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CURVES OVER FINITE FIELDS AND MODULI SPACES

by

Gerard van der Geer

Abstract. – This survey deals with moduli aspects of curves over finite fields. We
discuss counting points on moduli spaces of curves over finite fields. Formulas for the
number of points on such moduli spaces lead to modular forms. In this way counting
curves and their points over finite fields offers a way to obtain information on the
traces of Hecke operators on modular forms. We also discuss stratifications on moduli
spaces of curves and their relevance for curves over finite fields.

Résumé (Courbes sur les corps finis et espaces de modules). – Cet article traite de certains
aspects des espaces de modules de courbes algébriques sur un corps fini. Nous y
discutons le comptage de points sur de tels espaces. Les formules pour le nombre de
points sur ces espaces de modules nous conduisent vers des formes modulaires. De
cette façon, le comptage des courbes et de leurs points sur les corps finis offre une
manière d’obtenir des informations sur les traces des opérateurs de Hecke sur certains
espaces de formes modulaires. Nous discutons également certaines stratifications des
espaces de modules des courbes et de leur pertinence pour les courbes sur les corps
finis.

1. Introduction

This survey deals with moduli aspects of curves over finite fields. A large part of
the research on curves in the last century has been on the moduli of curves. The
foundational results on moduli spaces in the 1960s by Grothendieck and Mumford
cleared the way for a study of their properties. Before this it was difficult to study
these moduli spaces in positive characteristic.

An attractive aspect of studying curves over a finite field is that one can obtain a
lot of information about them by just counting their rational points over the given
finite field and its extension fields. Another nice aspect of studying curves over a
given finite field is that if you fix the genus there are only finitely many of them up
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114 GERARD VAN DER GEER

to isomorphism over the given finite field. This suggests that we count these. The
counting can be done in various ways; for example, one can also count curves defined
over a finite field Fq of cardinality q together with an n-tuple of Fq-rational points.

Doing the counting for the case of curves of genus one leads very quickly to the
topic of modular forms and their Hecke eigenvalues. The reason is that counting points
of a variety over a finite field yields information on the cohomology of that variety.
In the case at hand the variety is a moduli space and modular forms enter naturally
in the description of the cohomology of moduli spaces. Thus we can use the counting
of points on curves over finite fields of cardinality a power of a prime p to study
the cohomology of moduli spaces, and to study the traces of Hecke operators Tpn on
spaces of modular forms, and also Hecke eigenvalues of modular forms. In this way
counting points on curves over finite fields becomes a heuristic tool in the exploration
of uncharted terrain.

The interesting thing is that this connection can also be used in both directions.
Knowing traces of Hecke operators provides us with formulas for the number of ra-
tional points on moduli spaces over finite fields.

Moduli of curves admit several stratifications. Examples of these are the strati-
fication by automorphism group or by gonality. Apart from these that apply to all
characteristics, the moduli of curves in positive characteristic possess stratifications
that are special for given positive characteristic. These stratifications can be quite
relevant for curves over finite fields. There has been a flurry of activity on these strat-
ifications. We discuss just a few aspects of these stratifications and point to several
open questions.
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2. Moduli Spaces

To begin at the beginning, assume that we fix non-negative integers g and n with
2g − 2 + n ≥ 1. A smooth projective geometrically irreducible curve C of genus g
together with n distinct labeled points P1, . . . , Pn is called an n-pointed curve of
genus g. It is called stable if the group of automorphisms of C fixing P1, . . . , Pn is finite.
Here a morphism of (C, P1, . . . , Pn) to (D,Q1, . . . , Qn) is a morphism φ : C → D with
φ(Pi) = Qi for i = 1, . . . , n. The most basic fact here, due to Mumford, is the existence
for 2g− 2+n ≥ 1 of a moduli space M g,n of stable n-pointed curves of genus g, [51].
It is an irreducible Deligne-Mumford stack of dimension 3g − 3 + n defined over Z.
That we have to deal with stacks and not just with varieties, is due to the fact that
curves can have non-trivial automorphism groups.
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CURVES OVER FINITE FIELDS AND MODULI SPACES 115

The moduli spaces M g,n are in general not complete since curves can degenerate.
To compactify these one introduces the notion of a nodal n-pointed curve of genus g;
it is a reduced connected proper curve C with finitely many singular points which
are ordinary double points such that C has arithmetic genus g and non-singular
points P1, . . . , Pn. Again we call such a curve stable if the automorphism group of C
fixing P1, . . . , Pn is finite. The basic existence result on moduli spaces just mentioned
can be strengthened to the fact that there exists a moduli space M g,n, defined over Z,
of stable nodal n-pointed curves of genus g. It is again a Deligne-Mumford stack
defined over Z. The moduli of non-singular stable n-pointed curves of genus g form
an open dense part M g,n of M g,n. This cornerstone theorem is due to Deligne and
Mumford ([20]) and was established in 1969.

For g = 1 we need n ≥ 1 and for n = 1 we find the moduli space M 1,1 of elliptic
curves. For g ≥ 2 we can have n = 0 and we then just write M g and M g for M g,0

and M g,0.
Since the moduli space M g,n is defined over Z we can consider its fiber M g,n⊗Fp

in characteristic p. These are the moduli spaces that here we are interested in. We
also have their compactifications M g,n ⊗ Fp.

If (C, P1, . . . , Pn) is a (smooth) projective curve defined over a finite field Fq, that is,
Pi ∈ C(Fq) for i = 1, . . . , n, then it defines a Fq-valued point [C, P1, . . . , Pn] of M g,n.
But the point of the moduli space may a priori be defined over a smaller field. In
general if (C, P1, . . . , Pn) is defined over a field L that is a Galois extension of the
field K with Galois group GL/K , then we can view (C, P1, . . . , Pn) as a scheme over K
and we have an exact sequence

1 → AutL((C, P1, . . . , Pn)) → AutK((C, P1, . . . , Pn))
α−→ GL/K .

Then we have:

Lemma 2.1. – The moduli point [C, P1, . . . , Pn] can be defined over K if and only if
α is surjective; the stable n-pointed curve (C, P1, . . . , Pn) can be defined over K if and
only if α admits a lift.

The second statement is (a variation of) a well-known theorem of Weil [73, Thm
1]. In particular, since in our case of finite fields we may restrict to the case where
GL/K is a cyclic group, we see that a Fq-valued point of M g,n⊗Fp can be represented
by a n-pointed curve defined over Fq.

Thus we can count the number of Fq-valued points of M g,n. But here the stacky
character of the moduli space comes into play. This stacky aspect means that when we
count we have to take into account the automorphisms of our objects. For example,
when dealing with M 1,1, the moduli of elliptic curves, we have

# M 1,1(Fq) =
∑
E

1

#AutFq
(E)

,

where the sum is over all elliptic curves E = (C, P1) defined over Fq up to isomorphism
over Fq.
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116 GERARD VAN DER GEER

In the case at hand we find # M 1,1(Fq) = q. Indeed, there are q possibilities for
the j-invariant of an elliptic curve over Fq. The justification for this is that there is
another type of moduli space, the coarse moduli space M1,1, which is a scheme with
the property that its k-valued points for an algebraically closed field k correspond
bijectively to the k-isomorphism classes of elliptic curves; this is the j-line, where
j refers to the famous j-invariant of elliptic curves. For each value of j ∈ Fq we
might have several Fq-isomorphism classes of elliptic curves defined over Fq, but they
contribute in total 1 in the sum. In fact, there is the following lemma, see [34, Prop.
5.1] for a proof.

Lemma 2.2. – Let C be a stable curve defined over Fq. Then we have∑
C′

1

#AutFq (C
′)

= 1,

where the sum is over representatives C ′ of the Fq-isomorphism classes contained in
the Fq-isomorphism class of C.

We thus can ask for # M g(Fq) for g ≥ 2. To find this number we can make a list
of all isomorphism classes of curves of the given genus g and determine for each curve
in the list the order of the automorphism group.

This leads immediately to the question how to find all isomorphism classes and
how to calculate the automorphism groups. Is the answer always a polynomial in q ?
We will deal with these questions in the next sections.

Determining the automorphism group of a curve can be difficult. One remark is
that one can avoid calculating the order of the automorphism groups by considering
a family of curves in normal form whose generic member has no non-trivial automor-
phisms such that this family is a finite cover of the moduli space. Then we count in
this family and divide by the degree of the cover.

Other moduli spaces that enter here are the moduli spaces of principally polarized
abelian varieties of a given dimension g. These appear if we study curves via their
Jacobians. Let A g be the moduli space of principally polarized abelian varieties of
dimension g. This is again an irreducible Deligne-Mumford stack defined over Z. By
associating to a curve its Jacobian we obtain a map of stacks for g ≥ 2, the Torelli
map,

t = tg : M g → A g, [C] 7→ [Jac(C)]

and t1 : M 1,1
∼−→ A 1. Note that the relative dimension of A g over Z is g(g + 1)/2

and that of M g is 3g−3 and the codimension of the image is (g−2)(g−3)/2 for g ≥ 2.
For g = 2 the map t2 is an embedding of M 2 as an open part of A 2. But for g ≥ 3

the map tg is of stacky degree 2 onto its image, due to the fact that every abelian
variety has an automorphism of order 2, while the generic curve has no non-trivial
automorphism.
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3. Counting points of M g,n over finite fields

The first case deals with the moduli spaces M 0,n of stable n-pointed smooth curves
of genus 0. This implies n ≥ 3. The coarse moduli space M0,3 equals one point and
the coarse moduli space M0,4 equals P1 − {0, 1,∞}. For n ≥ 3 we have the formula

# M 0,n(Fq) =
n−2∏
i=2

(q − i),

settling the case g = 0.

For g = 1 we have M 1,1 = A 1 and we find # M 1,1(Fq) = q as observed above.
Since we know normal forms for elliptic curves we can write down a list of all isomor-
phism classes over Fq. For example, if the characteristic is not 2, we can write every
elliptic curve defined over Fq as y2 = f with f ∈ Fq[x] of degree 3 with non-vanishing
discriminant. We find for q = 3 the following list of isomorphism classes of elliptic
curves over F3. The first column gives the polynomial f defining the curve y2 = f .
The last column, that gives the j-invariants, illustrates Lemma 2.2.

f #C(F3) 1/#AutF3(C) j

x3 + x2 + 1 6 1/2 −1

x3 − x2 − 1 2 1/2 −1

x3 + x2 − 1 3 1/2 1

x3 − x2 + 1 5 1/2 1

x3 + x 4 1/2 0

x3 − x 4 1/6 0

x3 − x + 1 7 1/6 0

x3 − x− 1 1 1/6 0

We deduce from this table the frequency list

m 1 2 3 4 5 6 7

freq 1/6 1/2 1/2 2/3 1/2 1/2 1/6

where the frequency for given #C(k) = m is obtained by adding the contributions
1/#Autk(C).

Given this frequency list we know # M 1,n(Fq) for this value of q and all n. Indeed,
using the map M 1,n → M 1,1 we have

# M 1,n(Fq) =
∑
m

freq(m)

(
m− 1

n− 1

)
(n− 1)!

Interpolating the answers for various q one finds experimentally for low values
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n # M 1,n(Fq)

1 q

2 q2

3 q3 − 1

4 q4 − q2 − 3 q + 3

5 q5 − 5 q3 − q2 + 15 q − 12

6 q6 − 15 q4 + 25 q3 + 19 q2 − 80 q + 60

7 q7 − 35 q5 + 125 q4 − 126 q3 − 155 q2 + 490 q − 360

Notice that the degree in q is in accordance with the fact that dim M 1,n = n. One
may continue and find

# M 1,10(Fq) = q10 − 210 q8 + 2274 q7 − 11655 q6 + 34944 q5 − 62140 q4

+ 42126 q3 + 89124 q2 − 245664 q + 181440,

where one may check that # M 1,10(Fq) vanishes for q = 2 and q = 3. This answer
looks already a bit complicated and raises the question:

Question 3.1. – Is # M 1,n(Fq) always a polynomial in q? More generally, is
# M g,n(Fq) or # M g,n(Fq) polynomial?

Later we shall see that these experimentally obtained values given above in the
tabel are correct for all prime powers q.

Since Weil and Deligne we know that counting points over finite fields of a va-
riety defined over a finite field gives information on the cohomology and vice-versa
knowledge of the cohomology tells us about the number of rational points.

The Lefschetz fixed point theorem connects the number of rational points on a sep-
arated scheme of finite type over Fq, that is, the number of fixed points of Frobenius,
to the trace of Frobenius acting on étale compactly supported cohomology, see [19,
Théorème 3.2]. By work of Behrend [3] this result extends to the setting of Deligne-
Mumford stacks.

Question 3.1 leads to the following question.

Question 3.2. – What does it mean for the cohomology that we find polynomials in q?

The answer is given by a theorem by van den Bogaart and Edixhoven [11].

Theorem 3.3. – Let X be a Deligne-Mumford stack that is proper smooth and of pure
dimension d over Z. Suppose that for all primes p in a set S of Dirichlet density 1
there exists a polynomial P =

∑
i≥0 Pix

i ∈ Q[x] such that

# X (Fpn) = P (pn) + o(pnd/2) (n →∞).

Then P ∈ Z[x] has degree d and satisfies P (x) = xdP (1/x) and we have
# X (Fpn) = P (pn) for all primes p and all n ≥ 1.
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The statement says that if there exists a polynomial P with rational coefficients
such that limn→∞ |# X (Fpn)−P (pn)|p−nd/2 = 0 for enough primes p, then # X (Fpn)
is an integral polynomial and of degree d.

Another way of expressing it is by saying that the cohomology of X is a polyno-
mial P (L) in the Lefschetz motive L. Or, equivalently, that Hi

et( XQ,Qℓ) with ℓ ̸= p
vanishes for i odd and equals Qℓ(−i/2)Pi/2 for i even. Or, one could say that geo-
metric Frobenius in Gal(Fq/Fq) acts on Hi

et( X ⊗ Fp,Qℓ) for ℓ ̸= p and even i with
eigenvalues qi/2.

But we should bear in mind that, as remarked above, M g,n is in general not
complete. In order to apply the theorem just given we need to consider the compact-
ification M g,n.

The complement ∂ M g,n of M g,n in M g,n is a union of divisors. This complement
is stratified and the strata are quotients by finite groups of products of M g′,n′ for
g′ ≤ g and n′ ≤ n+g−g′. In particular, one sees that even if one is interested in M g

only, the spaces M g,n naturally appear.

There is an action of the symmetric group Sn on M g,n and M g,n. We can
then count equivariantly. That is, instead of counting fixed points of Frobenius F
on M g,n(Fp), we count the fixed points of F ◦ σ for σ ∈ Sn. This depends only on
the cycle type of σ. So we count the number of Fq-isomorphism classes of curves to-
gether with an n-tuple of points (P1, . . . , Pn) on the curve such that it is fixed by F ◦σ.
For example, one can use Lemma 2.1 to see that the number of fixed points of F ◦ σ

with σ = (1 2) ∈ S2 for M g,2(Fq) equals

∑
C

#C(Fq2)−#C(Fq)

#AutFq (C)
,

where the sum is over all curves C of genus g over Fq up to Fq-isomorphism.

There is a formula of Getzler-Kapranov (see [37], also [9]) that expresses
# M g,n(Fq) in terms in terms of the Sn′ -equivariant counts of M g′,n′(Fq) for g′ ≤ g

and n′ ≤ n + g − g′.

This shows that we can use induction to apply the theorem above not only to M g,n,
but also to M g,n. But this shows also that one needs the equivariant formulas in order
to calculate the contributions of the boundary strata.

The paper by Getzler and Kapranov deals with the cohomology, but we have trans-
lated it here in terms of number of rational points. See also the paper [21] by Diaconu,
who gives (following Getzler-Kapranov) effective formulas expressing the Sn-equiv-
ariant Euler characteristics of M g,n in terms of the Euler characteristics of M g′,n′

with the indices g′, n′ restricted by max{0, 3− 2g′} ≤ n′ ≤ 2(g − g′) + n.
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4. Polynomial formulas

The first equivariant counting for M g,n was done by Kisin-Lehrer in [45] for g = 0
and they applied it to conclude facts about the cohomology of M 0,n. They found
polynomial functions in q for these equivariant counts of # M 0,n(Fq). They showed for
example that the alternating representation ofSn does not show up in the cohomology
of M 0,n.

Getzler did equivariant counting for g = 1 in [36]. In the preceding section we
gave a sample of the formulas for # M 1,n(Fq) and we add here a sample of those
for # M 1,n(Fq).

n # M 1,n(Fq)

1 q + 1

2 q2 + 2q + 1

3 q3 + 5q2 + 5q + 1

4 q4 + 12q3 + 23q2 + 12q + 1

5 q5 + 27q4 + 102q3 + 102q2 + 27q + 1

6 q6 + 58q5 + 421q4 + 756q3 + 421q2 + 58q + 1

Note the symmetry in the formulas for M 1,n displaying Poincaré duality. We will
come back to the case M 1,n and M 1,n in the next section.

Polynomial formulas for higher genus were first obtained by Getzler for g = 2 and
n ≤ 3 in [35] and then by Bergström for g = 2 and g = 3 for some n in [4, 5]. Since
these tell us about the cohomology, which is a representation space of Sn, the answer
is phrased in terms of Schur functions sλ, where λ runs through the partitions of n
and these λ correspond to the irreducible representations of Sn. Recall that the Schur
functions form a basis for the symmetric functions, like the elementary or complete
symmetric functions. We refer for the representation theory to [29]. We write the
answer as ∑

λ⊢n

Pλ(q) sλ with Pλ(q) =
1

n!

∑
σ∈Sn

χλ(σ) |M F ·σ
g,n |,

with χλ the character of the irreducible irreducible representation determined by λ

and |M F ·σ
g,n | the number of fixed points of F ·σ. To give an idea, here is the equivariant

answer for # M 2,4(Fq):

(q7 + 8q6 + 33q5 + 67q4 + 67q3 + 33q2 + 8q + 1) s4

+ (4q6 + 26q5 + 60q4 + 60q3 + 26q2 + 4q) s31

+ (2q6 + 12q5 + 28q4 + 28q3 + 12q2 + 2q) s22

+ (3q5 + 10q4 + 10q3 + 3q2) s211.

As one may surmise and we will see, we cannot expect that # M g,n(Fq) is always
a polynomial in q. But it happens to be so for small g and n. Below we summarize
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a number of cases where it turns out to be the case. In each of the cases one can
normalize an equation for the curve and then count.

For g = 1 the Sn-equivariant version of # M 1,n(Fq) is polynomial for 1 ≤ n ≤ 10.
Similarly, Sn-equivariant version of M 1,n(Fq) is polynomial for 1 ≤ n ≤ 10. This is
due to Getzler, see [36]; we will come back to this in the next section.

For g = 2 the Sn-equivariant version of # M 2,n(Fq) is polynomial for 0 ≤ n ≤ 9.
The formulas are due to Bergström, [5] for n ≤ 7, but using the results of Petersen
[58] it extends to n = 9. Similarly, this holds also Sn-equivariantly for # M 2,n(Fq).

For g = 3 the Sn-equivariant version of # M 3,n(Fq) is polynomial for 0 ≤ n ≤ 7.
The Sn-equivariant version of # M 3,n(Fq) is polynomial for 0 ≤ n ≤ 9, see [4].

For g = 4 not much is known. It is expected that # M 4,n(Fq) is polynomial
for n ≤ 3. The cohomology of M 4,0 with its Hodge structure was computed by
Tommasi [71]. These results suggest for M 4 and M 4 the expected formulas

# M 4(Fq) = q9 + q8 + q7 − q6,

# M 4(Fq) = q9 + 4 q8 + 13 q7 + 32 q6 + 50 q5 + 50 q4 + 32 q3 + 13 q2 + 4 q + 1.

For q = 2 this can be confirmed using counts of Xarles [75].

5. Modular Forms Appear

As noted above, we cannot expect that # M g,n(Fq) is always polynomial in q
for g ≥ 1. This can be illustrated for the case g = 1, as we will do now. But instead of
considering # M 1,n(Fq), to simplify things we look at it from a different perspective.

For each elliptic curve E = (C, P1) defined over Fq we have by Hasse #E(Fq) =
q+1−α− ᾱ with α = α(E) an algebraic integer with |α| = √

q. Thus we can consider
for a non-negative integer n

σn(q) := −
∑
E

αn + αn−1ᾱ + · · ·+ ᾱn

#AutFq (E)
,

where we sum over all elliptic curves E defined over Fq up to Fq-isomorphism and the
α depend on E.

For example, above we gave a frequency list for p = 3 which immediately provides
the values of σn(3). It is easy to see that σn(q) = 0 for n odd, since if α, ᾱ occurs, then
−α,−ᾱ occurs for a twist with the same factor 1/#AutFq

. Working out the frequency
lists for q = 2, 3, 5, 7 produces the following table.

n 0 2 4 6 8 10 12 14 16

σn(2) −2 1 1 1 1 −23 1 217 −527

σn(3) −3 1 1 1 1 253 1 −3347 −4283

σn(5) −5 1 1 1 1 4831 1 52111 −1025849

σn(7) −7 1 1 1 1 −16743 1 2822457 3225993
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If we subtract the ubiquitous 1 we recognize that for p = 2, 3, 5, 7

σ10(p) = 1 + τ(p),

where
∆ =

∑
n≥1

τ(n)qn = q − 24 q2 + 252 q3 + · · · = q
∏
m≥1

(1− qm)24 (0)

is the well-known normalized cusp form of weight 12 on SL(2,Z). And similarly, we
recognize σ14(p) (resp. σ16(p)) as 1 + a(p) with a(p) the pth Fourier coefficient of the
normalized cusp form q +

∑
n≥2 a(n)qn that generates the space S16 of cusp forms of

weight 16 (resp. S18 of weight 18) on SL(2,Z). Such counts were done by Birch [10]
in the 1960s. He gave the formulas equivalent to those of σk for 2 ≤ k ≤ 10.

In general we have for even k > 0

σk(p) = Tr(Tp, Sk+2) + 1

with Sk = Sk(SL(2,Z)) the space of cusp forms of weight k on SL(2,Z) and Tp the
Hecke operator at p. This is an aspect of the Eichler-Shimura-Deligne relation to
which we now turn.

The expression σk(p) calculates cohomological information. The moduli space A 1 =

M 1,1 carries a local system V = R1π∗(Qℓ) of rank 2 with π : X → A 1 the universal
elliptic curve. The fiber of this local system over [E] is the cohomology H1

et(E,Qℓ).
This local system gives rise for each k > 0 to a local system Vk = Symk(V). As

it turns out, for a prime power q the expression σk(q) equals the trace of Frobenius
Fq on the compactly supported cohomology of Vk. The contribution of an elliptic
curve E/Fq to σk(q) is minus the trace of Frobenius Fq on Symk(H1

et(E ⊗ Fq,Qℓ)).
A classical result of Eichler-Shimura ([68]) says that for even k > 0

H1
c ( A 1(C),Vk ⊗ C) ∼= Sk+2 ⊕ Sk+2 ⊕ C, (1)

and this displays the mixed Hodge structure on H1
c ( A 1(C),Vk). Deligne showed in

1968 in [17] that this result has an analogue for étale ℓ-adic cohomology. Moreover,
one can relate Frobenius there to the Hecke operator. The result may be summarized
as follows.

Theorem 5.1. – Let k be an even positive integer and p a prime. Then σk(p) can
be expressed in terms of the trace of the Hecke operator Tp on the space of cusp
forms Sk+2 of weight k + 2 on SL(2,Z) as

σk(p) = Tr(Tp, Sk+2) + 1.

This explains the experimental observation given above.
Thus we know σk(p) if we know the trace of the Hecke operator Tp. And similarly,

for prime powers q, but the formula is slightly different as Fq does not correspond
exactly to Tq. But we can turn this around and use counting of elliptic curves over
finite fields to calculate traces of Hecke operators. That one does not encounter this,
is because we have a closed formula, the Eichler-Selberg formula, for the traces of the
Hecke operators on the spaces of cusp forms on SL(2,Z).
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In order to go back to the (cohomology of the) spaces M 1,n that we started with,
one may use a relation between # M 1,n(Fq) and the numbers σk(q) for k < n. This
relation can be beautifully expressed by using a formula of Getzler (see [36, p. 200])

Proposition 5.2. – (Getzler’s formula)

# M 1,n(Fq)

n!
= residue at 0 of the formal expression(
q − t− q/t

n

) ∞∑
k=1

(
σk(q)

q2k+1t2k − 1

)
(t− q

t
) dt.

We thus see that # M 1,n(Fq) in general is not a polynomial in q for n ≥ 11. And
indeed, the modular form ∆ shows up in the formulas for n = 11;

# M 1,11(Fp) =p11 − 330 p9 + 4575 p8 − 30657 p7 + 124992 p6 − 336820 p5 + 584550 p4

− 406769 p3 − 865316 p2 + 2437776 p− 1814400− τ(p),

# M 1,11(Fp) =p11 + 2037 p10 + 213677 p9 + 4577630 p8 + 30215924 p7 + 74269967 p6+

30215924 p5 + · · ·+ 2037 p + 1− τ(p).

Note that because of Poincaré duality the expression # M 1,11(Fp) possesses a sym-
metry. The complicated formulas for # M 1,n(Fq) also explain why we preferred to
deal with the function σk(q) instead of those for # M 1,n(Fq).

The formulas for σk(q) and # M 1,n(Fq) are displaying one aspect of the cohomol-
ogy of the local systems Vk on A 1. There is a motivic form of this that incorporates
more aspects. Scholl showed in [65] the existence of a motive S[k + 2] associated to
the space Sk+2 of cusp forms on SL(2,Z). Then the Eichler-Shimura-Deligne relation
takes the form for k > 0

H1
c ( A 1,Vk) = S[k + 2] + 1

and this incorporates both (1) and Deligne’s generalization for ℓ-adic étale cohomol-
ogy. The relation between the Hecke operator Tp and geometric Frobenius Fp then
implies

1 + Tr(Fp, S[k + 2]) = σk(p).

6. Genus Two

For genus 2 the Torelli map t2 : M 2 → A 2 is an embedding with image the open
subset whose complement is A 1,1, the locus of principally polarized abelian surfaces
that are products of elliptic curves with the product polarization. It is natural to look
for an analogue of the g = 1 formula

Tr(Tp, Sk+2) = −1 + σk(p).

As we saw in the preceding section, the contribution of an elliptic curve E/Fq

to σk(q) is minus the trace of Frobenius Fq on Symk(H1
et(E⊗Fq,Qℓ)). For an abelian
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surface X over a finite field the 4-dimensional vector space H1
et(X,Qℓ) (with ℓ prime

to the characteristic) is provided with a non-degenerate symplectic pairing

H1
et(X,Qℓ)×H1

et(X,Qℓ) → Qℓ(−1),

which corresponds to the Weil pairing if one identifies H1
et(X,Qℓ) with the dual of

the ℓ-adic Tate module of X. Thus the natural analogue of Symk is an irreducible
representation Ra,b of Sp(4,Q) with highest weight a ≥ b ≥ 0.

We recall that the irreducible representations of Sp(4,Q) are parametrized by the
pairs (a, b) of integers with a ≥ b ≥ 0, and Ra,b occurs in Syma−b(V ) ⊗ Symb(∧2V )

with V = R1,0 the standard representation of Sp(4,Q). We refer to [29] for the
representation theory.

For a smooth projective curve C of genus 2 over Fq there exist by Weil algebraic
integers α1 and α2 of absolute value √q such that

#C(Fqn) = qn + 1− αn
1 − αn

1 − αn
2 − αn

2 for all n ∈ Z≥1.

The trace of Frobenius on Ra,b(H
1
et(X ⊗ Fq,Qℓ)), with X the Jacobian of C, can be

expressed by certain symmetric expressions (Schur functions) in these αi and αi.
Summing this over all principally polarized abelian surfaces X over Fq up to iso-

morphism over Fq, including the abelian surfaces that are products of elliptic curves,
yields a number σa,b(q) that generalizes the σk(q) of g = 1.

Around 2002 Carel Faber and I embarked on a program to find the analogue of
Theorem 5.1 for g = 2. What we did ([25]) was counting curves of genus 2 over
finite fields; for given field Fq with q ≤ 37 (later q < 200) we compiled a frequency
list of possible Weil polynomials as the curve ran through all curves of genus 2 up to
isomorphism over Fq (with factor 1/#AutFq

(C)) and added the contribution from the
degenerate curves (corresponding to products of elliptic curves). Thus we calculated
σa,b(q) and then interpolated the outcome by polynomials in q and known motives,
like that of ∆. When this no longer worked we encountered new modular forms.

The modular forms that are expected to appear here are Siegel modular forms of
degree 2. To explain this notion we introduce the Siegel upper half space of degree g

by
Hg = {τ ∈ Mat(g × g,C) : τ = τ t, Im(τ) > 0}.

The symplectic group Γg = Sp(2g,Z) is the automorphism group of the Z-module of
rank 2g generated by a basis e1, . . . , eg and f1, . . . , fg and symplectic form ⟨, ⟩ with
⟨ei, ej⟩ = 0 = ⟨fi, fj⟩ and ⟨ei, fj⟩ = δij , the Kronecker δij . Using this basis an element
γ ∈ Sp(2g,Z) can be written as a 2×2 matrix of g×g matrices of integers. An element

γ =

(
a b

c d

)
acts on Hg by τ 7→ (aτ + b)(cτ + d)−1.

We now fix a finite-dimensional irreducible complex representation

ρ : GL(g) → W.
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A Siegel modular form of weight ρ and degree g > 1 is a holomorphic map f : Hg → W
with

f((aτ + b)(cτ + d)−1) = ρ(cτ + d)f(τ) for all

(
a b

c d

)
∈ Sp(2g,Z).

For g = 2 we take as representation the irreducible GL(2)-representation

W = Symj(St)⊗ det(St)⊗k

with St the standard representation and j and k integers with j ≥ 0. We call the
weight (j, k). We have the notion of cusp forms and Sj,k = Sj,k(Γ2) denotes the
vector space of cusp forms of weight (j, k). For j = 0 we are dealing with scalar-
valued Siegel modular forms. We also have an algebra of operators, the Hecke algebra
with operators Tp for every prime p; see for example [13] and the references there.
Scalar-valued Siegel modular forms of degree 2 were studied by Igusa in the 1960s
[41, 42]. Igusa determined the ring of scalar-valued modular forms of degree 2. Satoh
was one of the first to study vector-valued ones [64].

Let us note that one may also express Siegel modular forms of degree 2 as sections of
a bundle. If E is the Hodge bundle on A 2 whose fiber over [X] is the 2-dimensional
space H0(X, Ω1

X), then a Siegel modular form of weight (j, k) can be viewed as a
section of Symj(E)⊗ det(E)⊗k.

In 2002 using the frequency counts of Weil polynomials of genus 2 curves over
finite fields Carel Faber and I found experimentally for (a, b) ̸= (0, 0) and a + b even,
a formula that expresses the trace of the Hecke operator Tp on the space Sa−b,b+3

of cusp forms of weight (a− b, b + 3) in terms of the expressions σa,b(p) obtained by
counting. The formula has the following form, see [25].

Formula 6.1. – Let a, b be non-negative integers with a+b even and positive. The trace
of the Hecke operator Tp on the space Sa−b,b+3 of degree 2 Siegel modular cusp forms
of weight (a− b, b + 3) can be expressed in the counting function σa,b(p) by

Tr(Tp, Sa−b,b+3) = σa,b(p) + ca,b(p),

where the ‘correction term’ ca,b(p) equals

sa−b+2 − sa+b+4 σa−b+2(p) pb+1 +

{
σb+2(p)

1− σa+3(p)

with sk = dimSk(SL(2,Z)).

This term ca,b(p) (and more generally a term ca,b(q)) is the analogue of the term 1

for g = 1. Note that the correction involves only g = 1 data.
This conjectured Formula 6.1 for ca,b(q) was later proved by Weissauer (2009) [74].

For this one needs the Eisenstein cohomology; we refer to [32] and to Harder [38] and
Petersen [58] for the local systems of irregular highest weight.
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Counting points over finite fields thus provides a very efficient way to calculate
traces of Hecke operators on cusp forms of degree 2. If you have counted for one
prime p you know Tr(Tp, Sj,k) for all j, k with k ≥ 3. Similarly for prime powers q.

We illustrate this with two examples where dim Sj,k = 1; then the trace of Tp equals
the eigenvalue. Eigenvalues for Tp are denoted by λ(p). One can calculate eigenvalues
of a modular form which is an eigenform under the Hecke algebra if one knows the
Fourier expansion. In general it is difficult to give such Fourier expansions and also
very laborious to calculate the eigenvalues. Except for very few cases, such eigenvalues
were not known for vector-valued forms or for scalar-valued forms of larger weight.

The two examples are illustrated by tables of Hecke eigenvalues. The first table
gives eigenvalues λ(p) of Tp on a generator of S8,8.

p λ(p) on S8,8

2 26 · 3 · 7
3 −23 · 32 · 89
5 −22 · 3 · 52 · 132 · 607
7 24 · 7 · 109 · 36973
11 23 · 3 · 4759 · 114089
13 −22 · 13 · 17 · 109 · 3404113
17 22 · 3 · 17 · 41 · 1307 · 168331
19 −23 · 5 · 74707 · 9443867

The next table deals with the first non-zero scalar modular form of odd weight 35.
This form χ35 ∈ S0,35 is one of the generators of the ring of scalar-valued Siegel
modular forms of degree 2 as described by Igusa [41].

p λ(p) on S0,35

2 −25073418240

3 −11824551571578840

5 9470081642319930937500

7 −10370198954152041951342796400

11 −8015071689632034858364818146947656

13 −20232136256107650938383898249808243380

17 118646313906984767985086867381297558266980

19 2995917272706383250746754589685425572441160

23 −1911372622140780013372223127008015060349898320

29 −2129327273873011547769345916418120573221438085460

31 −157348598498218445521620827876569519644874180822976

37 −47788585641545948035267859493926208327050656971703460
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Note that the parabolic shape of the figures in this diagram nicely reflects Deligne’s
result on the absolute values of the eigenvalues of Frobenius [17, 18].

For g = 1 knowing the Hecke eigenvalues of a normalized eigenform means knowing
the Fourier expansion of the form. That is no longer the case for g > 1.

These results on the Hecke eigenvalues of genus 2 forms stimulated Harder to
formulate a precise conjecture on congruences between elliptic modular forms and
Siegel modular forms, see [13]. For a long time he had suspected that there should be
such conguences. Our work provided strong evidence for this conjecture. For me such
results beautifully show the use of counting points over finite fields.

With Bergström and Faber we extended this in [6] to g = 2 and level 2 (and p ̸= 2)
by taking into account ramification points of the genus 2 curve y2 = f for f of de-
gree 6. The symmetric group S6 acts and we can count equivariantly. The equivariant
formulas are somewhat complicated. These were later proved to be correct by Rösner
[63] using the theory of automorphic representations.

Results on traces of Hecke operators obtained by counting points of curves over
finite fields can be found on the website smf.compositio.nl.

As a final remark, we point out that as soon as cusp forms appear we will not have
polynomial formulas for # M 2,n(Fq). In particular, for n = 10 and Sn-representation
λ = [110] we see modular forms appear. The dimension of Sj,k grows fast, for fixed j
cubically in k.

7. Genus Three

When one goes from genus 2 to 3 the complexity increases. One aspect of this is that
for genus 3 the Torelli map t : M 3 → A 3 is a morphism of stacks of degree 2. Indeed,
every principally polarized abelian variety X of dimension 3 has an automorphism
−1X of order 2 which acts by sending an element to its inverse in the group, but the
generic curve of genus 3 does not have such an automorphism. A hyperelliptic curve
has such an involution and it induces the automorphism −1X on its Jacobian. We
thus can interpret M 3 → A 3 as a double cover ramified along the (closure of) the
hyperelliptic locus.

Igusa showed in [42] that the closure of the locus of hyperelliptic Jacobians in A 3 is
the zero divisor of a Siegel modular cusp form χ18 of degree 3 and weight 18. One can
view χ18 as a section of the line bundle det(E)⊗18 with E the rank 3 Hodge bundle
on M 3. It allows us to view M 3 as a double cover of A 3 obtained by taking a
square root χ9 of χ18. Ichikawa showed in 1995 that χ9 is a Teichmüller modular form
of weight 9, that is, a section of det(E)⊗9 on M 3, [40]. An algebraic way to construct
it is by observing that there is a natural morphism of locally free sheaves of rank 6

Sym2(E) −→ π∗(ω
⊗2
C/ M 3

)

with π : C → M 3 the universal curve, obtained by multiplying differential forms. This
morphism is an isomorphism outside the hyperelliptic locus; taking the determinant
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gives a map det(E)⊗4 → det(E)⊗13, hence a section of det(E)⊗9 that vanishes on the
hyperelliptic locus.

When suitably normalized this form gives the obstruction of an indecomposable
principally polarized abelian threefold X for being a Jacobian of a curve; it is expressed
by saying that χ18 assumes a square value at [X]. We refer to the paper by Ritzenthaler
[66] in the Serre book [67].

Since there are no scalar-valued Siegel modular forms (on the full group Sp(6,Z))
of odd weight, the existence of the Teichmüller form χ9 shows that M 3 carries more
cohomology than A 3.

In joint work with Bergström and Faber [7] we found the generalization to g = 3 of
the formulas for g = 1 and g = 2. For X a principally polarized abelian threefold over
a finite field Fq we consider H1(X,Qℓ) with ℓ prime to q. For varying X it defines
a local system V of rank 6 on A 3. The space H1(X,Qℓ) carries a non-degenerate
symplectic pairing

H1(X,Qℓ)×H1(X,Qℓ) → Qℓ(−1).

For each irreducible representation Ra,b,c of Sp(6,Q) of highest weight (a, b, c) with
a ≥ b ≥ c we can form a local system Va,b,c with fiber Ra,b,c(H

1
et(X,Qℓ)).

The trace of Frobenius on the cohomology

Ra,b,c(H
1
et(X ⊗ Fq,Qℓ))

for ℓ ̸= p is a symmetric expression (Schur polynomial) in the roots of the Weil
polynomial of X. Summing this over all X up to isomorphism over Fq gives a num-
ber σa,b,c(q). This number generalizes σa(q) for g = 1 and σa,b(q) for g = 2.

For g = 1 and g = 2 we saw the formulas

Tr(Tp, Sa+2(Γ1)) = σa(p)− 1, Tr(Tp, Sa,b(Γ2)) = σa,b(p) + ca,b(p),

with the sigmas obtained by counting and −1 and ca,b(p) a correction term. Now we
deal with Siegel modular forms of degree 3. We found experimentally a formula for
the trace of the Hecke operator Tp on the space of cusp forms Si,j,k = Si,j,k(Γ3). Note
that the weight of a modular form on Γ3 = Sp(6,Z) is now given by a triple (i, j, k).
Scalar-valued modular forms correspond to i = j = 0.

The formula of [7] takes the form

Tr(Tp, Sa−b,b−c,c+4) = σa,b,c(p) + ca,b,c(p),

where σa,b,c(p) is the trace of Frobenius on the compactly supported cohomology of
the local system Va,b,c over A 3 ⊗ Fp and the correction term ca,b,c(p) is given by

−σa+1,b+1(p) + σa+1,c(p)− σb,c(p)− ca+1,b+1(p)σc+2(p)

+ ca+1,c(p)σb+3(p)− cb,c(p)σa+4(p) + ca+1,b+1(p)− ca+1,c(p) + cb,c(p).

The correction term is expressed in genus 2 and 1 terms and its form was suggested
by formulas in [32].

So far, the formula has not yet been proved. But it works perfectly. That is, there
is overwhelming evidence that it produces indeed the right values of the traces of
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the Hecke operators on the spaces of cusp forms. Not only that, it also allows us to
see the contributions of ‘lifts’, modular forms of degree 1 and 2. After identifying
these, one is left with the genuine Siegel modular forms of degree 3 that correspond
to 8-dimensional Galois representations in the cohomology of a local system on A 3.
Genuine means that these modular forms do not belong to g = 1 and g = 2. Details
can be found in [7].

We refer to the website smf.compositio.nl where results on the traces of Siegel
modular forms of degree 3 thus obtained can be found. So counting points on curves
over finite fields tells us about Siegel modular forms. Here are two examples. The
spaces S6,3,6 and S2,4,8 are 1-dimensional and the next tables give the eigenvalues
λ(p) of the Hecke operators Tp on these spaces.

p λ(p) on S6,3,6 λ(p) on S4,2,8

2 0 9504

3 −453600 970272

4 10649600 89719808

5 −119410200 −106051896

7 12572892800 112911962240

8 0 1156260593664

9 −29108532600 5756589166536

11 −57063064032 44411629220640

13 −25198577349400 209295820896008

16 341411782197248 −369164249202688

17 −107529004510200 1230942201878664

19 1091588958605600 51084504993278240

If we go to M 3 instead there is more cohomology. It is known that the cohomol-
ogy of local systems on A 3 can be described in terms of Siegel modular forms (of
degree ≤ 3). But for M 3 it is not known what automorphic forms show up in the
cohomology of local systems on M 3. It is a mystery which modular forms or motives
we will encounter. But we can use counting points over finite fields to try to explore
the first cases. For the cohomology of M 3 we know that we are dealing with motives
or modular forms ‘of level one’, or in other words, with everywhere good reduction.

An example is provided by the local system V11,3,3 whose fiber for a curve C is the
irreducible representation of highest weight (11, 3, 3) on H1

et(C,Qℓ), see [16, p. 34].
We see a 6-dimensional motive of weight 23 appearing in the cohomology with Hodge
degrees 0, 5, 9, 14, 18, 23. It cannot come from a Siegel modular form of degree 3. It
should correspond to a Teichmüller modular form of weight (8, 0, 7), that is, a section
of Sym8(E)⊗ det(E)⊗7 on M 3. We can construct such a Teichmüller modular form.
It is fascinating to be able to explore this cohomology and these motives simply by
counting points on curves over finite fields.
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8. Other Cases

The fact that a moduli space of curves like M g for g = 1, 2, 3 maps generically
finitely to a Shimura variety helps a lot for understanding the cohomology of local
systems, and hence understanding the behavior of quantities like # M g,n(Fq). Things
become much harder if one does not know a priori which modular forms or motives
may show up. The case of M 4 and M 4,n illustrates this. We do not know what
motives or modular forms we can expect. Again, for the cohomology of M g,n we
know that we are dealing with motives or modular forms ‘of level one’, or in other
words, with everywhere good reduction. As far as I know, nobody has an idea of the
nature of the zeta function of M g for general g. Results of Chenevier, Lannes and
Renard on motives of level 1 and small rank [14, 15] can help in identifying the results
for low values of g and n.

Given the absence of knowledge what answer to expect in general, it is natural
to first look at cases where moduli spaces of curves are closely related to arithmetic
quotients. In 1964 Shimura gave a list in [69] of arithmetic quotients of the ball that
appear as moduli spaces of curves. Rohde extended this list in [62] and Moonen proved
his list is complete [50]. In these cases one can count and hope to be able to interpret
the result in terms of modular forms for the arithmetic group in question.

One case of Shimura’s list deals with the family of Picard curves. These are curves
of genus 3 that are cyclic Galois covers of degree 3 of the projective line; these can
be given by an equation y3 = f with f a polynomial of degree 4 with non-zero
discriminant. Picard studied these curves in the late 19th century. The Jacobians of
these curves have multiplication by the ring of integers OF of F = Q(

√
−3) and the

moduli space is a so-called Picard modular surface. In this case this modular surface
is a ball quotient associated to a discrete subgroup of the group of unitary similitudes
U(2, 1,Q(

√
−3)).

In a long term project with Bergström ([8]) we have counted points on such curves
over finite fields and using this we arrived heuristically at a complete formula for
the traces of Hecke operators on the corresponding modular forms in terms of these
counts over finite fields.

The formula expresses the trace of a Hecke operator Tν for ν a prime of OF of norm
congruent to 1 modulo 3 on a space of cusp forms in terms of counts on curves over
finite fields; more precisely, it expresses it in terms of an analogue of the functions σk

and σa,b obtained by counting that we saw above, and a correction term.
But the results provided further insights. A careful analysis of the results allowed

us to distill from this the traces of the Hecke operators on the spaces of genuine Picard
modular forms, that is, the modular forms that correspond to Galois representations
of degree 3.

The results of [8] are conjectural, but as in the case g = 3, it works perfectly. Here
the weight of a modular form is a pair (j, k) of non-negative integers, the case j = 0
corresponding to scalar-valued modular forms.
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We counted for primes p ≡ 1(mod 3) with p ≤ 43. For these primes we can predict
the trace of the Hecke operator Tν , for ν a prime of OF with norm p, on the space of
cusp forms of given weight (j, k) and also on the space of genuine cusp forms of given
weight (j, k) for any weight (j, k) with k ≥ 3.

We illustrate this by one example, but must refer to [8] for details. It concerns
a 1-dimensional space of cusp forms of weight (0, 33) with a character of order 2.
The Hecke eigenvalues of a generator of this space, that we found, agree with a
congruence modulo 17093 of the type of congruences predicted by Harder (see Harder’s
contribution to [13]).

If p is a prime with p ≡ 1 mod 3 then p splits in OF as p = νpν̄p with
νp ≡ ν̄p ≡ 1(mod3). The Hecke eigenvalues λνp

that we found are given in the next
table. There ρ denotes a third root of 1.

p λνp

7 −50515470688848 + 19722585570921ρ

13 −641186317588670376− 28497381958498509ρ

19 −207202261228535219325− 223900464575892946149ρ

31 −72536002932093668516175− 511708107362090202586656ρ

37 −15066567237821284922757576− 12800018433999723562677897ρ

43 2263923296934966075769869− 61311985796827137336770952ρ

These eigenvalues λνp
satisfy the congruence

λνp ≡ ν̄p
32 + (p31 + 1)νp (mod 17093),

as the reader may verify. We refer to [8, Section 14].

Besides this case we intend to treat other cases of Shimura’s list. But one may decide
to go further into unknown territory and count for other families of curves not closely
related to Shimura varieties. One obvious case are the families H g of hyperelliptic
curves of given g and their variants H g,n. Here the case of characteristic 2 plays a
special role. Bergström gives in [4] recursive formulas in the genus for the equivariant
number of points of H g,n over a fixed finite field. This reduces the problem for fixed
n to the cases of low genera. We refer to [4] for more details.

9. Stratifications

The moduli spaces M g and A g admit stratifications. Some of these stratifications
work in all characteristics, other ones are special to positive characteristic.
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Maybe the best known stratification is by automorphism group. Here we see con-
siderable differences between characteristic zero and positive characteristic. The well-
known Hurwitz bound on the order of the automorphism group of a curve in charac-
teristic 0 is no longer true in positive characteristic.

For some low genera we know explicit stratifications of M g(C) by automorphism
group. It would be nice to have such explicit stratifications also for M g(Fp) and
for M g(Fq).

Another example of a stratification of M g is given by gonality. Here gonality of a
curve C over a field k is the smallest degree of a morphism C → P1 over k.

The gonality of a curve C defined over Fq puts clear restrictions on the number
of Fq-rational points of C. Thus gonality may be relevant for the study of the invari-
ant Nq(g), the maximum number of rational points on a smooth projective curve of
genus g over Fq, that plays such an important role in Serre’s lectures notes [67].

In [31] I asked the question: what is the maximum number of rational points on
a curve of genus g and gonality γ defined over Fq? It suggests to study a variant
of Nq(g); namely the invariant Nq(g, γ): the maximum number of Fq-rational points
on a (smooth projective) curve over Fq of genus g and gonality γ.

Recently, this question was taken up by X. Faber and Grantham for small q and g

in [26, 27]. It is well-known that the gonality over a finite field is at most g+1, a result
due to F.K. Schmidt. Moreover, if #C(Fq) > 0 then γ(C) ≤ g. Indeed, for g ≥ 2 if
P ∈ C(Fq) then h0(K − (g − 2)P ) ≥ 2 by Riemann-Roch, providing a linear system
of degree g.

But if #C(Fq) = ∅, then the gonality can be g + 1. For example, the curve C of
genus 3 defined over F2 given by

x4 + y4 + z4 + x2y2 + x2z2 + y2z2 + x2yz + xy2z + xyz2 = 0

in P2 has no rational points and it is not difficult to show that it has gonality 4.
Here is a table with some of their results (taken from [27]). The cross × indicates the
absence of curves over Fq with given (g, γ).

g γ N2(g, γ) N3(g, γ) N4(g, γ)

3 2 6 8 10

3 3 7 10 14

3 4 0 0 0

4 2 6 8 10

4 3 8 12 15

4 4 5 10 13

4 5 0 0 ×
5 2 6 8 10

5 3 8 12 15

5 4 9 13 17
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5 5 3 4 5

5 6 × × ×

Faber-Grantham conjecture in [27] that an optimal curve has gonality at most
⌊ g+3

2 ⌋ and that for fixed γ ≥ 2 and fixed q and for g large one has Nq(g, γ) = γ(q+1).
Together with Howe they show for g ≥ 5 in [28] that over a finite field gonality is at
most g.

In a recent paper [72] Floris Vermeulen shows by a construction of curves in a toric
variety the following result.

Theorem 9.1. – For fixed q and γ with γ ≤ q+1 we have limg→∞Nq(g, γ) = γ (q+1).

10. Characteristic p stratifications

There are stratifications on the moduli of curves and abelian varieties that are
special to positive characteristic. The first well-known case where this phenomenon
appears is the case of elliptic curves. Elliptic curves in characteristic p > 0 come
into two sorts: ordinary or supersingular. A formula of Deuring gives the number
of supersingular curves. The number of isomorphism classes of supersingular elliptic
curves over Fp equals

hp =
p− 1

12
+

(
1− (

−3

p
)

)
1

3
+

(
1− (

−4

p
)

)
1

4
.

But a stacky interpretation gives the more elegant formula∑ 1

#Aut(E)
=

p− 1

24
,

where the summation is over all isomorphism classes of supersingular elliptic curves
defined over Fp. This stratification on A 1 ⊗ Fp generalizes for higher g to a stratifi-
cation on A g ⊗ Fp in two ways:

1. The Newton Polygon stratification (NP).

2. The Ekedahl-Oort stratification (E–O).

The simplest examples of strata in both stratifications are the p-rank strata. If
X/k is an abelian variety over a field k of characteristic p > 0 and X[p] denotes the
kernel of multiplication by p on X with #X[p](k) = pf then the p-rank of X is f .
The (closed) p-rank strata are

Vf = {[X] ∈ A g(k) : f(X) ≤ f}.

Koblitz showed already in 1975 in [46, Thm. 7] that this gives a stratification with
codim(Vf ) = g − f in A g ⊗ Fp.
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The study of these stratifications was pursued by Oort and has become a very
active area of research. I summarize a few salient features before discussing their
relevance for curves over finite fields.

The first one, the Newton Polygon stratification, extends the p-rank stratification
and was introduced by Grothendieck and Katz. They showed that Newton polygons
can be used to define a stratification. This stratification on A g⊗Fp was much studied
by Oort, who determined basic properties, see [55].

In order to define the Newton Polygon stratification, one takes for a principally
polarized abelian variety X defined over Fq the Newton polygon of the action of
geometric Frobenius Fq on the cohomology group H1

et(X ⊗Fq,Qℓ), or more generally
the Newton polygon of the p-divisible group of X. The Newton polygon is a symmetric
polygon starting at (0, 0) and ending at (2g, g), lying below the line with slope 1/2

and with integral vertices (break points). Here symmetric means that if slope s occurs,
then 1− s occurs with the same multiplicity.

For principally polarized abelian varieties all such symmetric polygons appear and
thus there are g(g − 1)/2 + 2 strata in the NP stratification on A g ⊗ Fp. The codi-
mensions of the strata are known by Oort [55]. The NP stratification depends only
on the isogeny class of the abelian variety.

The most degenerate NP stratum is the supersingular stratum corresponding to
slope 1/2. For g = 1 and g = 2 the p-rank zero stratum V0 coincides with the
supersingular stratum, but not for g ≥ 3.

The second stratification is due to Ekedahl and Oort, see [54, 56]. For the Ekedahl-
Oort stratification one looks at the isomorphism type of the group scheme X[p] to-
gether with Frobenius F and Verschiebung V . Alternatively, one can look at the de
Rham cohomology H1

dR(X) and at the relative position of the kernels ker(F ) and
ker(V ), as done in [30]. These are totally isotropic subspaces in the space H1

dR(X),
which is a non-degenerate symplectic space by the Weil pairing. This stratification
possesses 2g strata. I showed in 1994 that the strata Yµ are indexed by Young dia-
grams, or equivalently, by tuples µ = [µ1, . . . , µr] with 0 ≤ r ≤ g and µi > µi+1. In
fact, they can be interpreted as the degeneration loci of maps between vector bundles,
see [30].

The largest open stratum is the locus of ordinary abelian varieties. The codimension
of Yµ is

∑
i µi. The stratification can be extended to good toroidal compactifications

of Faltings-Chai type.

The Ekedahl-Oort and the Newton Polygon stratification share a number of strata:
the p-rank strata. The E-O strata are in general not preserved by isogenies and deal
with more subtle properties. The dimensions of the E-O strata are known. There
has been a lot of research on this stratification, with a finer structure provided by a
foliation, for example see [57].
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11. Cycle Classes

The most degenerate E-O stratum is the superspecial locus. An abelian variety
is superspecial if it isomorphic to a product of supersingular elliptic curves (as an
unpolarized abelian variety). This superspecial locus has dimension 0. All its points
are rational over Fp2 . The stacky interpretation of Deuring’s formula allows a gener-
alization. It was given by Ekedahl ([22]).

Theorem 11.1. – The number of superspecial abelian varieties is given by∑
X

1

#Aut(X)
= (p− 1)(p2 − 1) · · · (pg + (−1)g) p(g),

where the sum is over the isomorphism classes of principally polarized superspecial
abelian varieties X over Fp and p(g) is the constant

p(g) = (−1)g(g+1)/22−g ζ(−1)ζ(−3) · · · ζ(1− 2g),

where ζ denotes the Riemann zeta function.

This constant p(g) is a proportionality constant related to the volume of Sp(2g,Z)\Hg.
Here is a little table.

g 1 2 3 4

p(g) 1/24 1/5760 1/2903040 1/1393459200

The formula of Ekedahl can be interpreted as a formula for the degree of the class of
the 0-dimensional superspecial stratum. As such it allows a far reaching generalization:
the cycle classes of the E-O strata are known. The interpretation of these strata as
degeneracy classes of maps between vector bundles allows their calculation. We refer
to [30, 23].

For example, for the p-rank stratum Vf on A g ⊗ Fp the cycle class is

[Vf ] = (p− 1)(p2 − 1) · · · (pg−f − 1) λg−f ,

where λi is the ith Chern class of the Hodge bundle E. This formula holds on A g⊗Fp

but can be extended to good toroidal compactifications Ã g ⊗ Fp. Such formulas can
be seen as a generalization of Deuring’s formula. Indeed, for g = 1 the locus V0 is
the locus of supersingular elliptic curves and it has class (p − 1)λ1. To connect it
with Deuring’s formula, observe that the modular form ∆, given in (0) in Section 3,
represents a section of det(E)12 and its zero divisor, which represents 12 λ1, is the cusp
of Ã 1, which represents a physical point with multiplicity 1/2 (since the degenerate
elliptic curve it represents has #Aut = 2). Thus we find deg(V0) = (p− 1)/24.

An intuitive explanation of the formula for the cycle class of the p-rank locus Vf

may be given as follows. If an abelian variety X of dimension g has p-rank g, then its
p-kernel X[p] contains the infinitesimal group scheme µg

p. Choosing a basis gives us
g tangent vectors at the origin of X. The (open) p-rank locus Vf − Vf−1 is the locus
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where f sections survive. Chern classes measure the independence of sections. So it
is natural that the (g − f)th Chern class of the Hodge bundle appears.

For the NP stratification the cycle classes of the strata are in general not known
for strata that do not occur as E-O strata. But the class of the supersingular locus S3

for g = 3, which is not an E-O stratum, is known; its class is

[S3] = (p− 1)2(p3 − 1)(p4 − 1)λ1λ3,

see [30, Thm 11.3]. We intend to come back to the calculation of such cycle classes in
the near future.

12. Strata on M g ⊗ Fp

Via the Torelli morphism these two stratifications on A g⊗Fp induce stratifications
on M g⊗Fp. But here questions abound. First: what are the dimensions of the strata?
In particular: which strata are non-empty?

A first example is g = 2. Here M 2 is an open subset of A 2. The cycle classes give
information. To avoid the stacky aspect we may look at the moduli space A 2[n] of
level n. This space is for n ≥ 3 a variety and we can consider for p not dividing n the
cover

A 2[n]⊗ Fp −→ A 2 ⊗ Fp.

It is a Galois cover of degree r(n) = #Sp(4,Z/nZ).
The supersingular locus consists of a number of projective lines, so-called Moret-

Bailly lines. Indeed, every supersingular principally polarized abelian surface can
be obtained as a quotient E2/j(αp), where E is a fixed supersingular elliptic curve
over Fp, the product E2 is provided with the polarization Frobenius F , and where
j : αp ↪→ α2

p
∼= E2[F ] is an embedding of the group scheme αp into the kernel E2[F ]

of F . These embeddings are parametrized by a P1 and it is easy to see that the deter-
minant of the Hodge bundle of the resulting family over P1 has degree p−1. We know
the class of the supersingular locus [V0] = (p−1)(p2−1)λ2 and since the degree of λ1

on each line is p − 1 and deg(λ1λ2) = 1/5760, we find (p2 − 1)r(n)/5760 projective
lines.

We also know that the degree of the superspecial locus is (p− 1)(p2 +1)r(n)/5760.
This fits, since on each line we have p2 + 1 points that are rational over Fp2 and so
we see that through each superspecial point p + 1 lines pass.

So the supersingular locus consists of (p2 − 1)r(n)/5760 projective lines meeting
in (p− 1)(p2 + 1)r(n)/5760 superspecial points. But only

(p− 1)(p− 2)(p− 3)
r(n)

5760

of these lie in M 2[n]⊗Fp, as one sees by subtracting those that lie in the complement
A 1,1[n]⊗Fp. This simple example shows the use of the cycle classes and agrees with
results in [44].
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In particular, we see that there are no such superspecial points on M 2⊗Fp for p = 2
and p = 3. Of course, this is related to the well-known fact that there are no maximal
curves of genus 2 over F4 and F9.

The formula just given illustrates that strata can be empty on M g ⊗ Fp. But the
p-rank strata on M g ⊗ Fp have the expected dimension as Faber and I showed.

Theorem 12.1 ([24]). – For every p the locus in M g ⊗ Fp of curves with p-rank ≤ f
is pure of dimension g − f .

The same idea can be applied to other cases, see [2]. Recently, there has been a lot
of activity trying to investigate the dimensions of NP and E-O strata on M g ⊗ Fp

for low values of g by constructions of explicit curves or families of curves over finite
fields, see for example papers by Rachel Pries and others, [1, 59, 49, 48]. But our
knowledge is still very limited.

13. Supersingular curves

Starting at the other end of the NP stratification on M g⊗Fp we may ask: Is there
a supersingular curve of genus g in characteristic p? Maximal curves over a finite field
are supersingular, so if available provide an answer. For example, Ibukiyama showed
the existence for g = 3 and p > 2.

Theorem 13.1 ([39]). – For odd p there exists a curve of genus 3 over Fp whose Jaco-
bian is superspecial over Fp2 .

It follows from Ekedahl’s formula that there is no superspecial curve of genus 3

for p = 2.
For g = 4 we have a positive answer by Kudo, Harashita and Senda.

Theorem 13.2 ([47]). – There exists a supersingular curve of genus 4 in every charac-
teristic.

But one can also fix p and vary g. Coding theory led van der Vlugt and me to
consider curves related to Reed-Muller codes in [33]. For q a power of 2 these curves
over Fq are given by an equation

y2 + y = xR(x)

with R =
∑h

i=0 aix
2i ∈ Fq[x] a so-called 2-linearized polynomial. These curves are

supersingular of genus 2h−1 for R of degree 2h. They possess large extra-special groups
of automorphisms. Using such curves as building blocks and using fiber products one
can construct supersingular curves of arbitrary genus in characteristic 2, even over F2.

Theorem 13.3. – ([33]) For every g there exists a supersingular curve of genus g de-
fined over F2.
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To give one example, for g = 2021 we have the supersingular curve over F2

y256 + y64 + y4 + y = x68 + x20 + x17 + x12 + x10.

The same method can be applied to the case p > 2 with as building blocks Artin-
Schreier curves yp − y = xR(x) with R =

∑h
i=0 aix

pi

a p-linearized polynomial of
degree ph of genus ph(p − 1)/2, as studied in [33, Section 13], but here these do not
cover all genera.

Proposition 13.4. – For odd p there exists a supersingular curve over Fp for every
genus g with only 0 and (p− 1)/2 in its p-adic expansion.

As an example, for g = 999 one finds over F3 the supersingular curve

y27 + y9 + y3 + y = x246 + x84 + x82.

Unfortunately, this proposition covers only a very thin set of genera for p > 2. But one
can do variations. One can take quotients of these curves, or of other supersingular
curves. For example, if d is a divisor of ph + 1 then the curve ypm − y = xd for m ≥ 1

and h ≥ 0 is supersingular because it can be obtained as a quotient of a curve
ypm − y = xph+1.

For 3 ≤ p ≤ 23 Riccardo Re constructed a supersingular curve in characteristic p for
almost all g ≤ 100 with very few undecided exceptions, see [61]. He used a variety of
methods, for examples taking quotients of Fermat type curves. For a related reference
see [12].

14. Bounds on the a-number

Besides the p-rank of an abelian variety there is another invariant closely related to
the E-O stratification, the a-number, introduced by Oort. It measures the dimension
of the intersection of ker(F ) and ker(V ) in X[p] (or in H1

dR(X)) and may be defined
by

a(X) = dimk

(
ker F ∗ : H1(X,OX) → H1(X, OX)

)
.

We have 0 ≤ a(X) ≤ g. For a curve C we put a(C) = a(Jac(C)) and have

a(C) = g − rank(V ),

with V : H0(C, Ω1
C) → H0(C, Ω1

C) the Cartier operator. The loci Ta of abelian vari-
eties with a-number ≥ a are (closed) strata of the E-O stratification on A g ⊗Fp and
have codimension a(a + 1)/2.

The most special case of the E-O stratification is the case of superspecial abelian
varieties. Oort showed in 1975 [53]: an abelian variety X is superspecial if and only if
a(X) = g.

For superspecial Jacobians of curves there is a theorem of Ekedahl that limits the
genus of a curve with a superspecial Jacobian.
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Theorem 14.1 ([22]). – If C is a superspecial curve of genus g in characteristic p then
g ≤ p(p− 1)/2.

We thus see that for large g the superspecial stratum is empty on M g ⊗ Fp. We
can interpret Ekedahl’s result, Theorem 14.1 as: a = g implies g ≤ p(p− 1)/2. Zijian
Zhou, improving work of Riccardo Re ([60]), showed an upper bound on the genus for
the case that a = g − 1.

Theorem 14.2 ([76]). – If C is a curve in characteristic p with a(C) = g − 1, then
g ≤ p + p(p− 1)/2.

One may ask for a generalization. Here is my conjecture for the optimal result.

Conjecture 14.3. – For a curve C of genus g in characteristic p > 0 we have

a(C) ≤ p− 1

p
g +

p− 1

2
,

equivalently, with a(C) = g − r with r the rank of the Cartier operator, we have

g ≤ p r +
p(p− 1)

2
.

Note that this is in accordance with the results of Ekedahl and Zhou. Moreover,
for p = 2 this gives a ≤ (g + 1)/2, a result of Stöhr-Voloch, [70]. They show that this
inequality is strict if g ≥ 3 and C non-hyperelliptic.

The conjecture predicts empty strata of the E-O stratification on M g ⊗ Fp.

15. Counting points on strata

An interesting question is: which strata on M g ⊗ Fp have dimension 0? For these
strata one should determine their number of rational points. It could provide inter-
esting curves over finite fields.

One can try to count number of points over finite fields on strata. Here the foliations
introduced by Oort should play a role. This could lead to congruences for modular
forms. In general not much is known.

A simple example are the E-O strata on M 2 ⊗ F2. The number of points #S(Fq)
on a (closed) stratum S for q = 2m were given in [34] and are shown in the following
table. We index the strata by the 2-rank f or by the a-number.

stratum f ≤ 2 f ≤ 1 f = 0 a = 2

#S(Fq) q3 q2 q 0
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One may interpret some of the results of [43] on the supersingular locus for g = 3
as a result in this vein.

Nart and Ritzenthaler (see [52]) gave the cardinalities of Fq-rational points for
q = 2m for the NP strata on M 3 ⊗ F2. We give a table with their results, where the
strata S are indicated by the p-rank f or the slope s = 1/2. Also the cardinalities of
the intersection with the hyperelliptic locus H 3 are given.

stratum f ≤ 3 f ≤ 2 f ≤ 1 f = 0 s = 1/2

#S(Fq) q6 + q5 + 1 q5 + q4 q4 + 2q3 − q2 q3 + q2 q2

#(S ∩ H3)(Fq) q5 q4 2q3 − q2 q2 0

The author hopes that this text will entice some readers to engage in the many
possibilities for fruitful and pleasant experimentation in this fascinating corner of
mathematics.
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