝2 in the fiber of ℙ(𝔼) over 𝑧 = 0, we can write 𝜎𝑖 = 𝑎𝑖𝑒1 + 𝑏𝑖𝑒2 for 𝑖 = 1, … , 6. Then at 𝑧 = 0, the functions 𝑏1, 𝑏2, 𝑏3
and 𝑎4, 𝑎5, 𝑎6 vanish, while 𝑎1, 𝑎2, 𝑎3, 𝑏4, 𝑏5, 𝑏6 do not vanish. Since by blowing up once we can separate, we may assume
that these sections vanish with order 1 at 𝑧 = 0. By construction the section 𝜒 of Sym6(𝔼) ⊗ det(𝔼)−2 is locally given by

𝜎1⋯𝜎6
𝑧

.

We may write 𝜎1⋯𝜎6 as

𝑎1⋯𝑎6 𝑒
6
1 + (𝑎1𝑎2𝑎3𝑎4𝑎5𝑏6 +⋯+ 𝑏1𝑎2𝑎3𝑎4𝑎5𝑎6) 𝑒

5
1𝑒2+

(𝑎1𝑎2𝑎3𝑎4𝑏5𝑏6 +⋯+ 𝑏1𝑏2𝑎3𝑎4𝑎5𝑎6) 𝑒
4
1𝑒
2
2+

(𝑎1𝑎2𝑎3𝑏4𝑏5𝑏6 +⋯+ 𝑏1𝑏2𝑏3𝑎4𝑎5𝑎6) 𝑒
3
1𝑒
3
2 +⋯+ 𝑏1⋯𝑏6 𝑒

6
2 .
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GEER and KOUVIDAKIS 5

The order at 𝑧 = 0 of the coefficient of 𝑒𝑖1𝑒
6−𝑖
2 equals

min
#Λ=𝑖

(#Λ𝑐 ∩ {1, 2, 3} + #Λ ∩ {4, 5, 6})

with Λ running though the subsets of {1, … , 6} of cardinality 𝑖 and Λ𝑐 denoting the complement. We find for these orders
(3, 2, 1, 0, 1, 2, 3) for 𝑖 = 0, … , 6, hence for the section 𝜒 given by 𝜎1⋯𝜎6∕𝑧, we find the orders (2, 1, 0, −1, 0, 1, 2).

Corollary 2.4. The section 1 of the line bundle (𝐷) on ℙ(𝔼) over 2 pushes down via ℙ(𝔼) →2 to the meromorphic
modular form 𝜒6,−2 on2 = ̃2. The orders of the seven coordinates of 𝜒6,−2 along1,1 in2 are (2, 1, 0, −1, 0, 1, 2).

These orders are in agreement with the result of [4] where 𝜒6,−2 was constructed by invariant theory and properties of
modular forms were used to determine these orders.
A different way to construct the form 𝜒6,8 uses the so-called Weierstrass divisor𝑊 in the dual bundle:

𝑊 ∶= {(𝐶, 𝜂) ∈ ℙ(𝔼∨) ∶ div(𝜂) contains a Weierstrass point}

over2. Here, 𝐶 denotes a curve of genus 2 and 𝜂 a differential form on 𝐶. We let𝑊 be the closure of𝑊 over2. We
then have an identity due to Gheorghita [12, Theorem 1]

[𝑊] = 6 [ℙ(𝔼∨)(1)] + 34 𝜆 − 3 𝛿0 − 5 𝛿1 ,

where we write 𝜆 and 𝛿𝑖 for the pull back of 𝜆 and 𝛿𝑖 to ℙ(𝔼∨). Now 𝑊 is an effective divisor and the push forward of
the section 1 of(𝑊) is a section of Sym6(𝔼∨) ⊗ det(𝔼)34 ⊗ (−3𝛿0 − 5𝛿1). For 𝑔 = 2, we have 𝔼∨ ≅ 𝔼⊗ det(𝔼)−1, hence
Sym6(𝔼∨) ≅ Sym6(𝔼) ⊗ det(𝔼)−6. This implies that under the isomorphismofℙ1-bundlesℙ(𝔼) ≅ ℙ(𝔼∨) the isomorphism
identifies [𝑊] with [𝐷], and we get in the dual bundle

[𝑊] = 6 [(1)] + 28 𝜆 − 3 𝛿0 − 5 𝛿1 = 6 [(1)] + 8 𝜆 − 𝛿0 − 𝛿1 .

Using push forward, we find again a form of weight (6,8) vanishing on 𝛿1 and 𝛿0. Up to a multiplicative nonzero constant,
this is 𝜒6,8.

Remark 2.5. The identity [𝑊] = 6 [(1)] + 28 𝜆 − 3 𝛿0 − 5 𝛿1 implies that there exists a modular form of weight (6,28)
vanishing with multiplicity 3 on Δ0 and multiplicity 5 on Δ1, but this is (up to a multiplicative constant) the form 𝜒210 𝜒6,8
with 𝜒10 the form of weight 10 with divisor 𝛿0 + 2𝛿1 that displays the relation 10 𝜆 = 𝛿0 + 2𝛿1.

3 THE CLASS OF THE 𝒌-CANONICALLY EMBEDDED CURVE

For the calculation of the classes of effective divisors in ℙ(𝔼) related to the canonical image of the universal curve, it is
helpful to have (part of) the class of the closure of the canonical image in ℙ(𝔼) over𝑔. Without extra effort we can and
will extend the calculation to the case of the 𝑘-canonically embedded curve for 𝑘 ≥ 1.
We consider the universal family 𝜋 ∶ 𝑔 →𝑔. This comes with a natural vector bundle 𝔼𝑘 = 𝜋∗(𝜔

⊗𝑘
𝜋 ) for 𝑘 ∈ ℤ≥1

and for 𝑘 = 1 this is the Hodge bundle 𝔼1 = 𝔼. We write 𝑢 ∶ ℙ(𝔼𝑘) →𝑔 for the natural map. For 𝑘 ≥ 2, the sheaf 𝜔⊗𝑘𝜋
is base point free for stable curves and the surjection 𝜋∗𝔼𝑘 → 𝜔⊗𝑘𝜋 defines a morphism 𝜑𝑘 ∶ 𝑔 → ℙ(𝔼𝑘). For 𝑘 = 1, the
sheaf 𝜔𝜋 is base point free on𝑔 ∪ Δ

0
0, with Δ

0
0 ⊂ Δ0 the open locus with only disconnecting nodes, but it has base points

on the nodes lying over the generic points of the boundary components Δ𝑖 for 𝑖 > 0. Appendix A describes the closure of
the image over an open neighborhood of the generic point of Δ𝑖 .
We denote by Γ𝑘 the image of 𝜑𝑘(𝑔) over 𝑔 ∪ Δ

0
0 and by Γ𝑘 the closure of Γ𝑘 in ℙ(𝔼𝑘) over 𝑔. We can write the

class of Γ𝑘 as a cycle on ℙ(𝔼𝑘) as

[Γ𝑘] =

𝑟−2∑
𝑖=0

ℎ𝑖
𝑘
𝑢∗(𝛽𝑟−2−𝑖), (1)

with 𝑟 = rank(𝔼𝑘), ℎ𝑘 = 𝑐1(ℙ(𝔼𝑘)(1)) and 𝛽𝑗 a codimension 𝑗 cycle on𝑔.
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6 GEER and KOUVIDAKIS

Proposition 3.1. We have 𝛽0 = 2 𝑘(𝑔 − 1) and 𝛽1 = 𝑘2𝜅1 − 2𝑘(𝑔 − 1)𝑐1(𝔼𝑘) − 𝜖 with 𝜖 =
∑[𝑔∕2]

𝑖=1
𝛿𝑖 for 𝑘 = 1 and 𝜖 = 0 else.

Using 𝑐1(𝔼𝑘) =
𝑘(𝑘−1)

2
𝜅1 + 𝜆 and 𝜅1 = 12𝜆 −

∑[𝑔∕2]

𝑖=0
𝛿𝑖 (by [23]), we can write 𝛽1 as

𝛽1 =
(
(1 − 𝑔)(12𝑘3 − 12𝑘2 + 2𝑘) + 12 𝑘2

)
𝜆 + ((𝑔 − 1)𝑘 − 𝑔) 𝑘2

[𝑔∕2]∑
𝑖=0

𝛿𝑖 − 𝜖 .

Proof. We start with the case 𝑘 ≥ 2. In this case, Γ𝑘 is the image of 𝑔 under 𝜑𝑘 and 𝜑∗𝑘(ℎ𝑘) = 𝑘 𝜔𝜋. Since the image of
the generic fiber has degree 2𝑘(𝑔 − 1), we find 𝛽0 = 2𝑘(𝑔 − 1). The hyperplane class ℎ𝑘 satisfies

∑𝑟

𝑖=0
(−1)𝑖ℎ𝑖

𝑘
𝑐𝑟−𝑖(𝔼𝑘) = 0.

For dimension reasons we have 𝑢∗(ℎ𝑖𝑘) = 0 for 𝑖 ≤ 𝑟 − 2 and 𝑢∗(ℎ𝑟−1𝑘
) = 1. Thus, we get

𝑢∗(𝜑𝑘∗[1]ℎ
2
𝑘
) = 𝑢∗𝜑𝑘∗(𝑘

2𝜔2𝜋) = 𝑘
2𝜋∗(𝜔

2
𝜋) = 𝑘

2 𝜅1,

with 𝜋∗(𝜔2𝜋) = 𝜅1, while on the other hand by (1)

𝑢∗((𝜑𝑘∗[1])ℎ
2
𝑘
) = (𝑢∗ℎ

𝑟
𝑘
)𝛽0 + (𝑢∗ℎ

𝑟−1
𝑘
)𝛽1 = 2𝑘(𝑔 − 1) 𝑐1(𝔼𝑘) + 𝛽1,

giving 𝛽1 = 𝑘2𝜅1 − 2𝑘(𝑔 − 1)𝑐1(𝔼𝑘) and this settles the case 𝑘 ≥ 2. The same argument works for 𝑘 = 1 as long as we work
on𝑔 ∪ Δ

0
0. To get the coefficients of the 𝛿𝑖 for 𝑖 > 0we work over a 1-dimensional base 𝐵 in an open neighborhood𝑈𝑖 of

the generic point of Δ𝑖 with special fiber 𝐶′ + 𝑅 + 𝐶′′ as in Appendix A where the extension 𝜑′ of 𝜑 is defined by 𝜔𝜋′(−𝑅).
The contribution of 𝛿𝑖 to 2𝛽1 is now 𝜋′∗(𝜔(−𝑅)

2), where the coefficient 2 of 𝛽1 comes from the fact that 𝜑′ is of degree 2
on 𝑅. We get 𝜋′∗(𝜔𝜋′(−𝑅)2) = 𝜋′∗(𝜔2𝜋′) + 𝜋

′
∗(𝑅

2) = −2 𝛿𝑖 − 2 𝛿𝑖 = −4 𝛿𝑖 , as the fiber has two singular points and 𝑅2 = −2.
Putting everything together results in the given formula. □

4 THE CASE OF GENUS 3

Here, there is no restriction on the characteristic. We consider the moduli stack 3 of curves of genus 3 over our field
𝑘 and the universal curve 𝜋 ∶  →3. The canonical map defines a morphism 𝜑 ∶  → ℙ(𝔼) and we thus obtain the
image divisor 𝐷 in ℙ(𝔼) over3. We have a commutative diagram

We consider the closure𝐷 of𝐷 inℙ(𝔼) over3. The canonical image of the generic curve is a quartic curve. Thus, we have
a relation [𝐷] = [(4)] + 𝑢∗(𝐴) in the rational Picard group of ℙ(𝔼)with𝐴 a divisor class on3 given in Proposition 3.1.

Corollary 4.1. We have [𝐷] = [(4)] + 𝑢∗(8 𝜆 − 𝛿0 − 2 𝛿1).

The divisor 𝐷 is effective over3 − Δ1. Because of the relation [𝐷] = [(4)] + 𝑢∗(8 𝜆 − 𝛿0 − 2 𝛿1), the corresponding
section 1 of (𝐷) maps under 𝑢∗ to a section 𝜓 of Sym4(𝔼) ⊗ det(𝔼)8 that is regular outside Δ1 and vanishes on Δ0.
In view of the even powers Sym4 and 8, this section 𝜓 is invariant under the action of −1 on the fibers of 𝔼. As the
action of −1 defines the involution of the double covering of stacks3 → 3, the section 𝜓 descends to a section 𝜒4,0,8
of Sym4(𝔼) ⊗ det(𝔼)8 on the image of 3 − Δ1 under the Torelli morphism 3 → ̃3, with ̃3 the standard second
Voronoi compactification of 3. Since the image of Δ1 in ̃3 is of codimension 2, the section 𝜒4,0,8 extends to a regular
section of Sym4(𝔼) ⊗ det(𝔼)8 on all of3, and then by the Koecher Principle it extends to ̃3. Thus, it defines a regular
Siegel modular cusp form 𝜒4,0,8 of degree 3 and weight (4,0,8).
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GEER and KOUVIDAKIS 7

Corollary 4.2. Let 𝐷 be the closure of the canonical curve over 3 in ℙ(𝔼) and 𝑠 the natural section 1 of (𝐷). Then,
𝜒4,0,8 = 𝑢∗(𝑠) is a Teichmüller modular form and it descends to a Siegel modular cusp form of degree 3 and weight (4,0,8).

The classℌ of the hyperelliptic locus3 in3 satisfies [14, p. 140]

𝔥 = 9 𝜆 − 𝛿0 − 3 𝛿1 . (2)

Relation (2) shows that there exists a scalar-valued Teichmüllermodular form𝜒9 of weight 9 on3. Its square is invariant
under the action of −1 on the fibers of 𝔼, hence descends to a Siegel modular form of weight 18. Up to a multiplicative
scalar, this is Igusa’s modular form 𝜒18.
If we divide 𝜒4,0,8 by 𝜒9 we obtain a meromorphic section of Sym

4(𝔼) ⊗ det(𝔼)−1 on3 that is regular on3 outside
the hyperelliptic locus. This form was used in [5] to construct Teichmüller modular forms and Siegel modular forms by
invariant theory.

5 MODULI OF HYPERELLIPTIC CURVES AS A STACK QUOTIENT

In this section, we discuss the stack quotient description of the moduli of hyperelliptic curves. We consider hyperelliptic
curves in characteristic not 2. A hyperelliptic curve of genus 𝑔 is a morphism 𝛼 ∶ 𝐶 → ℙ1 of degree 2 where 𝐶 is a smooth
curve of genus 𝑔. A morphism 𝑎 ∶ 𝛼 → 𝛼′ between two hyperelliptic curves is a commutative diagram

A hyperelliptic curve 𝐶 of genus 𝑔 can be written as 𝑦2 = 𝑓(𝑥) with 𝑓 ∈ ℂ[𝑥] of degree 2𝑔 + 2. In fact, choosing a basis
(𝑥1, 𝑥2) of the 𝑔12 defines the morphism 𝛼. Let 𝑊 = ⟨𝑥1, 𝑥2⟩, a vector space (over our algebraically closed base field) of
dimension 2, and 𝐿 = 𝛼∗(𝑂ℙ1(1)). By Riemann–Roch, we have dim𝐻0(𝐶, 𝐿𝑔+1) = 𝑔 + 3, while dimSym𝑔+1(𝑊) = 𝑔 + 2,
so we have a nonzero element 𝑦 ∈ 𝐻0(𝐶, 𝐿𝑔+1), which is anti-invariant under the involution corresponding to 𝛼. The
anti-invariant subspace of 𝐻0(𝐶, 𝐿𝑔+1) has dimension 1. Then 𝑦2 is invariant and lies in Sym2𝑔+2(𝑊). Thus, we find the
equation 𝑦2 = 𝑓(𝑥1, 𝑥2) with 𝑓 homogeneous of degree 2𝑔 + 2 and with nonzero discriminant.
We have made two choices here: a generator 𝑦 of 𝐻0(𝐶, 𝐿𝑔+1)(−1), a space of dimension 1, and a basis of 𝑊. We can

change the choice of 𝑦 (by a nonzero scalar) and the choice of a basis of 𝑊 by 𝛾 = (𝑎, 𝑏; 𝑐, 𝑑) ∈ GL(𝑊). The action of
GL(𝑊) is on the right via

𝑓(𝑥1, 𝑥2) ↦ 𝑓(𝑎𝑥1 + 𝑏𝑥2, 𝑐𝑥1 + 𝑑𝑥2) .

If we letGL(𝑊) act on 𝑦 by a power of the determinant, then this action preserves the type of equation. In inhomogeneous
form, the action by GL(𝑊) is by

𝑓 ↦ 𝑓

(
𝑎𝑥 + 𝑏

𝑐𝑥 + 𝑑

)
, 𝑦 ↦ 𝑦∕(𝑐𝑥 + 𝑑)𝑔+1 ,

with the following effect on the equation:

𝑦2 = 𝑓(𝑥) ↦ 𝑦2 = (𝑐𝑥 + 𝑑)2𝑔+2𝑓

(
𝑎𝑥 + 𝑏

𝑐𝑥 + 𝑑

)
.

The last expression on the right-hand side can be written as binary form of degree 2𝑔 + 2.
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8 GEER and KOUVIDAKIS

The stabilizer of a generic𝑓 ∈ Sym2𝑔+2(𝑊) is𝜇2𝑔+2, the roots of unity of order dividing 2𝑔 + 2. Sincewewant a stabilizer
of order 2 for the generic element, we consider a twisted action: Define the GL(𝑊)-representation

𝑊𝑎,𝑏 = Sym
𝑎(𝑊) ⊗ det(𝑊)⊗𝑏 .

This can be identified with Sym𝑎(𝑊) as a vector space, but the action by GL(𝑊) is different. Inside this space𝑊𝑎,𝑏 we
have the open subspace𝑊0

𝑎,𝑏
of homogeneous polynomials of degree 𝑎 with nonzero discriminant. We now distinguish

two cases.
Case 1. 𝑔 even. Here, we consider the stack quotient

[𝑊0
2𝑔+2,−𝑔∕GL(𝑊)] .

This stack quotient can be identified with the moduli stack 𝑔 of hyperelliptic curves of genus 𝑔 for 𝑔 even. Indeed, the
action of 𝑡 ⋅ Id𝑊 is (on inhomogeneous equations) by

𝑓 ↦ 𝑡−2𝑔𝑓, 𝑦 ↦ 𝑦∕𝑡𝑔+1 ,

hence 𝑦2 = 𝑓 maps to 𝑦2 = 𝑡2 𝑓, so that the stabilizer is 𝜇2, as required. Note also that the action of −1 ∈ GL(𝑊) is by
𝑦 ↦ −𝑦, so 𝑦 is an odd element. A basis of 𝐻0(𝐶,Ω1

𝐶
) is given by

𝑥𝑖𝑑𝑥∕𝑦, (𝑖 = 0, … , 𝑔 − 1) .

The action on 𝑑𝑥 is by (𝑎𝑑 − 𝑏𝑐)𝑑𝑥∕(𝑐𝑥 + 𝑑)2 resulting in the action on the space of differentials by

𝑥𝑖𝑑𝑥∕𝑦 ↦ (𝑎𝑑 − 𝑏𝑐)(𝑐𝑥 + 𝑑)𝑔−1−𝑖(𝑎𝑥 + 𝑏)𝑖 𝑑𝑥∕𝑦 .

If we forget the twisted action on 𝑦, we can identify 𝐻0(𝐶,Ω1
𝐶
) with 𝑊𝑔−1,1. But 𝑦2 must be viewed as an element of

𝑊2𝑔+2,−𝑔, so the action of 𝑡 1𝑊 on 𝑦 should be twisted by 𝑡−𝑔 = det−𝑔∕2. We get

𝐻0(𝐶,Ω1
𝐶
) ≅ 𝑊𝑔−1,(2−𝑔)∕2 for 𝑔 even.

We see that under the identification ℎ ∶ [𝑊0
𝑔+2,−𝑔∕GL(𝑊)]

∼
⟶ 𝑔 the pullback ℎ∗(𝔼) of the Hodge bundle 𝔼 is the

equivariant bundle𝑊𝑔−1,(2−𝑔)∕2. The action of −1𝑊 is by −1 on𝑊𝑔−1,(2−𝑔)∕2. We also observe ℎ∗(det(𝔼)) = det(𝑊)𝑔∕2.
Case 2. 𝑔 odd. Here, we take𝑊2𝑔+2,−𝑔+1.

Remark 5.1. If we consider𝑊2𝑔+2,𝑟, then 𝑟 has to be even, since as above we later view 𝑦2 as an element of𝑊2𝑔+2,𝑟 and
we need an action by det𝑟∕2 on 𝑦.

Here the stabilizer of a generic element is 𝜇4. Now on inhomogeneous equations the action is by

𝑓 ↦ 𝑡−2𝑔+2 𝑓, 𝑦 ↦ 𝑦∕𝑡𝑔+1 ,

hence 𝑦2 = 𝑓maps to 𝑦2 = 𝑡4 𝑓. Note that here−1𝑊 acts by 𝑓 ↦ 𝑓 and 𝑦 ↦ 𝑦. But
√
−1𝑊 acts by 𝑓 ↦ 𝑓 and 𝑦 ↦ −𝑦. To

get the right stack quotient with stabilizer of the generic element of order 2, we take

[𝑊0
2𝑔+2,1−𝑔∕(GL(𝑊)∕(±1𝑊))] .

The action on the differentials 𝑥𝑖𝑑𝑥∕𝑦 with 𝑖 = 0, … , 𝑔 − 1 is by

𝑥𝑖𝑑𝑥∕𝑦 ↦ (𝑎𝑑 − 𝑏𝑐)(1−𝑔)∕2(𝑐𝑥 + 𝑑)𝑔−1−𝑖(𝑎𝑥 + 𝑏)𝑖 𝑑𝑥∕𝑦 ,
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GEER and KOUVIDAKIS 9

hence without twisting we get 𝐻0(𝐶,Ω1
𝐶
) = 𝑊𝑔,1. Since we view 𝑦2 as element of 𝑊𝑔+3,1−𝑔 we find under ℎ ∶

[𝑊0
2𝑔+2,1−𝑔∕(GL(𝑊)∕(±1𝑊))]

∼
⟶ 𝑔 that ℎ∗(𝔼) = 𝑊𝑔−1,(3−𝑔)∕2. The element

√
−1 1𝑊 acts on the differentials as

(−1)(3−𝑔)∕2(
√
−1)𝑔−1 = −1.

We summarize.

Proposition 5.2. Writing𝑊𝑎,𝑏 = Sym
𝑎(𝑊) ⊗ det(𝑊)𝑏 we have the identification of stacks

ℎ−1 ∶ 𝑔

∼
⟶

{
[𝑊0

2𝑔+2,−𝑔∕GL(𝑊)] 𝑔 even
[𝑊0

2𝑔+2,1−𝑔∕(GL(𝑊)∕(±1𝑊))] 𝑔 odd,

and

ℎ∗(𝔼) ≅

{
𝑊𝑔−1,(2−𝑔)∕2 𝑔 even
𝑊𝑔−1,(3−𝑔)∕2 𝑔 odd,

ℎ∗(det(𝔼)) =

{
det(𝑊)𝑔∕2 𝑔 even
det(𝑊)𝑔 𝑔 odd.

For a somewhat different description see [2, Corollary 4.7, p. 654].
Recall that the moduli stack𝑔 has as compactification the closure𝑔 of𝑔 inside the moduli stack𝑔. The Picard

group of 𝑔 is known by [2] to be finite cyclic for 𝑔 ≥ 2 of order 4𝑔 + 2 if 𝑔 is even and 8𝑔 + 4 else. The rational Picard
group of𝑔 is known by Cornalba (see [7]) to be free abelian of rank 𝑔 generated by classes 𝛿𝑖 and 𝜁𝑗 for 𝑖 = 0, … , ⌊𝑔∕2⌋
and 𝑗 = 1,… ⌊(𝑔 − 1)∕2⌋. Cornalba gives also the first Chern class 𝜆 of the Hodge bundle 𝔼 on𝑔

(8𝑔 + 4) 𝜆 = 𝑔 𝛿0 + 4

⌊𝑔∕2⌋∑
𝑖=1

𝑖(𝑔 − 𝑖) 𝛿𝑖 + 2

⌊(𝑔−1)∕2⌋∑
𝑖=1

(𝑖 + 1)(𝑔 − 𝑖) 𝜁𝑖 ,

where the generic point of the divisor 𝜁𝑖 has an admissible model 𝐶′ ∪ 𝐶′′ with two nodes 𝐶′ ∩ 𝐶′′ = {𝑝, 𝑞}mapping to a
union of two ℙ1, with 2𝑖 + 2marked points on 𝐶′, see Figures 1 and 2 in Section 7.

6 MODULAR FORMS ON THE HYPERELLIPTIC LOCUS OF GENUS 3

Let𝔼 be theHodge bundle on3. By amodular formofweight 𝑘 on3wemean a section of det(𝔼)⊗𝑘. The construction in
the preceding section shows that amodular form ofweight 𝑘 on3 when pulled back to the stack [𝑊0

2,0∕(GL(𝑊)∕ ± id𝑊)]

gives rise to an invariant of degree 3𝑘∕2. Indeed, it defines a section of the equivariant bundle det(𝑊)3𝑘 invariant under
SL(𝑊), but in view of the fact that we divide by the action of GL(𝑊)∕(±id𝑊), this yields an invariant of degree 3𝑘∕2.
Let 𝑀𝑘(Γ3) = 𝐻

0(3, det(𝔼)
𝑘) be the space of Siegel modular forms of degree 3 on Γ3 = Sp(6, ℤ). In [19], Igusa

considered an exact sequence

0 → 𝑀𝑘−18(Γ3)
⋅𝜒18
⟶𝑀𝑘(Γ3) → 𝐼3𝑘∕2(2, 8)

with 𝐼𝑑(2, 8) the vector space of invariants of degree 𝑑 of binary octics. We can interpret Igusa’s sequence in the following
way. A Siegel modular form of weight 𝑘 defines by restriction to the hyperelliptic locus a modular form of weight 𝑘 on3

and it thus defines an invariant of degree 3𝑘∕2.
For each irreducible representation𝜌 ofGL(3), we have a vector bundle𝔼𝜌made from𝔼 by a Schur functor. By amodular

form of weight 𝜌 on3, we mean a section of a vector bundle 𝔼𝜌. We can pull back to the stack [𝑊0
8,−2∕(GL(𝑊)∕ ± id𝑊)],

but the situation is more involved as Sym𝑛(Sym2(𝑊)) decomposes as a representation of GL(𝑊). For example, we have
with𝑊𝑎,𝑏 = Sym

𝑎(𝑊) ⊗ det(𝑊)𝑏

ℎ∗(Sym4(𝔼)) = Sym4(Sym2(𝑊)) = 𝑊8,0 ⊕𝑊4,2 ⊕𝑊0,4 .
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10 GEER and KOUVIDAKIS

Here and in the rest of this section, we assume that the characteristic is 0, or not 2, and high enough for the representation
theory (plethysm) towork.1In this case, we can consider the restriction of the Siegelmodular form𝜒4,0,8 to the hyperelliptic
locus and we know that it does not vanish identically by [5, Lemma 7.7]. On the other hand, we have the basic covariant
𝑓8,−2, the diagonal section of𝑊8,−2 over the stack [𝑊0

8,−2∕(GL(𝑊)∕ ± id𝑊)].
The discriminant form 𝔡 of binary octics, an invariant of degree 14, does not define a modular form, but its third power

𝔡3 does. It defines a modular form of weight 28, see [27, p. 811] and also Remark 13.1.
Via the projection 𝑝8,0 ∶ Sym

4(Sym2(𝑊)) → 𝑊8,0, a section of Sym4(𝔼) ⊗ det(𝔼)8 defines a covariant of bidegree
(8, 24∕2) = (8, 12) for the action of GL(𝑊).

Proposition 6.1. The restriction to the hyperelliptic locus of the section𝜒4,0,8 corresponds via the projection 𝑝8,0 to amultiple
of the covariant 𝑓8,−2 ⋅ 𝔡 with 𝔡 the discriminant of binary octics.

Proof. By restricting and projecting we obtain a covariant of bidegree (8,12). This covariant is divisible by the discriminant
and does not vanish on the locus of smooth hyperelliptic curves. Therefore, division by 𝔡 gives a nonvanishing covariant of
bidegree (8, −2). Taking into account the “twisting” by det(𝑊)−2, thismust be amultiple of the universal binary octic. □

We will discuss the other two projections later in Lemma 14.3. Note that the divisor 𝐷, the canonical image of the
universal curve in ℙ(𝔼) that defines 𝜒4,0,8, has a restriction to the locus of smooth hyperelliptic curves, which is divisible
by 2. Indeed, the canonical image of a hyperelliptic curve is a double conic. This suggests that we can take the “square
root” of the restriction of 𝜒4,0,8 to the hyperelliptic locus. However, the boundary divisors prevent this. If we take a level
cover of themoduli spacewe can construct amodular form of weight (2,0,4).Wewill carry this out later (in Corollary 13.4),
working on a Hurwitz space that we shall introduce in the next section.

7 THE HURWITZ SPACE OF ADMISSIBLE COVERS OF DEGREE 2

This and the following sections will use the other description of the moduli of hyperelliptic curves, namely the moduli
space 𝑔,2 of admissible covers of degree 2 and genus 𝑔 in the sense of [16], see [15]. Thus, we are looking at covers
𝑓 ∶ 𝐶 → 𝑃 of degree 2 with 𝐶 nodal of genus 𝑔 and 𝑃 a stable 𝑏-pointed curve of genus 0. Here, the 𝑏 = 2𝑔 + 2 branch
points are ordered and𝑔,2 → 𝑔 is a Galois cover with Galois group, the symmetric group𝔖2𝑔+2.
The boundary𝑔,2 −𝑔,2 consists of finitely many divisors that we shall denote by ΔΛ𝑏 = Δ

Λ, where we omit the index
𝑏 if 𝑔 is clear. Here the index Λ defines a partition {1, 2, … , 𝑏} = Λ ⊔ Λ𝑐, and the generic point of ΔΛ corresponds to an
admissible cover that maps to a stable curve of genus 0 that is the union of two copies of ℙ1, one containing the points
with mark in Λ, the other one those with mark in Λ𝑐. Here, we will assume that #Λ = 𝑗 with 2 ≤ 𝑗 ≤ 𝑔 + 1.
The parity of #Λ plays an important role here. If #Λ = 2𝑖 + 2 is even, then the generic admissible cover corresponding

to a point of ΔΛ is a union 𝐶𝑖 ∪ 𝐶𝑔−𝑖−1 that is a double cover of a union of two rational curves ℙ1 and ℙ2 with 𝐶𝑖 lying over
ℙ1 and 𝐶𝑔−𝑖−1 over ℙ2. Here 𝐶𝑖 (resp. 𝐶𝑔−𝑖−1) has genus 𝑖 (resp. 𝑔 − 𝑖 − 1) with 0 ≤ 𝑖 ≤ (𝑔 − 1)∕2 and is ramified over the
points of Λ (resp. Λ𝑐).

F IGURE 1 Λ even.

If #Λ = 2𝑖 + 1 is odd with 1 ≤ 𝑖 ≤ 𝑔∕2, then we have a union 𝐶𝑖 ∪ 𝐶𝑔−𝑖 lying over ℙ1 ∪ ℙ2, where 𝐶𝑖 (resp. 𝐶𝑔−𝑖) of
genus 𝑖 (resp. 𝑔 − 𝑖) is ramified over Λ and in 𝑝, the intersection of 𝐶𝑖 and 𝐶𝑔−𝑖 (resp. over Λ𝑐 and in 𝑝). Note that 𝑝 is a
simple node.
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GEER and KOUVIDAKIS 11

F IGURE 2 Λ odd.

Assuming that 𝑔 and 𝑏 = 2𝑔 + 2 are fixed, we will write

Δ𝑗 =
∑
#Λ=𝑗

ΔΛ with 2 ≤ 𝑗 < 𝑏∕2

and provide the symmetric case with a factor 1∕2, that is, Δ𝑏∕2 =
1

2

∑
#Λ=𝑏∕2

ΔΛ.

8 DIVISORS ON THEMODULI OF STABLE CURVES OF GENUS 0

For later use, we recall some notation and facts concerning divisors on the moduli spaces 0,𝑛. We refer to [20]. The
boundary divisors on0,𝑛 are denoted by 𝑆Λ𝑛 and are indexed by partitions {1, … , 𝑛} = Λ ⊔ Λ𝑐 into two disjoint sets with
2 ≤ #Λ ≤ 𝑛 − 2 andwe have 𝑆Λ𝑛 = 𝑆Λ

𝑐

𝑛 . Via the naturalmap𝜋𝑛+1 ∶0,𝑛+1 →0,𝑛, wemay view0,𝑛+1 as the universal
curve and 𝜋𝑛+1 has 𝑛 sections. The generic point of 𝑆Λ𝑛 corresponds to a stable curve with two rational components, one
of which contains the points marked by Λ. For pull back by 𝜋𝑛+1, we have the relation

𝜋∗𝑛+1(𝑆
Λ
𝑛 ) = 𝑆

{Λ,𝑛+1}
𝑛+1 ∪ 𝑆

{Λ𝑐,𝑛+1}
𝑛+1 .

The 𝑛 sections of 𝜋𝑛+1 have images 𝑆
{𝑖,𝑛+1}
𝑛+1 with 𝑖 = 1, … , 𝑛.

We can collect these boundary divisors on0,𝑛+1 via

𝑇𝑛+1,𝑗 =
∑
#Λ=𝑗

𝑆
{Λ,𝑛+1}
𝑛+1 , 𝑇𝑐

𝑛+1,𝑗
=

∑
#Λ=𝑗

𝑆
{Λ𝑐,𝑛+1}
𝑛+1 ,

with the convention that in view of the symmetry we add a factor 1∕2 for even 𝑛 and 𝑗 = 𝑛∕2

𝑇𝑛+1,𝑛∕2 =
1

2

∑
#Λ=𝑛∕2

𝑆
{Λ,𝑛+1}
𝑛+1 , 𝑇𝑐

𝑛+1,𝑛∕2
=
1

2

∑
#Λ=𝑛∕2

𝑆
{Λ𝑐,𝑛+1}
𝑛+1 .

Later, when a fixed index 𝑘 is given, we will split these divisors as 𝑇 = 𝑇(𝑘+) + 𝑇(𝑘−) where (𝑘+) (resp. (𝑘−)) indicates
that the sum is taken over Λ containing 𝑘 (resp. not containing 𝑘). So 𝑇𝑛+1,𝑗(𝑘+) =

∑
#Λ=𝑗,𝑘∈Λ

𝑆
{Λ,𝑛+1}
𝑛+1 (and with a factor

1∕2 if 𝑗 = 𝑛∕2).

9 A GOODMODEL

We now will work with a “good model” of the universal admissible cover over𝑔,2. Such a model was constructed in [11,
section 4]. We start with the observation that the space𝑔,2 is not normal, and we therefore normalize it. The result ̃𝑔,2

is now a smooth stack over which we have a universal curve ̃ → ̃𝑔,2.
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12 GEER and KOUVIDAKIS

We have a natural map ℎ ∶ ̃𝑔,2 →0,𝑏 with 𝑏 = 2𝑔 + 2 and the universal curve now fits into a commutative diagram

We can construct a proper flat map that extends the relative canonical morphism  → ℙ1
𝑔,2

by taking the fiber product ℙ

of0,𝑏+1 and ̃𝑔,2 over0,𝑏 and thus obtain a commutative diagram

The resulting space ℙ is not smooth, but has rational singularities. Resolving these in a minimal way gives a model ℙ̃;
taking the resolution 𝑌 of the normalization 𝑌 of the fiber product of ℙ̃ and ̃ over ℙ gives us finally a commutative
diagram

(3)

where 𝐵 is our base ̃𝑔,2 or any other base mapping to it. We write 𝜋 for the resulting morphism ℙ̃ → 𝐵, ℎ for the natural
map 𝐵 →0,𝑏, and 𝜈 for 𝐵 → 𝑔,2. We refer to [11, section 4] for additional details.
In the following, we will assume that we have a physical family over a base 𝐵. We will abuse the notation ΔΛ for the

pull back of the divisor ΔΛ under 𝜈 ∶ 𝐵 → 𝑔,2.
In the case that #Λ is even, say #Λ = 2𝑖 + 2 with 0 ≤ 𝑖 ≤ (𝑔 − 1)∕2, the pull back of ΔΛ decomposes as

𝜋∗(ΔΛ) = ΠΛ + ΠΛ
𝑐
,

corresponding to the two components of a general fiber of𝜋, withΠΛmapping to 𝑆{Λ,𝑏+1}
𝑏+1

under ℙ̃ →0,𝑏+1, and similarly
ΠΛ

𝑐 mapping to 𝑆{Λ
𝑐,𝑏+1}

𝑏+1
. Note that we restrict #Λ by ≤ 𝑔 + 1, hence the notation ΠΛ should not lead to confusion.

In the case #Λ is odd, we find a similar decomposition

𝜋∗(ΔΛ) = ΠΛ + 𝑅Λ + ΠΛ
𝑐
,

corresponding now to the fact that the general fiber of 𝜋 has three components, one coming from the blowing up.
We notice

ℎ∗(𝑆Λ
𝑏
) =

{
ΔΛ #Λ ≡ 0 (mod 2)

2ΔΛ #Λ ≡ 1 (mod 2).

If we use the notation Δ𝑗 =
∑
#Λ=𝑗

ΔΛ, we find for the tautological classes 𝜆 = 𝑐1(𝔼) and ℎ∗(𝜓𝑘), simply denoted by 𝜓𝑘
and defined as the first Chern class of the line bundle given by the cotangent space at the 𝑘th point of our pointed curve
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GEER and KOUVIDAKIS 13

(𝑘 = 1,… , 𝑏), and the following formulas on our base 𝐵 (see [10])

𝜆 =

(𝑔−1)∕2∑
𝑖=0

(𝑖 + 1)(𝑔 − 𝑖)

2(2𝑔 + 1)
Δ2𝑖+2 +

𝑔∕2∑
𝑖=1

𝑖(𝑔 − 𝑖)

2𝑔 + 1
Δ2𝑖+1 (4)

and

𝜓𝑘 =

(𝑔−1)∕2∑
𝑖=0

(
(𝑔 − 𝑖)(2𝑔 − 2𝑖 − 1)

𝑔(2𝑔 + 1)
Δ2𝑖+2(𝑘

+) +
(𝑖 + 1)(2𝑖 + 1)

𝑔(2𝑔 + 1)
Δ2𝑖+2(𝑘

−)

)

+2

𝑔∕2∑
𝑖=1

(
(𝑔 − 𝑖)(2𝑔 − 2𝑖 + 1)

𝑔(2𝑔 + 1)
Δ2𝑖+1(𝑘

+) +
𝑖(2𝑖 + 1)

𝑔(2𝑔 + 1)
Δ2𝑖+1(𝑘

−)

)
,

(5)

where we use the notation (𝑘+) (resp. (𝑘−)) to denote the condition 𝑘 ∈ Λ (resp. 𝑘 ∉ Λ) as above. The relation (4) implies
the following.

Corollary 9.1. There exists a scalar-valued modular form of weight 2(2𝑔 + 1) on the moduli space ̃𝑔,2 whose divisor is a
union of boundary divisors. It descends to the hyperelliptic locus 𝑔 and corresponds to a power of the discriminant of the
binary form of degree 2𝑔 + 2.

10 EXTENDING THE LINEAR SYSTEM

The canonical system on a hyperelliptic curve is defined by the pull back of the sections of the line bundle of (𝑔 − 1) of
degree 𝑔 − 1 on the projective line. We now try to extend this line bundle over our compactification.
A first attemptwould be to consider the divisor (𝑔 − 1) 𝑆𝑘 with 𝑆𝑘 the pull back to ℙ̃ of the section 𝑆𝑘 of𝜋𝑏+1 ∶0,𝑏+1 →

0,𝑏. Recall the morphism 𝑡 = 𝜋𝑓 ∶ 𝑌 → 𝐵. We can add a boundary divisor Ξ𝑘 to it such that 𝑓∗ℙ̃(𝐷𝑘) with 𝐷𝑘 =
(𝑔 − 1)𝑆𝑘 + Ξ𝑘 coincides with 𝜔𝑡 on the fibers of 𝑡, namely in view of the intersection numbers take Ξ𝑘 equal to

(𝑔−1)∕2∑
𝑖=0

(
(𝑔 − 1 − 𝑖)Π2𝑖+2(𝑘

+) + 𝑖 Π𝑐
2𝑖+2

(𝑘−)
)
+

𝑔∕2∑
𝑖=1

(
(𝑔 − 𝑖 − 1)Π2𝑖+1(𝑘

+) − (𝑔 − 𝑖)Π𝑐
2𝑖+1

(𝑘+)
)
+

𝑔∕2∑
𝑖=1

(
(𝑖 − 1)Π𝑐

2𝑖+1
(𝑘−) − 𝑖 Π2𝑖+1(𝑘

−)
)
.

Here, Π𝑗 =
∑
#Λ=𝑗

ΠΛ and Π𝑐
𝑗
=
∑
#Λ=𝑗

ΠΛ
𝑐 and (𝑘+) (resp. (𝑘−)) indicates the condition that 𝑘 ∈ Λ (resp. 𝑘 ∉ Λ);

moreover, we add a factor 1∕2 in case 𝑗 = 𝑏∕2.
Now 𝑓∗(𝐷𝑘) and 𝜔𝑡 agree on the fibers of 𝑡, so they differ by a pull back under 𝑡 = 𝜋◦𝑓, see diagram (2).
To see the above, when, for example, #Λ = 2𝑖 + 2 is even, in that case the fiber of �̃� over 𝑡 is as in Figure 1 and 𝜔𝐶 =

(𝜔𝐶𝑖 + 𝑝 + 𝑞, 𝜔𝐶𝑔−𝑖−1 + 𝑝 + 𝑞) = (𝑖(𝑝 + 𝑞), (𝑔 − 𝑖 − 1)(𝑝 + 𝑞)) = 𝑓
∗(𝑖, 𝑔 − 𝑖 − 1), where we indicate by 𝑖 the line bundle of

degree 𝑖 on ℙ1. One then checks that with the above choice of Ξ𝑘 the restriction of 𝐷𝑘 on the corresponding fiber of 𝜋
is of type (𝑖, 𝑔 − 1 − 𝑖). Indeed, in case 𝑘 ∈ Λ, then (𝑔 − 1)𝑆𝑘 + (𝑔 − 1 − 𝑖)Π2𝑖+2(𝑘+) restricts to ((𝑔 − 1) − (𝑔 − 𝑖 − 1), 𝑔 −
𝑖 − 1) = (𝑖, 𝑔 − 𝑖 − 1) and in case 𝑘 ∉ Λ, then (𝑔 − 1)𝑆𝑘 + 𝑖Π𝑐2𝑖+2(𝑘

−) restricts to (𝑖, (𝑔 − 1) − 𝑖) = (𝑖, 𝑔 − 𝑖 − 1). The case
where #Λ = 2𝑖 + 1 is odd, although a little more complicated, is treated similarly.
We therefore will change 𝐷𝑘 by a pull back under 𝜋. Define a divisor class on 𝐵 by

𝐸𝑘 =
2𝑔 − 1

2
𝜓𝑘 −

(𝑔−1)∕2∑
𝑖=0

(
(𝑔 − 𝑖 − 1)Δ2𝑖+2(𝑘

+) + 𝑖 Δ2𝑖+2(𝑘
−)
)

−

𝑔∕2∑
𝑖=1

(
(𝑔 − 𝑖 − 1)Δ2𝑖+1(𝑘

+) + (𝑖 − 1) Δ2𝑖+1(𝑘
−)
)
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14 GEER and KOUVIDAKIS

and define a line bundle on ℙ̃ by

𝑀 = (𝐷𝑘 + 𝜋
∗𝐸𝑘) . (6)

Lemma 10.1. The line bundle 𝑀 does not depend on 𝑘, satisfies 𝑓∗(𝑀) = 𝜔𝑡 , and restricts to the general fiber ℙ1 of 𝜋 as
(𝑔 − 1). For#Λ = 2𝑖 + 2, its restriction to the general fiberℙ1 ∪ ℙ2 overΔΛ is of degree (𝑖, 𝑔 − 𝑖 − 1), while for#Λ = 2𝑖 + 1,
its restriction to the general fiber ℙ1 ∪ 𝑅 ∪ ℙ2 is of degrees (𝑖, −1, 𝑔 − 𝑖).

Proof. We use the section 𝜏𝑘 of 𝑡 ∶ 𝑌 → 𝐵 with 𝑓𝜏𝑘 = 𝑠𝑘, with 𝑠𝑘 the natural sections of the map 𝜋 with image 𝑆𝑘. Then,
we have 𝜏∗

𝑘
𝜔𝑡 = 𝜓𝑘∕2 and 𝜏∗𝑘𝑓

∗𝐷𝑘 = 𝑠
∗
𝑘
𝐷𝑘 for which we have

𝑠∗
𝑘
𝐷𝑘 = −(𝑔 − 1)𝜓𝑘 +

(𝑔−1)∕2∑
𝑖=0

(
(𝑔 − 𝑖 − 1)Δ2𝑖+2(𝑘

+) + 𝑖 Δ2𝑖+2(𝑘
−)
)

+

𝑔∕2∑
𝑖=1

(
(𝑔 − 1 − 𝑖) Δ2𝑖+1(𝑘

+) + (𝑖 − 1) Δ2𝑖+1(𝑘
−)
)
.

From this we obtain 𝜏∗
𝑘
(𝜔𝑡) − 𝜏

∗
𝑘
𝑓∗𝐷𝑘 = 𝜋

∗(𝐸𝑘), so that 𝜔𝑡 = 𝑓∗((𝐷𝑘 + 𝐸𝑘)). We also see that the restriction of𝑀 on the
fibers of 𝜋 does not depend on 𝑘. Moreover, we have

𝑠∗
𝑗
(𝐷𝑘 + 𝜋

∗𝐸𝑘) = 𝜏
∗
𝑗
𝑓∗(𝐷𝑘 + 𝐸𝑘) = 𝜏

∗
𝑗
(𝜔𝑡) = 𝜓𝑗∕2 = 𝑠

∗
𝑗
(𝐷𝑗 + 𝜋

∗𝐸𝑗) ,

showing that the restrictions of (𝐷𝑘 + 𝜋∗𝐸𝑘) and (𝐷𝑗 + 𝜋
∗𝐸𝑗) agree on 𝑆𝑗 . The restrictions of the fibers of 𝜋 over the

general points of ΔΛ
𝑏
are easily checked. □

We now want to compare 𝜋∗(𝑀) with the Hodge bundle 𝔼 = 𝑡∗(𝜔𝑡) on 𝐵. The next proposition shows that these agree
up to codimension 2.

Proposition 10.2. We have an exact sequence 0 → 𝜋∗(𝑀) → 𝔼 →  → 0, where  is a coherent sheaf that is a torsion sheaf
supported on the boundary. Moreover, we have 𝑐1(𝜋∗(𝑀)) = 𝜆.

Proof. By Lemma 10.1, we have 𝜔𝑡 = 𝑓∗(𝑀). But 𝑅1𝜋∗(𝑀) = (0), so we have

𝜋∗(𝑀 ⊗ 𝑓∗�̃�) = 𝜋∗𝑓∗(𝑓
∗(𝑀)) = 𝜋∗𝑓∗(𝜔𝑡) = 𝑡∗(𝜔𝑡) .

We have an exact sequence 0 → ℙ̃ → 𝑓∗�̃� →  → 0 with  a coherent sheaf of rank 1 that restricted to the smooth
fibers of 𝜋 has degree −(𝑔 + 1), as one sees by applying Riemann–Roch to 𝑓 and �̃� . Tensoring the sequence with𝑀 and
applying 𝜋∗ gives the exact sequence

0 → 𝜋∗(𝑀) → 𝜋∗(𝑀 ⊗ 𝑓∗�̃�) → 𝜋∗(𝑀 ⊗ ) → 0 .

On the smooth fibers of 𝜋 the sheaf𝑀 ⊗  restricts to a line bundle of degree (𝑔 − 1) − (𝑔 + 1) = −2, hence 𝜋∗(𝑀 ⊗ )

is a torsion sheaf.
We now calculate 𝑐1(𝜋∗(𝑀)). We apply Grothendieck–Riemann–Roch to 𝜋 and (𝐷𝑘). It says

ch(𝜋!((𝐷𝑘))) = 𝜋∗(ch((𝐷𝑘)))Td
∨
(𝜔𝜋) ,

which by 𝜋∗(Td
∨
2 (𝜔𝜋)) = 0 gives

𝑐1(𝜋∗((𝐷𝑘))) =
1

2
𝜋∗(−𝐷𝑘 𝜔𝜋 + 𝐷

2
𝑘
) .
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GEER and KOUVIDAKIS 15

We calculate

𝜋∗(𝐷𝑘𝜔𝜋) = (𝑔 − 1)𝜓𝑘 −

(𝑔−1)∕2∑
𝑖=0

(
(𝑔 − 𝑖 − 1)Δ2𝑖+2(𝑘

+) + 𝑖 Δ2𝑖+2(𝑘
−)
)
+

𝑔∕2∑
𝑖=1

Δ2𝑖+1 , (7)

and

𝜋∗(𝐷
2
𝑘
) = − (𝑔 − 1)2𝜓𝑘 +

(𝑔−1)∕2∑
𝑖=0

(𝑔 − 𝑖 − 1)(𝑔 + 𝑖 − 1)Δ2𝑖+2(𝑘
+)

+

(𝑔−1)∕2∑
𝑖=0

(2𝑔 − 2 − 𝑖)𝑖 Δ2𝑖+2(𝑘
−) +

𝑔∕2∑
𝑖=1

((2𝑔 − 𝑖 − 1)(𝑖 − 1) − 𝑖2) Δ2𝑖+1 .

(8)

Adding 𝜋∗(𝜋∗𝐸𝑘) gives

𝑐1(𝜋∗(𝑀)) =
𝑔2

2
𝜓𝑘 −

1

2

(𝑔−1)∕2∑
𝑖=0

(
(𝑔 − 𝑖 − 1)(𝑔 − 𝑖) Δ2𝑖+2(𝑘

+) + 𝑖(𝑖 + 1) Δ2𝑖+2(𝑘
−)
)

−

𝑔∕2∑
𝑖=1

(
(𝑔 − 𝑖)2 Δ2𝑖+1(𝑘

+) + 𝑖2 Δ2𝑖+1(𝑘
−)
)
.

Substituting the formula for 𝜓𝑘, we find

𝑐1(𝜋∗(𝑀)) =

(𝑔−1)∕2∑
𝑖=0

(𝑔 − 𝑖)(𝑖 + 1)

2(2𝑔 + 1)
Δ2𝑖+2 +

𝑔∕2∑
𝑖=1

𝑖(𝑔 − 𝑖)

2𝑔 + 1
Δ2𝑖+1 = 𝜆 .

□

The line bundle𝑀 on ℙ̃ is not base point free as Proposition 10.2 shows; the restriction to the 𝑅-part has negative degree.
We can make it base point free by defining

𝑁 = 𝑀(−𝑅) = (𝐷𝑘 + 𝜋
∗𝐸𝑘 − 𝑅) . (9)

Now the restriction of 𝑁 to a general fiber over Δ2𝑖+1, which is a chain of three rational curves ℙ1, 𝑅, ℙ2, has degrees
(𝑖 − 1, 1, 𝑔 − 𝑖 − 1) and one checks that 𝑁 is base point free.

Lemma 10.3. Up to codimension 2, we have on 𝐵 that 𝜋∗(𝑁) = 𝔼.

Proof. We have 𝑅1𝜋∗(𝑁) = 0. Therefore, the exact sequence 0 → 𝑁 → 𝑀 → 𝑀|𝑅 → 0 yields the exact sequence

0 → 𝜋∗(𝑁) → 𝜋∗(𝑀) → 𝜋∗(𝑀|𝑅) → 0 .

Wenow show that 𝑐1(𝜋∗(𝑁)) = 𝑐1(𝜋∗(𝑀)). Since𝑅1𝜋∗(𝑀) = 0 = 𝑅1𝜋∗(𝑁), we find byGrothendieck–Riemann–Roch that

𝑐1(𝜋∗(𝑀)) =
1

2
𝜋∗(𝑐1(𝑀)

2 − 𝑐1(𝑀)𝜔𝜋), 𝑐1(𝜋∗(𝑁)) =
1

2
𝜋∗(𝑐1(𝑁)

2 − 𝑐1(𝑁)𝜔𝜋) .

By the definition of 𝑁 and the fact that 𝑅 is a (−2)-curve if we take a base 𝐵 of dimension 1, and thus has intersection
number 0 with a fiber, we have

𝜋∗(𝑐1(𝑁))
2 = 𝜋∗(𝑐1(𝑀))

2

and 𝑐1(𝑁)𝜔𝜋 = 𝑐1(𝑀)𝜔𝜋 since the restriction of 𝜔𝜋 to 𝑅 is trivial. □
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16 GEER and KOUVIDAKIS

11 THE RATIONAL NORMAL CURVE

The image of a hyperelliptic curve by the canonical map is a rational normal curve, that is, ℙ1 embedded in ℙ𝑔−1 via the
linear system of degree 𝑔 − 1.
In our setting, we can see the rational normal curve and its degenerations using the extension 𝑁 of the line bundle of

degree 𝑔 − 1, as defined in (9), to the compactification as constructed in the preceding section.
We let 𝑢 ∶ ℙ(𝔼) → 𝐵 be the natural projection. Now 𝑁 is base point free and up to codimension 2 we have 𝜋∗(𝑁) = 𝔼,

so the global-to-local map 𝜋∗𝜋∗(𝑁) → 𝑁 induces a surjective map 𝜈 ∶ 𝜋∗(𝔼) → 𝑁 over ℙ̃. This induces a morphism 𝜙 ∶

ℙ̃ → ℙ(𝔼) by associating to a point of ℙ̃ the kernel of 𝜈. It fits into a diagram

Proposition 11.1. For a point of 𝐵 with smooth fiber under 𝜋, the image of 𝜙 is a rational normal curve of degree 𝑔 − 1. For
a general point 𝛽 ∈ Δ2𝑖+2 with fiber ℙ1 ∪ ℙ2, the image is a union of two rational normal curves of degree 𝑖 and 𝑔 − 𝑖 − 1.
For a general point 𝛽 ∈ Δ2𝑖+1 with fiber ℙ1, 𝑅, ℙ2 the image is a union of three rational normal curves of degree 𝑖 − 1, 1, and
𝑔 − 𝑖 − 1. Here, we interpret the case of degree 0 as a contracted curve.

Proof. The proposition follows almost immediately from Lemma 10.1. □

Remark 11.2. If 𝑖 = 1, thenℙ1 is contracted. If also 𝑔 = 2, then bothℙ1 andℙ2 are contracted and the image of 𝑅 coincides
with the fiber of ℙ(𝔼).

Remark 11.3. The sections 𝑠𝑖 ∶ 𝐵 → ℙ̃ for 𝑖 = 1, … , 𝑏 induce sections 𝜎𝑖 = 𝜙◦𝑠𝑖 ∶ 𝐵 → ℙ(𝔼) by sending 𝛽 to the kernel of
𝔼 = 𝑠∗

𝑖
𝜋∗(𝔼) → 𝑠∗

𝑖
(𝑁).

Remark 11.4. In the case 𝑔 = 2, the map 𝜙 is a birational map ℙ̃ → ℙ(𝔼) that blows down boundary components. More
precisely, over Δ2 it blows down Π2 and over Δ3 the components supported at Π3 = Π𝑐3.

12 SYMMETRIZATION

We have been working with the moduli space𝑔,2 and0,𝑏 and their compactifications. Here the symmetric group𝔖𝑏

acts. We therefore make our construction symmetric.
We put 𝐷 =

∑𝑏

𝑘=1
𝐷𝑘 and 𝐸 =

∑𝑏

𝑘=1
𝐸𝑘 and set

�̃� = (𝐷 + 𝐸) , 𝜓 =

𝑏∑
𝑘=1

𝜓𝑘 , and 𝑆 =

𝑏∑
𝑘=1

𝑆𝑘 .

We find

𝜓 = 4

(𝑔−1)∕2∑
𝑖=0

(𝑔 − 𝑖)(𝑖 + 1)

2𝑔 + 1
Δ2𝑖+2 + 2

𝑔∕2∑
𝑖=1

(2𝑔 − 2𝑖 + 1)(2𝑖 + 1)

2𝑔 + 1
Δ2𝑖+1

and

𝐷 = (𝑔 − 1)𝑆 + 2

(𝑔−1)∕2∑
𝑖=0

(
(𝑔 − 𝑖 − 1)(𝑖 + 1)Π2𝑖+2 + 𝑖 (𝑔 − 𝑖)Π

𝑐
2𝑖+2

)
+

𝑔∕2∑
𝑖=1

(
(𝑔 − 4𝑖 − 1)Π2𝑖+1 − (3𝑔 − 4𝑖 + 1)Π

𝑐
2𝑖+1

)
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GEER and KOUVIDAKIS 17

and

𝐸 =
2𝑔 − 1

2
𝜓 − 2

(𝑔−1)∕2∑
𝑖=0

((𝑔 − 𝑖)(2𝑖 + 1) − (𝑖 + 1))Δ2𝑖+2 −

𝑔∕2∑
𝑖=1

(4𝑖 (𝑔 − 𝑖) − (𝑔 + 2))Δ2𝑖+1

13 THE CASE OF HYPERELLIPTIC GENUS 3

The Hurwitz space 3,2 admits a compactification 3,2 with boundary components ΔΛ with #Λ ∈ {2, 3, 4}. Taking the
components withΛ of fixed cardinality together gives boundary componentsΔ2, Δ3, andΔ4. Under themorphism3,2 →

3, the components Δ2 and Δ4 are mapped to 𝛿0, while Δ3 goes to 𝛿1. The formulas (4) and (5) specialize to

𝜆 =
3

14
Δ2 +

2

7
Δ3 +

2

7
Δ4 (10)

and

𝜓𝑘 =
5

7
Δ2(𝑘

+) +
1

21
Δ2(𝑘

−) +
20

21
Δ3(𝑘

+) +
2

7
Δ3(𝑘

−) +
2

7
Δ4 .

Remark 13.1. Equation (10) shows that on3,2 there exists a scalar-valuedmodular form of weight 14 whose square equals
𝜒28, a formmentioned in Section 6. Since on3 we have 28 𝜆 = 3 𝛿0 + 8 𝛿1 + 8 𝜁1, an integral class not divisible by 2, there
is not a modular form of weight 14 on3 with square 𝜒28. Compare with Cornalba’s formula at the end of Section 5.

We have the line bundle𝑀 on ℙ̃ defined in (6) corresponding to the divisor class 𝐷𝑘 + 𝐸𝑘 given by

𝐷𝑘 = 2 𝑆𝑘 + 2Π2(𝑘
+) + 2Π4(𝑘

+) + Π3(𝑘
+) − 2Π𝑐3(𝑘

+) − Π3(𝑘
−)

and

𝐸𝑘 =
5

2
𝜓𝑘 − (2Δ2(𝑘

+) + Δ3(𝑘
+) + Δ4) ,

where 𝜓𝑘 is given in (6). Define the rational divisor class

𝑈 ∶=
1

14
Δ2 +

3

7
(Δ3 + Δ4) =

3

2
𝜓𝑘 − (Δ2(𝑘

+) + Δ3(𝑘
+)) .

The divisor class of 𝐷𝑘 + 𝐸𝑘 is independent of 𝑘 as observed in Lemma 10.1, but this can be seen also directly from the
next lemma.

Lemma 13.2. We have the linear equivalence 𝐷𝑘 + 𝐸𝑘 ∼ −𝜔𝜋 + Π2 + Π3 + 𝜋∗(𝑈).

Proof. One checks that−𝜔𝜋 + Π2 + Π3 and𝐷𝑘 + 𝐸𝑘 have the same restriction to fibers of𝜋.Wehave 𝑠∗𝑘(−𝜔𝜋 + Π2 + Π3) =
−𝜓𝑘 + Δ2(𝑘

+) + Δ3(𝑘
+) and 𝑠∗

𝑘
(𝐷𝑘 + 𝐸𝑘) = 𝜓𝑘∕2. □

Let 𝑄 be the image of 𝜙 ∶ ℙ̃ → ℙ(𝔼), see Proposition 11.1. The map 𝜙 is the composition of a map 𝜙′ ∶ ℙ̃ → 𝑄 with the
inclusion map 𝜄 ∶ 𝑄 ↪ ℙ(𝔼). The generic fiber of 𝑄 → 𝐵 is a conic, hence (𝑄) = (2) ⊗ (𝑢∗𝐴) for some divisor 𝐴 on
𝐵. We determine 𝐴.

Lemma 13.3. On ℙ(𝔼) we have the linear equivalence

[𝑄] ∼ [(2)] + 𝑢∗(4 𝜆 − (Δ2 + Δ3 + Δ4)) .
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18 GEER and KOUVIDAKIS

Proof. We have𝜔ℙ(𝔼) ⊗ 𝑢∗(𝜔−1𝐵 ) = (−3) ⊗ 𝑢∗(det 𝔼) and by adjunction𝜔𝑄 = 𝜄∗((𝑄) ⊗ 𝜔ℙ(𝔼)). Since 𝜙′ is a blow down,
we have 𝜔ℙ̃ = (𝜙′)∗𝜔𝑄 ⊗ (Π2 + Π3). We get

𝜙∗((𝑄)) =𝜙′
∗
𝜔𝑄 ⊗ 𝜙∗𝜔−1

ℙ(𝔼)

=𝜔ℙ̃ ⊗ (−Π2 − Π3) ⊗ 𝜙∗(3) ⊗ 𝜋∗ det(𝔼)−1 ⊗ 𝜋∗𝜔−1𝐵

=𝜔𝜋 ⊗ (−Π2 − Π3) ⊗ 𝜙∗(3) ⊗ 𝜋∗ det(𝔼)−1 .

On the other hand, we have 𝜙∗(𝑄) = 𝜙∗(2) ⊗ (𝜋∗𝐴) and 𝜙∗(1) = 𝑁, hence we get

(𝑢∗𝐴) = 𝑁 ⊗ 𝜔𝜋 ⊗ (−Π2 − Π3) ⊗ 𝜋∗ det(𝔼)−1 . (11)

By Lemma 13.2 we have 𝑁 = 𝜔−1𝜋 ⊗ (Π2 + Π3) ⊗ 𝑂(𝑈). Substituting this in (11) we get the desired result. □

The effective divisor 𝑄 yields a modular form and Lemma 13.3 gives its weight.

Corollary 13.4. The effective divisor 𝑄 on ℙ(𝔼) defines a modular form 𝜒2,0,4 on ̃3,2 of weight (2,0,4), that is, a nonzero
section of Sym2(𝔼) ⊗ det(𝔼)4.

Since the divisor Δ2 + Δ3 + Δ4 is not a pull back from the moduli space3, the modular form does not descend to3.
Recall that the modular form 𝜒4,0,8 restricted to the hyperelliptic locus was associated to a divisor 𝐷 that equals 2𝑄.

Remark 13.5. In the same vein as above, we can determine in an alternative way the result of Proposition 2.1 on class of
the closure 𝐷 of the ramification divisor 𝐷 of the universal genus 2 curve. By the theory of admissible covers, there is a
natural map 2,2 →2 with the property that the pull back of the Hodge bundle on2 is the Hodge bundle on 2,2

associated to the corresponding family of admissible covers. Hence the pull back of the (1) of the bundle ℙ(𝔼) →2

equals the (1) of the bundle ℙ(𝔼) → 2,2. Let Σ = 𝜙∗(
∑6

𝑘=1
𝑆𝑘), with 𝜙 ∶ ℙ → ℙ(𝔼) the map defined in Section 11. By

geometry, the pull back of 𝐷 to the bundle ℙ(𝔼) over 2,2 equals Σ. By Remark 11.4, we have 𝜙∗Σ = 𝑆 + 2Π2 + 6Π3. By
using the formulas of Section 12, we have for 𝑔 = 2:

𝜙∗(6) = �̃� − 6𝑅 = 𝑆 +
12

5
Π2 +

2

5
Π𝑐2 +

24

5
Π3 −

3

5
𝑅 .

We now write [𝐷] = (6) + 𝑢∗(𝑎 𝛿0 + 𝑏 𝛿1). By pulling back to ℙ̃ and using the above formulas, we get (we refer to the
diagram in Section 11 for notation)

𝑆 +
12

5
Π2 +

2

5
Π𝑐2 +

24

5
Π3 −

3

5
𝑅 + 𝜋∗(2𝑎 Δ0 + 𝑏 Δ3) = 𝑆 + 2Π2 + 6Π3 .

This implies

𝜋∗(2𝑎 Δ0 + 𝑏 Δ3) = −
2

5
(Π2 + Π

𝑐
2) +

3

5
(2Π3 + 𝑅) = 𝜋

∗

(
−
2

5
Δ2 +

3

5
Δ3

)
,

hence 𝑎 = −1∕5 and 𝑏 = 3∕5 and the result follows by using the formula 10 𝜆 = 𝛿0 + 2 𝛿1.

14 COMPARISONWITH THE HODGE BUNDLE

We know by Lemma 10.3 that the line bundle 𝑁 = ℙ̃(𝐷𝑘 + 𝐸𝑘 − 𝑅) on ℙ̃ over ̃3,2 has the property that 𝜋∗(𝑁) ≅ 𝔼 up
to codimension 2. We now deal with the push forward of the tensor powers of 𝑁.
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GEER and KOUVIDAKIS 19

Lemma 14.1. We have for𝑚 ∈ ℤ≥1

𝑐1(𝜋∗(𝑁
⊗𝑚)) =

2𝑚2 + 𝑚

14
Δ2 +

5𝑚2 − 𝑚

14
(Δ3 + Δ4) .

Proof. We apply Grothendieck–Riemann–Roch to 𝜋 and 𝑁⊗𝑚 as in (10) in the proof of Proposition 10.2. Recall that 𝑁
corresponds to the divisor (class) 𝐷𝑘 + 𝐸𝑘 − 𝑅. We use that 𝑅1𝜋∗𝑁⊗𝑚 = 0 for all𝑚 and find

𝑐1(𝜋∗(𝑁
⊗𝑚)) =

1

2
𝜋∗

(
𝑚2(𝐷𝑘 + 𝐸𝑘 − 𝑅)

2 − 𝑚𝜔𝜋 ⋅ (𝐷𝑘 + 𝐸𝑘 − 𝑅)
)

and using the relations (8) and (9) of the proof of Proposition 10.2, we get

𝑐1(𝜋∗(𝑁
⊗𝑚)) =

2𝑚2 + 𝑚

14
Δ2 +

5𝑚2 − 𝑚

14
(Δ3 + Δ4)

as required. □

Proposition 14.2. On 𝐵 we have the exact sequence

0 → Sym𝑚−2(𝔼) ⊗ (−𝐴) → Sym𝑚(𝔼) → 𝜋∗(𝑁
⊗𝑚) → 0,

with 𝐴 = 4𝜆 − (Δ2 + Δ3 + Δ4).

Proof. By Lemma 13.3, we have on ℙ(𝔼) the exact sequence

0 → (𝑚 − 2) ⊗ 𝑢∗(−𝐴) → (𝑚) → (𝑚)|𝑄 → 0.

Applying 𝑢∗ and observing that 𝑅1𝑢∗(𝑚 − 2) vanishes gives the result. □

A section of Sym𝑗(𝔼) ⊗ det(𝔼)𝑘 over 3 pulls back to the stack [𝑊0
8,−2∕(GL(𝑊)∕(±1𝑊))] as a section of

Sym𝑗(Sym2(𝑊)) ⊗ det(𝑊)𝑘∕2 for even 𝑘. We have an isotypical decomposition

Sym𝑗(Sym2(𝑊)) = ⊕
⌊𝑗∕2⌋
𝑛=0 Sym

2𝑗−4𝑛(𝑊) ⊗ det(𝑊)2𝑛 ,

wherewe assume here and in the rest of this section that the characteristic is 0 or not 2 and high enough for this identity to
hold (or use divided powers as in [1, 3.1]). A section of Sym𝑗(𝔼) ⊗ det(𝔼)𝑘 over𝑛ℎ

3 pulls back to [𝑉4,0,−1∕GL(𝑉)], where
we now write 𝑉 for the standard space of dimension 3. An identification 𝑉 ≅ Sym2(𝑊) corresponds to an embedding
ℙ1 ↪ ℙ2 with image a smooth quadric. If we view 𝑉 with basis 𝑥, 𝑦, 𝑧, the kernel of the projection

Sym𝑗(𝑉) = Sym𝑗(Sym2(𝑊)) → Sym2𝑗(𝑊)

consists of the polynomials of degree 𝑗 in 𝑥, 𝑦, 𝑧 that vanish on the quadric. Thus, in view of the isotypical decomposition
above, the exact sequence

0 → Sym𝑚−2(𝔼) ⊗ (−𝐴) → Sym𝑚(𝔼) → 𝜋∗(𝑁
⊗𝑚) → 0

corresponds to (the pull back to𝑊0
8,−2 of) an exact sequence

0 →
(
Sym𝑚−2(Sym2𝑊)

)
⊗ det(𝑊)2 → Sym𝑚(Sym2𝑊) → Sym2𝑚(𝑊) → 0 .

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202300098 by C
ochraneC

hina, W
iley O

nline L
ibrary on [20/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 GEER and KOUVIDAKIS

The section 𝜒4,0,8 of Sym
4(𝔼) ⊗ det(𝔼)8 restricted to the hyperelliptic locus allows three projections according to the

decomposition

Sym4(Sym2𝑊) ⊗ det(𝑊)24 = 𝑊8,24 ⊕𝑊4,26 ⊕𝑊0,28 . (12)

Lemma 14.3. The projections to the three summands in (12) of the pull back of𝜒4,0,8 to3,2 define modular forms on3,2 of
weights (4,0,8), (2, 0, 4), and (0,0,14) and these are up to a scalar given by the covariants 𝑓8,−2 𝔡, 𝑓4,−1 𝔡 and the discriminant
𝔡.

Proof. The identification of 𝔼 with Sym2(𝑊) corresponds to the embedding of ℙ1 as a conic 𝐶 in ℙ2. A ternary quartic
𝑄 contains 𝐶 either 0, 1, or 2 times, say 𝑄 = 𝑚𝐶 + 𝑅 with 0 ≤ 𝑚 ≤ 2. The three projections correspond to 𝑅 ∩ 𝐶 and give
the universal binary octic, the universal binary quartic, and 1 up to twisting. The first projection was identified in Propo-
sition 6.1. The argument for the second is similar, while the third descends to3 and does not vanish on3. Therefore, it
must be a multiple of the discriminant. Taking into account the action ofGL2∕±1𝑊 , we get the indicated weights (namely
2(14 + 𝜖) with 𝜖 = −2,−1, 0). □

15 MOREMODULAR FORMS FOR GENUS 3

We will use more effective divisors on projectivized Hodge bundles to produce more modular forms. Note that the con-
nection between divisors on projectivized Hodge bundles and modular forms can also be used in the other direction:
obtaining results on cycle classes using modular forms. We give a few examples. To a canonical quartic plane curve 𝐶,
we can associate a curve �̌� in the dual plane of lines intersecting 𝐶 equianharmonically. It corresponds to a contravariant
(concomitant) 𝜎 of the ternary quartic given by Salmon in [25, p. 264] and it is defined by an equivariant GL(3) embed-
ding 𝑊[4, 4, 0] ↪ Sym2(Sym4(𝑊)). It gives rise to a divisor in ℙ(𝔼∨) and a modular form 𝜒0,4,16 of weight (0,4,16). We
refer to [5, p. 54] for the relation between invariant theory of ternary quartics and modular forms. The Siegel modular
form 𝜒0,4,16 vanishes with order 2 at infinity and order 4 along the locus 2,1 of decomposable abelian threefolds. With
�̌� ∶ ℙ(𝔼∨) →3, the projection we have �̌�∗(ℙ(𝔼∨)(1)) = 𝔼∨ ≅ ∧2𝔼 ⊗ det(𝔼)−1, and we thus find an effective divisor on
ℙ(𝔼∨) over ̃3 with class [�̌�] = [ℙ(𝔼∨)(4)] + 20 𝜆 − 2 𝛿 and it vanishes with multiplicity 4 along 2,1. We thus find on
ℙ(𝔼∨) over3 a relation

[�̌�] = [ℙ(𝔼∨)(4)] + 20 𝜆 − 2 𝛿0 − 4 𝛿1 ,

where we identify 𝜆 and 𝛿𝑖 with their pull backs to ℙ(𝔼∨). Similarly, in the dual plane, we have the sextic �̌� of lines
intersecting the quartic curve in a quadruple of pointswith 𝑗-invariant 1728. The corresponding concomitant 𝜏 corresponds
to𝑊[6, 6, 0] ↪ Sym3(Sym4(𝑊)) and defines a modular form of weight (0,6,24) vanishing with multiplicity 3 at infinity
and multiplicity 6 along2,1. We thus get a cycle relation

[�̌�] = [ℙ(𝔼∨)(6)] + 30 𝜆 − 3 𝛿0 − 6 𝛿1 .

The concomitant𝜎3 − 27 𝜏2 vanishes on the locus of double conics and the correspondingmodular formofweight (0,12,48)
is divisible by𝜒218 as can be checkedusing themethods of [5]. Dividing by𝜒

2
18 gives a cusp formofweight (0,12,12) vanishing

withmultiplicity 2 at infinity andmultiplicity 3 along2,1. It is classically known (see, e.g., [3, p. 43]) that this concomitant
defines the dual curve �̌� to the canonical image𝐶 inℙ(𝔼).We thus find an effective divisor inℙ(𝔼∨) containing the closure
of the dual curve with class

12 [ℙ(𝔼∨)(1)] + 24 𝜆 − 2 𝛿0 − 3 𝛿1 .

This effective divisor class can also be given by the cycle

𝐵 = {(𝐶, 𝜂) ∈ ℙ(𝔼∨) ∶ div(𝜂) has a point of multiplicity 2}
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GEER and KOUVIDAKIS 21

over3 and Korotkin and Zograf in [22, Theorem 1] determined the class of its closure 𝐵

[𝐵] = 12 [ℙ(𝔼∨)(1)] + 24 𝜆 − 2 𝛿0 − 3 𝛿1 .

Another example of an effective divisor for genus 3 is provided by the Weierstrass divisor𝑊 with class

[𝑊] = 24 [ℙ(𝔼∨)(1)] + 68 𝜆 − 6 𝛿0 − 12 𝛿1

as given by Gheorghita in [12]. Here, we get a section of

Sym24(∧2𝔼) ⊗ det(𝔼)44(−6 𝛿0 − 12 𝛿1).

This gives a Teichmüller modular form of weight (0,24,44) vanishing withmultiplicity 6 at the cusp. It descends to a Siegel
modular form.

Corollary 15.1. The dual of the canonical curve defines a Siegel modular cusp form of degree 3 of weight (0,12,12) vanishing
with multiplicity 2 at infinity. The Weierstrass divisor defines a cusp form of weight (0,24,44) vanishing with multiplicity 6
at infinity.

16 THE HYPERTANGENT DIVISOR

A generic canonically embedded curve 𝐶 of genus 3 has 24 (Weierstrass) points where the tangent line intersects 𝐶 with
multiplicity 3. The union of these 24 lines forms a divisor in ℙ2. Taking the closure of this divisor for the universal curve
over3 defines a divisor 𝐻 in ℙ(𝔼) over3, which we call the hypertangent line divisor. We calculate the class of this
divisor over3 and also calculate the class of a corresponding divisor over3,2.
The calculation over3 uses the divisors �̌� and �̌� inℙ(𝔼∨) over3 as defined in the preceding section. It is a classical

result that the intersection �̌� ⋅ �̌� in the generic fiber is the 0-cycle consisting of the 24 points defining the 24 hyperflexes
of the generic curve 𝐶, see [25]. We consider the incidence variety

𝐼 = {(𝑝, 𝓁) ∈ ℙ(𝔼) ×
3

ℙ(𝔼∨) ∶ 𝑝 ∈ 𝓁}.

Let 𝜌 ∶ 𝐼 → ℙ(𝔼) and �̌� ∶ 𝐼 → ℙ(𝔼∨) be the two projections fitting in the commutative diagram

We have the tautological sequence on ℙ(𝔼)

0 → 𝐹 → 𝑢∗(𝔼) → ℙ(𝔼)(1) → 0

and a similar one on ℙ(𝔼∨)

0 → �̌� → �̌�∗(𝔼∨) → ℙ(𝔼∨)(1) → 0 .

Now note that 𝐼 can be identified with the ℙ1-bundle ℙ(𝐹∨) on ℙ(𝔼), but also with the ℙ1-bundle ℙ(�̌�∨) on ℙ(𝔼∨).
The tautological inclusion 𝐹 → 𝑢∗𝔼 induces a surjection 𝑢∗𝔼∨ → 𝐹∨ and this gives an inclusion ℙ(𝐹∨) → ℙ(𝑢∗𝔼∨)

of projective bundles over ℙ(𝔼), which composed with natural map ℙ(𝑢∗𝔼∨) → ℙ(𝔼∨) gives the map �̌� ∶ 𝐼 = ℙ(𝐹∨) →
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22 GEER and KOUVIDAKIS

ℙ(𝔼∨). This implies

ℙ(𝐹∨)(1) = �̌�
∗ℙ(𝔼∨)(1) and similarly ℙ(�̌�∨)(1) = 𝜌

∗ℙ(𝔼)(1) . (13)

With

𝑓 = 𝑐1(𝐹), 𝑓 = 𝑐1(�̌�), ℎ = 𝑐1(ℙ(𝔼)(1)), ℎ̌ = 𝑐1(ℙ(𝔼∨)(1)) ,

this gives the identities of pull backs of the first Chern classes 𝑐1(𝔼) = −𝑐1(𝔼∨) = 𝜆

𝜌∗(𝑓) + 𝜌∗(ℎ) = 𝜌∗𝑢∗(𝜆) = �̌�∗�̌�∗(𝜆) = −�̌�∗(𝑓) − �̌�∗(ℎ̌) .

Since 𝐼 = ℙ(𝐹∨) over ℙ(𝔼) and �̌�∗ℎ̌ = 𝑐1(ℙ(𝐹∨)(1)), the Chern classes of 𝐹∨ and the first Chern class of the tautological
line bundle satisfy the relation

�̌�∗ℎ̌2 + 𝜌∗(𝑓) �̌�∗(ℎ̌) + 𝜌∗(𝑐2(𝐹)) = 0 . (14)

Corollary 16.1. Under the map 𝜌∗�̌�∗ we have

ℎ̌2 ↦ ℎ − 𝑢∗(𝜆), ℎ̌ �̌�∗(𝜉) ↦ 𝑢∗(𝜉), �̌�∗(𝜂) ↦ 0

for 𝜉 ∈ CH1(3) and 𝜂 ∈ CH
2(3).

Proof. Using relation (14) gives

𝜌∗(�̌�
∗(ℎ̌)2) = −𝜌∗(𝜌

∗(𝑓)�̌�∗(ℎ̌) − 𝜌∗(𝑐2(𝐹)) = −𝑓 = ℎ − 𝑢
∗(𝜆) .

The other properties follow from general intersection theory. □

Let now 𝜓 be the class of the codimension 2 cocycle �̌� ⋅ �̌�.

Lemma 16.2. We have 𝜌∗�̌�∗𝜓 = 24 ℎ + 216 𝜆 − 24 𝛿0 − 48 𝛿1.

Proof. By the results of the preceding section, we have

𝜓 = 24 ℎ̌2 + 240 ℎ̌𝜆 − 24 ℎ̌𝛿0 − 48 ℎ̌𝛿1 + 𝑟

with 𝑟 ∈ �̌�∗CH2(3). Corollary 16.1 implies the result. □

We now claim that the codimension 2 cycle �̌� ⋅ �̌� when restricted to the hyperelliptic locus is of the form 12 ℎ̌, in other
words, by (2) it contains an effective codimension 2 cycle with class

12 (9 𝜆 − 𝛿0 − 3 𝛿1) ℎ̌ + �̌�
∗(𝜉)

with 𝜉 a codimension 2 class on 3. We check this using the explicit form of the two concomitants 𝜎 and 𝜏 defining �̌�
and �̌�. Here, 𝜎 is a polynomial of degree 4 in 𝑎0, … , 𝑎14 and degree 4 in the coordinates 𝑢0, 𝑢1, 𝑢2 where 𝑎0, … , 𝑎14 are the
coefficients of the general ternary quartic. A calculation shows that 𝜎 restricted to the locus of double conics becomes a
square 𝑞2 with 𝑞 of degree 2 in the 𝑢𝑖 , while 𝜏 becomes a cube 𝑞3. Hence, the cycle 𝑆∨ ⋅ 𝑇∨ restricted to the hyperelliptic
locus is represented by an effective cycle representing 6 𝑞 ∼ 12ℎ̌. By Corollary 16.1 under 𝜌∗�̂�∗ this is sent to an effective
cycle with class 12(9 𝜆 − 𝛿0 − 3 𝛿1). Since 𝐻 is defined as the closure of the hypertangent divisor in the generic fiber, the
class of𝐻 equals 𝜌∗�̌�∗𝜓 minus 12 times the class of the hyperelliptic locus; by Lemma 16.2 we get

24 ℎ + 216 𝜆 − 24 𝛿0 − 48 𝛿1 − 12(9𝜆 − 𝛿0 − 3𝛿1) = 24 ℎ + 108 𝜆 − 12 𝛿0 − 12 𝛿1 .

We summarize.
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GEER and KOUVIDAKIS 23

Proposition 16.3. The class [𝐻] of the hypertangent divisor𝐻 inℙ
3
(𝔼) equals [ℙ(𝔼)(24)] + 108 𝜆 − 12 𝛿0 − 12 𝛿1. It gives

rise to a Siegel modular form of degree 3 and weight (24,0,108) vanishing with multiplicity 12 along the boundary.

We now work on the Hurwitz space and define and calculate the class of a hypertangent𝐻ℎ divisor there. It is defined
by taking the eight tangent lines at the ramification points of the canonical image. More precisely, on ℙ̃ we have the line
bundle𝑁 defined in (9). Recall that 𝑆𝑘 for 1 ≤ 𝑘 ≤ 8 is the pull back of the section 𝑆𝑘 of 𝜋9 ∶0,9 →0,8. Under restric-
tion to the hyperelliptic locus, the Weierstrass points degenerate to the ramification points. We define the corresponding
hypertangent divisor𝐻ℎ inℙ(𝔼) over3,2 by taking the tangents to the canonical image of the generic curve at the points
of the sections 𝑆𝑘, 𝑘 = 1,… , 8 over3,2 and then taking the closure over3,2.
We now consider the bundle𝑁(−2𝑆𝑘) on ℙ̃. This line bundle is trivial on the generic fiber of𝜋 ∶ ℙ̃ → 𝐵, so𝜋∗(𝑁(−2𝑆𝑘))

is a line bundle on 𝐵.

Lemma 16.4. We have

𝑐1(𝑅
1𝜋∗𝑁(−2𝑆𝑘)) = Δ2(𝑘

+) + Δ3(𝑘
+), and 𝑐1(𝜋∗𝑁(−2𝑆𝑘)) = −Δ3(𝑘

+) − Δ3 + 𝐸𝑘 .

Proof. Recall that 𝑁 = (𝐷𝑘 + 𝜋
∗(𝐸𝑘) − 𝑅). The first statement follows by analyzing the restrictions over the boundary

components. For the second, we apply Grothendieck–Riemann–Roch as in the proof of Proposition 10.2. By (7) and (8),
we have

𝑐1(𝜋∗𝑁(−2𝑆𝑘)) = −Δ2(𝑘
+) − 2Δ3(𝑘

+) − Δ3 + 𝑐1(𝑅
1𝜋∗𝑁(−2𝑆𝑘))

= −Δ3(𝑘
+) − Δ3 + 𝐸𝑘 .

□

Put 𝑘 = 𝜋∗(𝑁(−2𝑆𝑘)). The injection 𝑁(−2𝑆𝑘) ↪ 𝑁 induces an injection 𝑘 → 𝔼. Pulling back to ℙ(𝔼) via 𝑢∗ and
composing with the canonical surjection 𝑢∗(𝔼) → ℙ(𝔼)(1), we get an induced map

𝑞 ∶ 𝑢∗𝑘 → ℙ(𝔼)(1) .

The degeneracy locus of 𝑞 is an effective divisor 𝐹𝑘 that is the vanishing divisor of a section of ℙ(𝔼)(1) ⊗ 𝑢∗−1
𝑘
. The

interpretation is as follows. The map 𝜙 defines an embedding of the generic fiber of ℙ̃ into the generic fiber ℙ(𝔼). If
we identify 𝐻0(ℙ1,(2)) with the fiber of 𝔼 and projectivize, the divisor 𝑝1 + 𝑝2 ∈ |(2)| is mapped to the line through
through the points 𝜙(𝑝1), 𝜙(𝑝2). We now sum these divisors 𝐹𝑘 and get an effective divisor 𝐻ℎ with class

[𝐻ℎ] = 8 [(1)] −

8∑
𝑘=1

[𝑢∗𝑘] = [(8)] + 𝑢
∗

(
3Δ3 + 8Δ3 −

8∑
𝑘=1

𝐸𝑘

)
= [(8)] + 𝑢∗(8 𝜆 − 2Δ2 + Δ3) ,

where we use the formulas of Section 10 and Section 12.
We can now compare the class of the hyperelliptic hypertangent divisor𝐻ℎ with that of the pull back of the hypertangent

divisor 𝐻 to the Hurwitz space. By Proposition 16.3, the pull back of 𝐻 has class [(24)] + 108 𝜆 − 24 (Δ2 + Δ4) − 12Δ1.
Since the 24 Weierstrass points collapse with multiplicity 3 to the eight ramification points, we compare the class (of the
pull back of) [𝐻] with that of 3 [𝐻ℎ]. Substituting the formula for 𝜆, we get

[𝐻] − 3 [𝐻ℎ] = 9Δ1 ,

which means that the pull back of𝐻 vanishes with multiplicity 9 at the hyperelliptic boundary component Δ1.
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24 GEER and KOUVIDAKIS

17 GENUS 4

For a smooth curve 𝐶 of genus 4, the natural map Sym2(𝐻0(𝐶, 𝜔𝐶)) → 𝐻0(𝐶, 𝜔⊗2
𝐶
) is surjective and the kernel has dimen-

sion 1. It determines a quadric in ℙ3 = ℙ(𝐻0(𝐶, 𝜔𝐶)) containing the canonical curve. Over4, we find a corresponding
exact sequence

0 → 𝑈 → Sym2(𝔼) → 𝜋∗𝜔
⊗2
𝐶

→ 0 .

The line bundle𝑈 has first Chern class 5 𝜆 − (13 𝜆 − 𝛿) = −8 𝜆 + 𝛿 by Mumford’s calculation of 𝑐1(𝜋∗𝜔
⊗2
𝑐 ) [23, Theorem

5.10]. In the bundle ℙ(𝔼) the quadric containing the canonical curve determines a divisor 𝑄. Let 𝑢 ∶ ℙ(𝔼) →4 be the
projection.

Lemma 17.1. The divisor class of 𝑄 satisfies: [𝑄] = [(2)] + 𝑢∗(8 𝜆 − 𝛿).

Proof. Observe that 𝑢∗𝑢∗(2) = 𝑢∗(Sym
2(𝔼)). The natural morphism 𝑢∗𝑢∗(2) → (2) induces 𝑢∗𝑈 → (2). The divisor

𝑄 is the vanishing locus of this morphism, hence has class [(2)] + 𝑢∗(8 𝜆 − 𝛿). □

Corollary 17.2. The effective divisor 𝑄 defines a Teichmüller modular cusp form 𝜒 of genus 4 and weight (2,0,0,8).

If we view a section of Sym2(𝔼) as a quadratic form on 𝔼∨, we can take the discriminant, cf. [6]. Doing this with the
form 𝜒 of weight (2,0,0,8) just constructed we get a scalar-valued modular form 𝐷(𝜒) of weight 34. This modular form
vanishes on the closure of the locus of curves whose canonical model lies on a quadric cone. This locus has class 34𝜆 −
4 𝛿0 − 14 𝛿1 − 18 𝛿2 by Teixidor i Bigas [26, Proposition 3.1] and equals the divisor of curves with a vanishing thetanull.
The modular form 𝐷(𝜒) is the square root of the restriction to4 of the product of the even theta characteristics on4.
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ENDNOTE
1Alternatively one could use divided powers as in [1, 3.1]
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APPENDIX A: BASE POINT FREENESS
The relative dualizing sheaf 𝜔𝜋 of the universal family 𝜋 ∶ 𝑔 →𝑔 of genus 𝑔 smooth curves is base point free and the
surjection 𝜋∗𝔼 → 𝜔𝜋 gives a map 𝜑 ∶ 𝑔 → ℙ(𝔼) over𝑔, which is generically an embedding. Let Γ be the image 𝜑(𝑔).
We wish to describe the closure of the image over the generic points of the boundary components Δ𝑖 for 𝑖 = 0, … , [𝑔∕2].
Over the general point of Δ0, the sheaf 𝜔𝜋 is base point free and the map 𝜑 extends over this locus. But over the general
point of Δ𝑖 , 𝑖 ≥ 1, which represents a nodal curve of the form 𝐶1 ∪ 𝐶2, with 𝐶1, 𝐶2 smooth curves of genus 𝑖 and 𝑔 − 𝑖
meeting at a nodal point 𝑥, the sheaf 𝜔𝜋 has a base point at 𝑥. We consider a family 𝜋 ∶ 𝑌 → 𝐵 of stable curves of genus 𝑔
with 𝐵 the spectrum of a discrete valuation ring. We assume that the central fiber 𝐶 is a nodal curve 𝐶 = 𝐶1 ∪ 𝐶2 of genera
𝑖 and 𝑔 − 𝑖 and smooth generic fiber. After a degree 2 base change 𝐵′ → 𝐵, we get an 𝐴1-singularity, which we resolve
resulting in a semistable family 𝜋′ ∶ 𝑋 → 𝐵′ with a special fiber, which is a chain of three curves 𝐶 = 𝐶′1 ∪ 𝑅 ∪ 𝐶

′
2 with

𝐶′1 ≅ 𝐶1 and 𝐶
′
2 ≅ 𝐶2 smooth curves of genus 𝑖 and 𝑔 − 𝑖, and 𝑅 a rational (−2)-curve. We have the commutative diagram

Themorphism 𝑣 is (2 ∶ 1) ramified at𝐶1, 𝐶2.We have 𝑣∗𝜔𝜋 = 𝜔𝜋′ , and𝜎∗𝔼𝐵 = 𝔼𝐵′ and 𝑣∗𝐶𝑗 = 2𝐶′𝑗 + 𝑅 for 𝑗 = 1, 2. There
is then a natural (2 ∶ 1)map ℙ(𝔼𝐵′) → ℙ(𝔼𝐵).
Now we will show that the system 𝜔𝜋′(−𝑅) defines a map 𝑋 → ℙ(𝔼𝐵′), which combined with the above (2 ∶ 1) map

gives a (2 ∶ 1) map 𝜑′ ∶ 𝑋 → ℙ(𝔼𝐵) mapping the curves 𝐶′1 and 𝐶
′
2 to their canonical image and 𝑅 to a double line. The

reduced image of the map 𝜑′ describes the closure of 𝐷 over 𝑏0, the special point of 𝐵.
To avoid unnecessary notation, we now write 𝜋 ∶ 𝑋 → 𝐵 for the semistable family denoted by 𝜋′ ∶ 𝑋 → 𝐵′ above.

Proposition A.1. Let 𝜔 be the relative dualizing sheaf of 𝜋 ∶ 𝑋 → 𝐵. Then, we have 𝜋∗(𝜔(−𝑅)) ≅ 𝜋∗(𝜔) and the central
fiber of 𝜋∗(𝜔(−𝑅)) is of codimension 1 in𝐻0(𝐶, 𝜔(−𝑅)) and defines a base point free linear system on 𝐶.

Proof. We let 𝑞 = 𝐶1 ∩ 𝑅 and 𝑝 = 𝐶2 ∩ 𝑅. The exact sequence 0 → 𝜔(−𝑅) → 𝜔 → 𝜔|𝑅 → 0 induces a sequence

0 → 𝜋∗(𝜔(−𝑅)) → 𝜋∗(𝜔)
𝑟
¤→ 𝜋∗(𝜔)|𝑅

and the map 𝑟 is zero because 𝜔|𝐶 = (𝜔𝐶1(𝑞),𝑅, 𝜔𝐶2(𝑝)), therefore the restrictions to 𝐶1 (resp. 𝐶2)must vanish at 𝑞 (resp.
𝑝), hence extend by 0 on 𝑅. We thus see by the exactness that 𝜋∗(𝜔(−𝑅)) ≅ 𝜋∗(𝜔).
Next, we observe that dim𝐻0(𝐶, 𝜔(−𝑅)) = 𝑔1 + 𝑔2 + 1 with 𝑔𝑖 the genus of 𝐶𝑖 . This follows directly from 𝜔(−𝑅)|𝐶 =

(𝜔𝐶1 ,𝑅(2), 𝜔𝐶2).
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We have the exact sequence

0 → 𝜔(−𝑅 − 𝐶1) → 𝜔(−𝑅) → 𝜔(−𝑅)|𝐶1 → 0 , (A1)

where 𝜔(−𝑅)|𝐶1 ≅ 𝜔𝐶1 and 𝜔(−𝑅 − 𝐶1)|𝐶 = (𝜔𝐶1(𝑞),𝑅(1), 𝜔𝐶2). For a section (𝑠1, 𝑠, 𝑠2) ∈ 𝐻0(𝐶, 𝜔(−𝑅 − 𝐶1)), the sec-
tion 𝑠 is the unique section of 𝑅(1) that vanishes at 𝑞 and with 𝑠(𝑝) = 𝑠2(𝑝). We thus see dim𝐻0(𝐶, 𝜔(−𝑅 − 𝐶1)) =

𝑔1 + 𝑔2. Therefore, ℎ0(𝜔(−𝑅 − 𝐶1)) has constant rank 𝑔1 + 𝑔2 on the fibers of 𝜋, hence 𝑅1𝜋∗(𝜔(−𝑅 − 𝐶1)) is a line bun-
dle. We conclude that the special fiber of 𝜋∗(𝜔(−𝑅 − 𝐶1)) equals𝐻0(𝐶, 𝜔(−𝑅 − 𝐶1)). But 𝜋∗(𝜔(−𝑅)|𝐶1) is a torsion sheaf,
hence the connecting homomorphism 𝜋∗(𝜔(−𝑅)|𝐶1) → 𝑅1𝜋∗(𝜔(−𝑅 − 𝐶1)) of (15) must be zero and we get an induced
exact sequence

0 → 𝜋∗(𝜔(−𝑅 − 𝐶1))
𝜄
¤→ 𝜋∗(𝜔(−𝑅))

𝑗
¤→ 𝜋∗(𝜔(−𝑅))|𝐶1) → 0 .

Consider now a section 𝜎 of 𝜋∗(𝜔(−𝑅 − 𝐶1)) with restriction (𝑠1, 𝑠, 𝑠2) to 𝐶. Suppose that 𝑠 ≠ 0. If we multiply 𝜎 with
a local section 𝜏 of (𝐶1) on 𝑋 with divisor 𝐶1, then 𝜄(𝜎) = 𝜎 ⋅ 𝜏|𝐶 has as restriction to 𝑅 a section of 𝑅(2) vanishing
with multiplicity 2 at 𝑞 and therefore it does not vanish anywhere else. Hence, the subspace of the special fiber 𝑉 of
𝜋∗(𝜔(−𝑅)) of sections vanishing on 𝐶1 has 𝑞 as only base point on 𝑅. Furthermore, the map 𝑗 is surjective, and choosing
a section 𝑠1 ∈ 𝐻0(𝐶1, 𝜔𝐶1) with 𝑠1(𝑞) ≠ 0, we see that 𝑞 is not a base point. Therefore, there are no base points on 𝑅. By
the surjectivity of 𝑗, the restriction of 𝑉 to 𝐶1 is 𝐻0(𝐶1, 𝜔𝐶1) and therefore there are no base points on 𝐶1. By symmetry,
the same holds for 𝐶2.
Similarly to (15), we have an exact sequence

0 → 𝜔(−𝑅 − 𝐶1 − 𝐶2) → 𝜔(−𝑅) → 𝜔(−𝑅)|𝐶1+𝐶2 → 0,

and by a similar reasoning, we see that we get an exact sequence

0 → 𝜋∗(𝜔(−𝑅 − 𝐶1 − 𝐶2))
𝜄
¤→ 𝜋∗(𝜔(−𝑅))

𝑗
¤→ 𝜋∗(𝜔(−𝑅))|𝐶1+𝐶2) → 0 .

This implies that given 𝑠1 ∈ 𝐻0(𝐶1, 𝜔𝐶1) and 𝑠2 ∈ 𝐻
0(𝐶2, 𝜔𝐶2), there is a unique element (𝑠1, 𝑠, 𝑠2) in the special fiber 𝑉

of 𝜋∗(𝜔(−𝑅)) mapping to (𝑠1, 𝑠2) under 𝑗. The morphism 𝑋 → ℙ(𝜋∗(𝜔(−𝑅))) is given by the surjection 𝜋∗𝜋∗(𝜔(−𝑅)) →
𝜔(−𝑅). The image of the curve 𝐶 in the special fiber of ℙ(𝔼) consists of the canonical images of 𝐶1 and 𝐶2, provided with
images of 𝑝 and 𝑞 and the image of 𝑅, that is, the line connecting the images of 𝑝 and 𝑞. If the genus 𝑔(𝐶𝑖) = 1, then the
image of 𝐶𝑖 is a point. □

APPENDIX B: DIVISOR CLASSES OF GHEORGHITA–TARASCA AND KOROTKIN–SAUVAGET–ZOGRAF
Here, we apply the method employed in Section 16 to determine in a relatively straightforward way the divisor classes of
two divisors in ℙ(𝔼∨

𝑘
) with 𝔼𝑘 = 𝜋∗(𝜔𝑘𝜋), thus reproving a theorem of Gheorghita–Tarasca [13, Theorem 1] and a theorem

of Korotkin–Sauvaget–Zograf [21, Theorem 1.12]. The first divisor is a generalization of a divisor in ℙ(𝔼∨) considered by
Gheorghita in [12]. We consider in ℙ(𝔼∨

𝑘
) over𝑔 the divisor

𝐺𝑘 = {(𝐶, 𝜔) ∈ ℙ(𝔼
∨
𝑘
) ∶ div(𝜔) contains a Weierstrass point}

and let𝐺𝑘 be the closure of𝐺𝑘 inℙ(𝔼∨𝑘 ) over𝑔. We let �̌� ∶ ℙ(𝔼∨𝑘 ) →𝑔 be the natural morphism and ℎ̌ the hyperplane
class on ℙ(𝔼∨

𝑘
).

Theorem B.1 (Gheorghita–Tarasca). The class of 𝐺𝑘 is given by

1

𝑘
[𝐺𝑘] = 𝑔(𝑔

2 − 1)ℎ̌ + 2(3𝑔2 + 2𝑔 + 1)�̌�∗𝜆 −
(𝑔 + 1

2

)
�̌�∗𝛿0 −

[𝑔∕2]∑
𝑖=1

(𝑔 − 𝑖)𝑖(𝑔 + 3)�̌�∗𝛿𝑖 .

The second divisor is the divisor 𝑍𝑘 in ℙ(𝔼∨𝑘 ) over𝑔 of regular 𝑘-differentials for 𝑘 ≥ 2 possessing a double zero.
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GEER and KOUVIDAKIS 27

Theorem B.2 (Korotkin–Sauvaget–Zograf). The class of the divisor 𝑍𝑘 for 𝑘 ≥ 2 for 𝑘 ≥ 2 and (𝑔, 𝑘) ≠ (2, 2) is given by

[𝑍𝑘] = (4𝑘 + 2)(𝑔 − 1) ℎ̌ + 𝑘(𝑘 + 1) �̌�
∗
⎛⎜⎜⎝12𝜆 −

[𝑔∕2]∑
𝑖=0

𝛿𝑖

⎞⎟⎟⎠.
For the proof of both theorems, we use, as in Section 16, the incidence variety 𝐼𝑘 between ℙ(𝔼𝑘) and ℙ(𝔼∨𝑘 ), which fits

in the following commutative diagram:

We denote by ℎ (resp. ℎ̌) the first Chern class of the hyperplane line bundle on ℙ(𝔼𝑘) (resp. ℙ(𝔼∨𝑘 )), thus suppressing the
dependence on 𝑘. As explained in Section 16, we have 𝐼𝑘 = ℙ(�̌�∨𝑘 ) as a bundle over ℙ(𝔼

∨
𝑘
), with 𝐹𝑘 defined by the exact

sequence on ℙ(𝔼∨
𝑘
)

0 → 𝐹𝑘 → �̌�∗𝔼∨
𝑘
→ ℙ(𝔼∨

𝑘
)(1) → 0.

Then, 𝜌∗ℎ = 
ℙ(𝐹𝑘

∨
)
(1). Similarly, 𝐼𝑘 = ℙ(𝐹∨𝑘 ) as a bundle overℙ(𝔼𝑘), with𝐹𝑘 the tautological rank 𝑟 − 1 bundle onℙ(𝔼𝑘).

Then, �̌�∗(ℎ̌) = ℙ(𝐹𝑘
∨)(1).

We let

𝛾 = �̌�∗𝜌
∗ ∶ CH∗ℚ(ℙ(𝔼𝑘)) → CH∗ℚ(ℙ(𝔼

∨
𝑘
))

be the induced map.

Lemma B.3. We have 𝛾(ℎ𝑖) = 0 for 𝑖 ≤ 𝑟 − 3, 𝛾(ℎ𝑟−2) = 1 and 𝛾(ℎ𝑟−1) = ℎ̌ + �̌�∗c1(𝔼𝑘).

Proof. For dimension reasons 𝛾(ℎ𝑖) = 0 for 𝑖 ≤ 𝑟 − 3. Moreover, 𝛾(ℎ𝑟−2) = 1 by construction. Applying �̌�∗ to the Chern
class relation

∑𝑟−1

𝑖=0
(−1)𝑟−1−𝑖(𝜌∗ℎ)𝑖�̌�∗𝑐𝑟−1−𝑖(�̌�

∨
𝑘
) = 0, we get 𝛾(ℎ𝑟−1) = 𝑐1(�̌�∨𝑘 ) and this equals ℎ̌ + �̌�

∗c1(𝔼𝑘) by the exact
sequence. □

Proof of Theorem B.1. Let𝑊 be theWeierstrass divisor on 𝑔. This is an irreducible divisor.We denote by 𝜑𝑘 ∶ 𝑔 → ℙ(𝔼𝑘)

the morphism defined in Section 3. For 𝑘 ≥ 2, we have 𝐺𝑘 = 𝜌∗𝜌∗(𝜑𝑘(𝑊)) over𝑔 and 𝜌∗𝜌∗ sends an irreducible divisor
over 𝑔 to an irreducible divisor. Therefore, we have [𝐺𝑘] = 𝛾(𝜑𝑘∗[𝑊]). The group Picℚ(𝑔) is generated by 𝜔𝜋, 𝜋∗𝜆,
𝜋∗𝛿0, and 𝛾𝑖 (for 𝑖 = 1, … , 𝑔 − 1) with 𝛾𝑖 the divisor class defined by the component of genus 𝑖 lying over Δmin(𝑖,𝑔−𝑖). By
Cuckierman [8], the divisor class [𝑊] can be written as 𝑤1 − 𝑤2 with

𝑤1 =
(𝑔 + 1

2

)
𝜔𝜋 − 𝜋

∗𝜆, 𝑤2 =
(𝑔 − 𝑖 + 1

2

) 𝑔−1∑
𝑖=1

𝛾𝑖 .

Note that 𝜑∗
𝑘
ℎ = 𝑘 𝜔𝜋. We thus get

𝜑𝑘∗𝑤1 = 𝜑𝑘∗

(
𝑔(𝑔 + 1)

2
𝜔𝜋 − 𝜋

∗𝜆

)
= 𝜑𝑘∗𝜑

∗
𝑘

(
𝑔(𝑔 + 1)

2𝑘
ℎ − 𝑢∗𝜆

)

=

(
𝑔(𝑔 + 1)

2𝑘
ℎ − 𝑢∗𝜆

)
𝜑𝑘∗[1] =

(
𝑔(𝑔 + 1)

2𝑘
ℎ − 𝑢∗𝜆

)
(

𝑟−2∑
𝑖=0

ℎ𝑖𝛽𝑟−2−𝑖)

=

𝑟−1∑
𝑖=0

ℎ𝑖𝑢∗
(
𝑔(𝑔 + 1)

2𝑘
𝛽𝑟−1−𝑖 − 𝜆𝛽𝑟−2−𝑖

)
,
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28 GEER and KOUVIDAKIS

where we used (1). Lemma B.3 implies that under applying 𝛾 only the terms with ℎ𝑗 where 𝑗 = 𝑟 − 1 or 𝑟 − 2 contribute
and we get

𝛾(𝜑𝑘∗𝑤1) = 𝛾(ℎ
𝑟−1)

𝑔(𝑔 + 1)

2𝑘
𝛽0 + 𝛾(ℎ

𝑟−2)�̌�∗
(
𝑔(𝑔 + 1)

2𝑘
𝛽1 − 𝜆𝛽0

)
.

Substituting the expressions for 𝛽0 and 𝛽1 from Proposition 3.1 leads to

𝛾(𝜑𝑘∗𝑤1) = 𝑔(𝑔
2 − 1) ℎ̌ + 2 𝑘 (3𝑔2 + 2𝑔 + 1)�̌�∗𝜆 −

𝑘

2
𝑔(𝑔 + 1)

[𝑔∕2]∑
𝑖=0

�̌�∗𝛿𝑖 .

For the term 𝛾(𝜑𝑘∗𝑤2), we first observe 𝛾(𝜑𝑘∗𝛾𝑖) = (2𝑖 − 1)𝑘�̌�
∗𝛿𝑖 because the component of genus 𝑖 over Δmin(𝑖,𝑔−𝑖) has

degree (2𝑖 − 1)𝑘 in ℙ𝑟−1 and thus maps under 𝛾 to (2𝑖 − 1)𝑘 times the class [1] of (ℙ𝑟−1)∨ over Δmin(𝑖,𝑔−𝑖). This gives

𝛾(𝜑𝑘∗𝑤2) =
𝑘

2

𝑔−1∑
𝑖=1

(𝑔 − 𝑖)(𝑔 − 𝑖 + 1)(2𝑖 − 1) �̌�∗𝛿𝑖

=
𝑘

2

[𝑔∕2]∑
𝑖=1

((𝑔 − 𝑖)(𝑔 − 𝑖 + 1)(2𝑖 − 1) + 𝑖(𝑖 + 1)(2𝑔 − 2𝑖 − 1))�̌�∗𝛿𝑖

=
𝑘

2

[𝑔∕2]∑
𝑖=1

(2𝑖(𝑔 − 𝑖)(𝑔 + 3) − 𝑔(𝑔 + 1))�̌�∗𝛿𝑖.

Together this gives the correct expression for class of [𝐺𝑘] as in Theorem B.1.
When 𝑘 = 1, over𝑔 ∪ Δ0 we work as above and the coefficients of 𝜆 and 𝛿0 in the formula are as in the case 𝑘 ≥ 2. To

find the contribution of 𝛿𝑖 in the formula of 𝛽1, we work over the family over a base 𝐵, as in Appendix A, where we have
the (2 ∶ 1)morphism 𝜑′ ∶ 𝑋 → ℙ(𝔼) defined by the 𝜔𝜋′(−𝑅). We follow the notation of Appendix A and in the formulas,
we only need to consider terms that contribute to the boundary class 𝛿𝑖 . By [8], the Weierstrass divisor does not pass
through the node of a general element over Δ𝑖 and thus 𝑣∗𝑊 does not contain the “exceptional” divisor 𝑅. We have by
Cuckierman’s formula [𝑣∗𝑊] = 𝑤1 − 𝑤2 with𝑤1 =

(𝑔+1
2

)
𝜔𝜋′ − 𝜋

′∗𝜆, and as contribution to𝑤2 over Δ𝑖 (for 𝑖 ≤ [𝑔∕2]), we
have the expression

𝑖(𝑖 + 1)(2𝛾1 + 𝔯) + (𝑔 − 𝑖)(𝑔 − 𝑖 + 1)(2𝛾2 + 𝔯), (B1)

where 𝛾1 (resp. 𝛾2) is the class of the component 𝐶′1 of genus 𝑖 (resp. 𝐶
′
2 of genus 𝑔 − 𝑖) over Δ𝑖 ∩ 𝐵 and 𝔯 the class of 𝑅.

If we denote by 𝑇 the closure of the reduced image of 𝑣∗𝑊 under the (2 ∶ 1)map 𝜑′ ∶ 𝑋′ → ℙ(𝔼𝐵), then [𝐺1] = 𝛾([𝑇]).
Recall that 𝜑′∗ℎ = 𝜔𝜋′ − 𝑅. Thus, the 𝛿𝑖-contribution in 2[𝑇] coming from 𝑤1 is

𝑔(𝑔 + 1)

2
𝜑′∗(𝜔𝜋′) =

𝑔(𝑔 + 1)

2
𝜑′∗(𝜑

′∗ℎ + 𝔯) =
𝑔(𝑔 + 1)

2

(
ℎ𝜑′∗[1] + 𝜑

′
∗𝔯)

)
.

If we apply (1), the contribution to 𝛿𝑖 in

𝛾(ℎ𝜑′∗[1]) = 𝛾

(
𝑔−2∑
𝑖=0

ℎ𝑖+1𝑢∗𝛽𝑔−2−𝑖

)
= 2(𝑔 − 1)(ℎ̌ + �̌�∗𝜆) + �̌�∗𝛽1

comes from �̌�∗𝛽1 alone and equals −4�̌�∗𝛿𝑖 , as 𝛿𝑖 appears in the formula of 𝛽1 with coefficient −2. Since 𝛾(𝜑′∗𝔯) = 2 �̌�∗𝛿𝑖
we get from 𝑤1 together the contribution −𝑔(𝑔 + 1)�̌�∗𝛿𝑖 . From 𝑤2 we get by applying 𝛾 to (16), using 𝛾(𝜑′∗𝛾1) = (2𝑖 −
2)�̌�∗𝛿𝑖 , 𝛾(𝜑′∗𝛾2) = (2𝑔 − 2𝑖 − 2)�̌�∗𝛿𝑖 and 𝛾(𝜑′𝔯) = 2�̌�∗𝛿𝑖 , the contribution 2(𝑔 + 3)𝑖(𝑖 − 𝑔) + 𝑔(𝑔 + 1). Together 𝑤1 − 𝑤2
thus contributes −2(𝑔 + 3)𝑖(𝑖 − 𝑔) to the coefficient of 𝛿𝑖 , as required. □
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GEER and KOUVIDAKIS 29

Proof of Theorem B.2. Here 𝑘 ≥ 2, hence we have the morphism 𝜑𝑘 ∶ 𝑔 → ℙ(𝔼𝑘). Let 𝜋1 ∶ 𝑔,1 → 𝑔 be the universal
curve over 𝑔 and 𝑠 ∶ 𝑔 → 𝑔,1 the tautological section, the image of which we denote by 𝑆.
We claim: 𝜑∗

𝑘
𝐹𝑘 = 𝜋1∗(𝜔

⊗𝑘
𝜋1
(−𝑆)). Indeed, by our assumptions on 𝑔 and 𝑘, we have 𝑅1𝜋1∗(𝜔

⊗𝑘
𝜋1
(−𝑆)) = 0, so

𝜋1∗(𝜔
⊗𝑘
𝜋1
(−𝑆)) is a vector bundle on 𝑔. For a point 𝑥 ∈ ℙ(𝔼𝑘), the fiber of 𝐹𝑘 is the hyperplane in the corresponding fiber

of 𝔼𝑘 representing the point 𝑥. When 𝑥 = 𝜑𝑘(𝑝)with 𝑝 ∈ 𝑔, then (𝐹𝑘)𝑥 = 𝐻0(𝐶𝑝, 𝜔
⊗𝑘
𝜋1
(−𝑝)), with 𝐶𝑝 the corresponding

fiber of 𝜋1 over 𝑝. Hence the claim. We now have on 𝑔 the sequence

0 → 𝜋1∗(𝜔
⊗𝑘
𝜋1
(−2𝑆)) → 𝜋1∗(𝜔

⊗𝑘
𝜋1
(−𝑆)) → 𝑠∗(𝜔⊗𝑘𝜋1 (−𝑆)) → 0 , (B2)

with 𝑠∗(𝜔⊗𝑘𝜋1 (−𝑆)) ≅ 𝜔
𝑘+1
𝜋 , and this sequence is exact up to codimension 2 because 𝑅1𝜋1∗(𝜔

⊗𝑘
𝜋1
(−2𝑆)) vanishes in

codimension 2 in view of the conditions on (𝑔, 𝑘).
Let 𝐹𝑘(𝜈) = 𝜋1∗(𝜔⊗𝑘(−𝜈𝑆)) for 𝜈 = 1, 2 with 𝐹𝑘(1) ≅ 𝜑∗𝐹𝑘. Let 𝑗 ∶ ℙ(𝐹𝑘(1)∨) → ℙ(𝐹∨

𝑘
) be the natural map. Then,

ℎ̃ = 𝑗∗�̌�∗(ℎ̌) is the class of the hyperplane line bundle on ℙ(𝐹𝑘(1)∨). The inclusion 𝐹𝑘(2) ↪ 𝐹𝑘(1) induces a map 𝜎 ∶
ℙ(𝐹𝑘(2)

∨) → ℙ(𝐹𝑘(1)
∨). We have the commutative diagram:

Let 𝛼 = 𝑗𝜎 ∶ ℙ(𝐹𝑘(2)∨) → 𝐼 and𝐴 = Im(𝛼) the image of thismap. Then, [𝑍𝑘] = �̌�∗[𝐴]. By the exact sequence (17) we have
𝜎∗[ℙ(𝐹𝑘(2)

∨)] = ℎ̃ + (𝑘 + 1)𝜌∗1𝜔𝜋. We observe that 𝑗∗[1] = 𝜌
∗[Γ𝑘] and 𝑘 𝜔𝜋 = 𝜑∗𝑘ℎ and we find

𝑘[𝐴] = 𝑘 𝑗∗(𝑗
∗�̌�∗ℎ̌) + (𝑘 + 1)𝑗∗(𝜌

∗
1𝜙

∗
𝑘
ℎ) = 𝑘 �̌�∗ℎ̌ 𝑗∗[1] + (𝑘 + 1)𝜌

∗(ℎ)𝑗∗[1]

= 𝑘 �̌�∗ℎ̌ 𝜌∗[Γ𝑘] + (𝑘 + 1)𝜌
∗(ℎ[Γ𝑘]) .

By Proposition 3.1 and Lemma B.3, we have ℎ̌𝛾([Γ𝑘]) = 2𝑘(𝑔 − 1)ℎ̌ and

𝛾(ℎ[Γ𝑘]) = 𝛾

(
𝑟−2∑
𝑖=0

ℎ𝑖+1𝑢∗𝛽𝑟−2−𝑖

)
= 2𝑘(𝑔 − 1)(ℎ̌ + �̌�∗c1(𝔼𝑘)) + �̌�

∗𝛽1 = 2𝑘(𝑔 − 1)ℎ̌ + 𝑘
2�̌�∗𝜅1

and thus [𝑍𝑘] = 2(2𝑘 + 1)(𝑔 − 1)ℎ̌ + 𝑘(𝑘 + 1)�̌�∗𝜅1 in agreement with the formula of Theorem B.2. □
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