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Abstract
We prove a formula for the cycle class of the supersingular locus in the Chow ring
with rational coefficients of the moduli space of principally polarized abelian varieties
of dimension g in characteristic p. This formula determines this class as a monomial
in the Chern classes of the Hodge bundle up to a factor that is a polynomial in p. This
factor is known for g ≤ 3. We also determine the factor for g = 4.
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1 Introduction

An abelian variety over a field k of characteristic p > 0 is called supersingular if it is
isogenous to a product of supersingular elliptic curves over the algebraic closure of k.
Equivalently, by [25, Thm. 4.2], if its formal isogeny type has a Newton polygon with
all slopes equal to 1/2. Recall that the Newton polygon of an abelian variety starts at
(0, 0), ends at (2g, g) and is lower convex and satisfies a symmetry condition. The
two extreme cases are the Newton polygon with slopes 0 and 1 and break point (g, 0)
(the ordinary case) and the Newton polygon with slope 1/2 (the supersingular case).

Let Ag ⊗ Fp be the moduli space of principally polarized abelian varieties of
dimension g in characteristic p > 0. The supersingular locus Sg is defined as the closed
subset of principally polarized abelian varieties of Ag ⊗ Fp that are supersingular.
This locus can be considered as the most degenerate stratum in the Newton polygon
stratification on Ag ⊗ Fp. Its dimension is known by Li and Oort to be [g2/4] and
also the number of irreducible components is known, see below. Besides the Newton
polygon stratification there is another stratification on Ag ⊗ Fp, the Ekedahl-Oort
stratification. While the cycle classes of the Ekedahl-Oort stratification on Ag ⊗ Fp

are known, the cycle classes of the Newton polgon strata in general are not. For
g = 1 and g = 2 the supersingular locus is a (closed) stratum of the Ekedahl-Oort
stratification and thus the class is known. For g = 3 the supersingular locus is not a
(closed) stratum of the Ekedahl-Oort stratification, but its cycle class was determined
in joint work of the first author with Ekedahl, and the result was presented in [10].

In this paper wewill prove a formula for the cycle class of the supersingular locus in
the Chow ring with rational coefficients of a Faltings-Chai compactification Ãg ⊗Fp.
This formula determines this class as a monomial in the Chern classes of the Hodge
bundle up to a factor that is a polynomial in p. This shows that this class lies in the
tautological ring, a subring of the rational Chow ring of the moduli space Ãg ⊗ Fp,
and is given by a beautiful formula that generalizes Deuring’s famous formula for the
number of supersingular elliptic curves.

Theorem 1.1 The cycle class of the supersingular locus Sg in the Chow ring with
rational coefficients of a Faltings-Chai compactification Ãg ⊗Fp of the moduli space
Ag ⊗ Fp lies in the tautological ring. More precisely, it is of the form

[Sg] = fg(p)

{
λgλg−2 · · · λ2 g even,

λgλg−2 · · · λ1 g odd ,

where fg(p) is a polynomial in p with rational coefficients and λi is the i th Chern
class of the Hodge bundle on Ãg ⊗ Fp.

Themethod for proving this rests upon away to translate conditions on the supersin-
gularity of Dieudonné modules into degeneracy conditions of morphisms of bundles
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made from the Hodge bundle. We hope that this method can be used to show that all
the cycle classes of the Newton polygon stratification lie in the tautological ring. In
principle, the method should lead to the determination of the missing factor, but the
details of nailing this down seem formidable.

We also determine the factor fg(p) in the formula for the cycle class of the super-
singular locus for g = 4 by different methods. This determination builds upon the
method used for the case of g = 3 and calculates the degree of a Chern class of the
Hodge bundle on a component of the supersingular locus. For this we construct an
explicit smooth model of each irreducible component of S4. In addition, for complete-
ness we give the proof for the class for g = 3 that was not published in [10]. Including
the well-known results for g = 1 and g = 2 we arrive at the following theorem.

Theorem 1.2 The cycle class of the supersingular locus Sg in the Chow ring with
rational coefficients of a Faltings-Chai compactification Ãg ⊗Fp of the moduli space
Ag ⊗ Fp for g ≤ 4 is given by

[Sg] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(p − 1) λ1 g=1

(p − 1)(p2 − 1) λ2 g=2

(p − 1)2(p3 − 1)(p4 − 1) λ3λ1 g=3

(p − 1)3(p3 − 1)(p4 − 1)(p6 − 1) λ4λ2 g=4.

We also discuss for g = 3 and g = 4 the loci in the supersingular locus where the
a-number is at least 2.

2 Themoduli spaceAg ⊗ Fp

By Ag we denote the moduli stack of principally polarized abelian varieties of
dimension g and by π : Xg → Ag the universal abelian variety over Ag . It is a
Deligne-Mumford stack defined over Z. The moduli spaceAg carries a natural vector
bundle E of rank g, the Hodge bundle, defined as π∗�1

Xg/Ag
. We denote by Ãg a

Faltings-Chai compactification ofAg as defined and treated in [6]. The Hodge bundle
extends to Ãg and will again be denoted by E.

In the rest of this paper we consider the moduli stack Ag ⊗ Fp in characteristic
p > 0. Let CH∗

Q
(Ãg ⊗ Fp) be the Chow ring with rational coefficients of Ãg ⊗ Fp.

We set λi = ci (E) ∈ CHi
Q
(Ãg ⊗ Fp) for the i th Chern class of E for i = 1, . . . , g,

see [7, Ch. 3]. These classes satisfy the relation

(1 + λ1 + · · · + λg)(1 − λ1 + · · · + (−1)gλg) = 1

and these classes generate a subring Rg of the Chow ring CH∗
Q
(Ãg ⊗ Fp) called the

tautological ring, see [5, 10]. For 0 ≤ n ≤ g(g+ 1)/2 the graded part of Rg of degree
n has a basis λ

e1
1 · · · λegg with 0 ≤ ei ≤ 1 and

∑
i ei i = n. The ring Rg is a Gorenstein
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ring with socle generated by λ1λ2 · · · λg . We will denote the degree of this 0-cycle by

v(g) = deg λ1λ2 · · · λg ,

the Hirzebruch proportionality constant, and we have

v(g) = (−1)g(g+1)/22−gζ(−1)ζ(−3) · · · ζ(1 − 2g),

where ζ(s) is the Riemann zeta function, see [10]. We give a little table with relevant
values:

g 0 1 2 3 4
v(g) 1 1/24 1/5760 1/2903040 1/1393459200

The tautological ring of Ag ⊗ Fp is the quotient Rg/(λg) ∼= Rg−1.
The moduli space Ag ⊗ Fp carries two important stratifications, the Ekedahl-Oort

stratification and the Newton polygon stratification, see [26] and [27]. The strata of
the Ekedahl-Oort stratification Vμ are indexed by Young diagrams or tuples μ =
[μ1, . . . , μr ] of integers with 0 ≤ r ≤ g and μi > μi+1, according to the usage of
[4, 10]. The largest open stratum V[∅] is the locus of ordinary abelian varieties. The
codimension of Vμ is

∑
i μi . The stratification can be extended to Ãg .

By [4, 10] we can calculate the cycle classes of the closed Ekedahl-Oort strata in
Ag ⊗ Fp and Ãg ⊗ Fp. For example the cycle class of the locus of abelian varieties
with p-rank ≤ f (corresponding to μ = [g − f ]) is

[V [g− f ]] = (p − 1)(p2 − 1) · · · (pg− f − 1)λg− f (1)

and the cycle class of the smallest stratum, the locus of superspecial abelian varieties
(corresponding to μ = [g, g − 1, . . . , 1]) is

[V[g,g−1,...,1]] = (p − 1)(p2 + 1) · · · (pg + (−1)g)λ1λ2 · · · λg .

This formula implies as a special case a result of Ekedahl [3], namely that

∑ 1

#Aut(X)
= (p − 1)(p2 + 1) · · · (pg + (−1)g) v(g) , (2)

where the sum is over the isomorphism classes of principally polarized superspecial
abelian varieties over Fp and v(g) the proportionality constant defined above. A for-
mula for the actual number of isomorphism classes of superspecial abelian varieties
with a level n ≥ 3 structure is obtained by multiplying the formula for the degree of
V[g,g−1,...,1] by the degree of the natural mapAg[n] → Ag (as stacks) withAg[n] the
moduli space of principally polarized abelian varieties with a level n structure.
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3 Irreducible components of the supersingular locus

The number of irreducible components of the supersingular locus Sg in Ag ⊗ Fp

was determined by Deuring for g = 1, by Katsura and Oort for g = 2 ([19, 20])
and in general by Li and Oort for g ≥ 3, [22, 4.9]. The actual number of irreducible
components inAg ⊗Fp is given by a class number h p(g) for g odd and a similar class
number h′

p(g) for g even. Here h p(g) (resp. h′
p(g)) is the class number of the principal

(resp. non-principal) genus in the hermitian space Bg , with B the definite quaternion
algebra over Q ramified exactly at p and ∞. These class numbers are difficult to deal
with, see for example [16, p. 147], and one gets better and more useful formulas by
counting in a stacky way, that is, taking into account weights equal to the inverse of
the order of the automorphism groups of the objects that one counts. For example, for
g = 1 the class number of the quaternion algebra B over Q split outside p and ∞, is
given by

h p(1) = p − 1

12
+

(
1 −

(−3

p

))
1

3
+

(
1 −

(−4

p

))
1

4
,

with the Legendre symbols. But a stacky interpretation of this number leads to the
much more elegant formula

∑ 1

#Aut(E)
= p − 1

24

with the summation over all isomorphism classes of supersingular elliptic curves
defined over Fp.

We will denote by Ng the number of irreducible components of the supersingular
locus in the stacky sense, that is, where each irreducible component is counted with a
certain weight w related to the automorphism group as explained below.

This number Ng has the property that the number Ng[n] of irreducible components
of the supersingular locus on the moduli spaceAg[n]with a level n ≥ 3 structure with
p prime to n equals

Ng[n] = Ng · deg(Ag[n] → Ag) .

An irreducible component of the supersingular locus of Ag[n] is given by a triple
(Eg, η, ν) with E a supersingular elliptic curve, η a polarization with kernel equal to
the kernel Eg[Fg−1] of Fg−1 with F Frobenius and ν a level n structure, see [22] and
the next section. Since p does not divide n, a level n structure on Eg does not interfere
with the inseparable isogenies Eg → Y0 that give rise to the objects of an irreducible
component and descends to a level n structure on Y0. So we count such an irreducible
component of the supersingular locus of Ag with weight w = 1/#Aut(Eg, η).

Proposition 3.1 The number Ng of irreducible components of the supersingular locus
in Ag ⊗ Fp (in the stacky sense) is

{
(p − 1)(p2 + 1)(p3 − 1) · · · (pg − 1) v(g) for g odd,

(p2 − 1)(p6 − 1) · · · (p2g−2 − 1) v(g) for g even.
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The stacky interpretation that we use reduces to the mass of the principal (resp.
non-principal genus) and can be deduced from [3] or [13–15]. One finds this mass
formula also in [9, p. 123] and in [28].

For odd g the irreducible components of Sg are in bijective correspondence with the
isomorphism classes of superspecial principally polarized abelian varieties of dimen-
sion g, hence the formula for Ng follows immediately from Ekedahl’s result (2). For
even g one has a correction factor

(p + 1)(p3 + 1) · · · (pg−1 + 1)

(p2 + 1)(p4 + 1) · · · (pg + 1)
.

Here for g even the numerator can be interpreted as the number of totally isotropic sub-
spaces of dimension g/2 in a g-dimensional hermitian space overFp2 with conjugation
given by Frobenius, while the denominator equals the number of totally isotropic sub-
spaces of dimension g/2 in a symplectic space of dimension g over Fp2 . See also the
description in [28].

4 Flag type quotients

Work of Oda and Oort ([24]) makes it possible to parametrize the irreducible com-
ponents of the supersingular locus Sg by so-called flag type quotients. For an abelian
variety X over an algebraically closed field k of characteristic p we will denote the
subgroup scheme ker(F)∩ker(V ) by A(X)with F and V Frobenius andVerschiebung
on X . It is a subgroup scheme of order pa(X) with a(X) the a-number of X . A super-
singular abelian variety has 1 ≤ a(X) ≤ g and if a(X) = g and g ≥ 2 then X is
isomorphic to the base change to k of a product Eg with E a supersingular elliptic
curve defined over Fp.

For a supersingular abelian variety X of dimension g the a-number tends to go
up when one replaces X by X/A(X), though it is not true that a(X/A(X)) ≥
min(g, a(X) + 1) as asserted in the proof of [22, 1.8 Lemma] that refers to [21];
see [17, Remark 3.17] for a counterexample. Nevertheless, by starting with X = X0
and putting Xi+1 = Xi/A(Xi ) one arrives after g − 1 steps at a superspecial abelian
variety Xg−1, that is, an abelian variety with with a(Xg−1) = g, as follows from
[30, Lemma 9]. Then the kernel of the dual map is contained in ker(Fg−1), hence

one finds a homomorphism Y → X with Y = X (pg−1)
g−1 . This implies the fact that

for a supersingular abelian variety X there exists a minimal isogeny ρ : Eg → X
with E a supersingular elliptic curve with the property that any other homomorphism
h : Z → X of a superspecial abelian variety Z factors uniquely throughρ. If a(X) = 1
this minimal isogeny is obtained in g − 1 steps

Yg−1 → Yg−2 → · · · → Y0 = X

where Yg−1 = Eg ⊗ Spec(k) and Yi = Yg−1/Gi for i = 1, . . . , g − 1 with Gi =
ker(ρ) ∩ Yg−1[Fg−1−i ]. If a(X) > 1 this sequence needs not be unique. Taking into
account also the polarizations leads to the definition of a (polarized) flag type quotient.
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Definition 4.1 A polarized flag type quotient of dimension g is a diagram of abelian
varieties and homomorphisms

Yg−1
ρg−1

ηg−1

Yg−2

ηg−2

· · · ρ1
Y0

η0

Y t
g−1 Y t

g−2 · · · Y t
0

where Y t
i is the dual of Yi and the abelian variety Yg−1 is superspecial with ηg−1 a

polarization with kernel Yg−1[Fg−1] satisfying
(1) ker(ρi ) ⊂ A(Yi ) is of order pi ;
(2) ker(ηi ) ⊆ ker(V j ◦ Fi− j ) for 0 ≤ j ≤ i/2 .

This flag type quotient is called rigid ifGi = G0∩G[Fg−1−i ]withG0 = ker(Yg−1 →
Y0)∩Yg−1[Fg−1]. The term ‘rigid’ refers to the fact that in this case the corresponding
flag type is unique.

The main references for flag type quotients are [24] and [22, Sections 7,9.6,9.7].

5 Dieudonnémodules and displays

The theory of Dieudonné modules makes it possible to describe flag type quotients in
terms of Dieudonné modules.

Here k will denote an algebraically closed field of characteristic p and W = W (k)
the ring of Witt vectors of k. We define a ring

A = W [F, V ]/(FV − p, V F − p, Fa − aσ F, aV − Vaσ , ∀a ∈ W )

and set A1,1 := A/(F − V ).
A polarized flag type quotient as described in Definition 4.1 corresponds to a flag

of contravariant Dieudonné modules

M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mg−1

with dual modules Mt
i satisfying

(1) Mg−1 = Ag
1,1 provided with a quasi-polarization

〈 , 〉 : Mg−1 ⊗W Mt
g−1 → Q(W ) ,

with Q(W ) the field of quotients of W , that induces an identification Mt
g−1 =

Fg−1Mg−1;
(2) (F, V )Mi ⊂ Mi−1 and dim(Mi/Mi−1) = i for i = 0, . . . , g − 1;



   95 Page 8 of 40 G. van der Geer, S. Harashita

(3) (F, V )i Mi ⊂ Mt
i for i = 0, . . . , g − 1.

We call such a flag a polarized Dieudonné flag of length g. It is called rigid if Mi =
M0 + Fg−1−i Mg−1 for i = 0, . . . , g − 1. We observe that rigidity implies

Mi = Mm + Fg−1−i Mg−1 for m < i ≤ (g − 1) .

We can translate rigid polarized flag type quotients in terms of displays, replacing
Dieudonné modules by displays. We recall the definition of displays (cf. [29, Section
1]). Let R be a commutative unitary ring of characteristic p. Let W (R) be the ring
of Witt vectors. Let f : W (R) → W (R) be Frobenius and v : W (R) → W (R)

Verschiebung. Set IR = v(W (R)). A display over R is a quadruple (P, Q, F, V−1)

consisting of a finitely generated projective W (R)-module P , a W (R)-submodule Q
of P and homomorphisms F : P(p) → P and V−1 : Q(p) → P , where M (p) :=
W (R) ⊗f,W (R) M , with the properties:

(i) IR P ⊂ Q ⊂ P and there exists a decomposition of P into a direct sum of W (R)-
modules P = L ⊕ T , such that Q = L ⊕ IRT ;

(ii) V−1 is an epimorphism;
(iii) For x ∈ P and w ∈ W (R) we have V−1(1 ⊗ v(w)x) = wFx .

By [29, Lemma 9], we have an isomorphism

V−1 ⊕ F : (L ⊕ T )(p) → P. (3)

The matrix (with respect to a basis of P) associated to this isomorphism is a general-
ization of the classical display ([23]).

Remark 5.1 If R is a perfect field, then P is the usualDieudonnémodule, IR = p W (R)

and Q is the V -image V P , so Q is determined by the Dieudonné module P . But if R
is not a perfect field, then Q is not determined by P together with F, V ; conversely
P is determined by the V−1-image of Q(p).

By a result of Li-Oort [22, 3.7] the moduli space of polarized Dieudonné flags of
length g exists and is projective. Moreover, by [22, 3.7] the moduli of rigid polarized
Dieudonné flags of length g exists and is quasi-projective, and by [22, 7.6] it is non-
singular.

6 The cycle class of the supersingular locus

In this sectionwewill show that the cycle class of the supersingular locus Sg inAg⊗Fp

lies in the tautological ring Rg generated by the Chern classes λi (i = 1, . . . , g) of the
Hodge bundle E on a Faltings-Chai compactification of Ag ⊗ Fp and give a formula
for it that fixes the class up to a multiplicative constant.

Here the cycle class is taken in theChow ringwith rational coefficients of a Faltings-
Chai compactification Ãg ⊗ Fp of Ag ⊗ Fp.
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Theorem 6.1 The cycle class of the supersingular locus onAg⊗Fp inCH∗
Q
(Ãg⊗Fp)

is a non-zero multiple of λgλg−2 · · · λ1 if g is odd and of λgλg−2 · · · λ2 if g is even.
The multiple is a polynomial in p with rational coefficients.

Before we give the details of the proof we describe the set-up. For the proof we will
use the presentation of Frobenius on the covariant Dieudonné module M of p-rank
0 and a-number 1 with a principal quasi-polarization 〈 , 〉 as given by Oort in [27].
His description of the display of such a module M is as follows. With W the Witt
ring of k, an algebraically closed field of characteristic p > 0, there exists a W -basis
e1, . . . , eg, eg+1, . . . , e2g that is symplectic (meaning that 〈ei , e j 〉 = 0 for i, j ≤ g
and for i, j > g and 〈ei , eg+ j 〉 = δi j for 1 ≤ i, j ≤ g) such that Frobenius is given
by the formulas

Fe j =
2g∑
i=1

γi j ei , (1 ≤ j ≤ g) ,

e j = V (

2g∑
i=1

γi j ei ) , (g + 1 ≤ j ≤ 2g) ,

where γ = (γi j ) is a W -valued 2g × 2g matrix which is symplectic in the sense that

γ

(
0 1g

−1g 0

)
γ t =

(
0 1g

−1g 0

)
.

We write γ as a matrix of g × g blocks

γ = (γi j ) =
(
a b
c d

)
.

Wedenote the Frobenius endomorphismof theWitt ringW by σ . Note that the σ -linear
map F is given by the matrix (

a pb
c pd

)
.

Oort shows ([27, p. 191] that if M has p-rank 0 and a-number 1 we may choose the
basis such that the matrix γ is of the form (called normal)

ai j = di j =
{
1 i = j + 1,

0 i �= j + 1,
, ci j =

{
1 (i, j) = (1, g)

0 else
,

and big = 0 for i �= 1. In particular, since we assume p-rank zero we have aig = 0
for i = 1, . . . , g, see [27, page 191] after Lemma 2.2.
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Lemma 6.2 For a normal form γ we have γi,2g = 0 for i = 2, . . . , g and γ1, j = 0
for j = g + 1, . . . , 2g − 1 and γ1,2g = −1. Moreover, the square matrix

γ̃ =
⎛
⎜⎝

γ2,g+1 . . . γ2,2g−1
...

...

γg,g+1 · · · γg,2g−1

⎞
⎟⎠

is symmetric.

Proof We have abt = bat and btd = dtb. In view of the shape of the matrices a and
d the result follows as γ is symplectic. ��

Wenow change this normal form into a so-called strong normal form as follows.We
can take γi j as a Teichmüller lift for i �= g and j �= 2g−1, after changing the basis {ei }
of M . Now we consider the γi, j only for 2 ≤ i < g and g < j < 2g−1, as the others
are kept as Teichmüller lifts under the following operation. Let ti j := (γi, j −[γi, j ])/p,
where [u] denotes the Teichmüller lift of u ∈ k. We replace e j+1 by e j+1 + p ti j ei
and eg+i by eg+i + p ti j e j+1−g . After the change this new basis is still symplectic
and the new γi, j becomes the Teichmüller lift [γi j ] and the new γi+1, j+1 becomes
γi+1, j+1 + tσi j ; by symmetry (Lemma 6.2), similar things hold for γ j+1−g,g+i−1 and
γ j+2−g,g+i ; at the same time the other new γi ′ j ′ do not change.

By carrying out this operation going from lower i + j to higher, we get the desired
the basis. We call such (γi j ) a strong normal form.

Given such a basis in strong normal form, we have according to [27, Lemma 2.6]
that there exists an element P ∈ A such that

F2ge1 = Pe1 with P =
g∑

i=1

2g∑
j=g

p j−gγ σ 2g− j

i j F2g+i− j−1 , (4)

with Fx = xσ F for x ∈ W and repeated application of F is in the σ -linear sense (cf.
[27, p. 195]).

Remark 6.3 Weknow that theEkedahl-Oort stratumVμ withμ = [g, 1] corresponding
to p-rank 0 and a-number 2 has codimension 1 in the p-rank 0 locus V0, hence the
generic point of every irreducible component of V0 has a = 1.Moreover, by the results
of Li-Oort [22] we know that each irreducible component of the supersingular locus
Sg has an open dense subset where the a-number equals 1.

One can read off supersingularity from the matrix γ̃ in strong normal form using
Oort’s result on the action of F on e1 given in (4), see [27, Cor. 2.8].

Corollary 6.4 Let γ be the matrix in strong normal form for the module M. Then the
module M is supersingular if γi j ≡ 0 (mod p) for 2 ≤ i ≤ g−1, g+1 ≤ j ≤ 2g−2
with i+ j ≤ 2g.Equivalently, sinceγi j is a Teichmüller lift, ifγi j = 0 for2 ≤ i ≤ g−1,
g + 1 ≤ j ≤ 2g − 2 with i + j ≤ 2g.
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Note that because of the symmetry this gives a priori

�g/2�∑
j=1

(g − 2 j) = g(g − 1)

2
−

[
g2

4

]
= dim V0 − dim Sg

conditions for supersingularity, where V0 is the p-rank zero locus.
We now begin the proof of Theorem 6.1.

Proof The strategy is now to impose consecutively conditions that together imply
supersingularity by Corollary 6.4, where we assume that γ is in strong normal form;
we begin by requiring the vanishing modulo p of the column of entries that is the
transpose of

(γ2,g+1, . . . , γg−1,g+1) ,

and continue by requiring the vanishing modulo p of the column of entries whose
transpose is

(γ3,g+2, . . . , γg−2,g+2) ,

and so on, till finally the column with transpose (γg/2,3g/2−1, γg/2+1,3g/2−1) of length
2 for g even or the vanishing of the single entry γ(g+1)/2,(3g−1)/2 for g odd.

For example, for g = 5 we require the vanishing modulo p of the red entries in the
symmetric matrix

γ̃ =

⎛
⎜⎜⎝

γ26 γ27 γ28 γ29
γ36 γ37 γ38 γ39
γ46 γ47 γ48 γ49
γ56 γ57 γ58 γ59

⎞
⎟⎟⎠

giving 4 conditions.
In terms of displays, we have an f-linear map V−1 ⊕ F : M = L ⊕ T → M , see

(3). We write F/p for the composition

V M/pM → M/pM
V−1⊕F−−−−→ M/pM → M/V M .

This map is given by the square matrix (γi j )1≤i≤g,g+1≤ j≤2g . Then by the vanishing
indicated in Lemma 6.2 we may restrict to submodules of rank g − 1 generated by
g − 1 consecutive generators in V M/pM and M/V M :

G = 〈eg+1, eg+2, . . . , e2g−1〉 −→ H = 〈e2, e3, . . . , eg〉 .

We have increasing filtrations for i = 1, . . . , g − 1 of G and H given by

Gi = 〈eg+1, eg+2, . . . , eg+i 〉 and Hi = 〈e2, e3, . . . , ei+1〉 .

That the p-rank is zero means that the image ofGg−1 is in Hg−1. If we identify Lie(X)

with V M/pM for the abelian variety X corresponding to the dual of M (cf. [1, 4.3.12]
and [22, 5.4, 7.4]), we can view the inducedmap F/p : Gg−1 → Hg−1 as a symmetric
morphism between vector bundles of rank g − 1 made from the Hodge bundle and its
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dual by Frobenius twists. Since we wish to have the filtrations we will have to work
on a cover of the p-rank zero locus V0.

We now consider G〈1〉, the module generated by eg+1. We require that it maps
to zero modulo p under F/p : G〈1〉 → H〈1〉 with the module H〈i〉 generated by
ei+1, . . . , eg−i . We can view the semi-linear map G〈1〉 → H〈1〉 defined by F/p
modulo p as a morphism of a line bundle to a vector bundle of rank g − 2, where
these bundles are made from the Hodge bundle by truncations and Frobenius twists.
We consider the locus where this morphism vanishes. The vanishing of this morphism
corresponds to the vanishing modulo p of the vector (γ2,g+1, . . . , γg−1,g+1).

If this morphism vanishes then by the symmetry γ2,g+2 vanishes modulo p and we
can consider a morphism G〈2〉 → H〈2〉 induced by F/p with G〈 j〉 = G j/G j−1
generated by eg+ j and require its vanishing modulo p. By induction, assuming the
vanishing modulo p of the semi-linear morphism

G〈 j〉 −→ H〈 j〉 (5)

for j = 1, . . . , s, we get a next morphism G〈s + 1〉 → H〈s + 1〉. We require
inductively that these morphisms vanish for j = 1, . . . , [(g−1)/2] on an appropriate
covering space of V0 where we have the filtrations. Supersingularity follows if the
conditions that the induced map G〈 j〉 → H〈 j〉 is zero are satisfied successively for
j = 1, . . . , [(g − 1)/2].
The locus where the morphism (5) vanishes has cycle class expressed in the Chern

classes of G〈 j〉 and H〈 j〉; for example for j = 1 the cycle class is the (g−2)th Chern
class of the dual of G〈1〉 ⊗ (H〈1〉)∨.

We now work on the space of flags F on the cohomology H1
dR of the universal

principally polarized abelian variety as introduced in [4, Section 3]. The de Rham
cohomology sheafH1

dR(X/S) for a principally abelian variety X → S is a locally free
sheaf H of rank 2g on S fitting in an exact sequence

0 → E → H → E
∨ → 0 .

The flags in question are complete symplectic flags on H extending flags E(i) on the
Hodge bundle with rank(E(i)) = i for i = 1, . . . , g. These flags on the de Rham
cohomology sheafH satisfyE(g+ i) = E(g− i)⊥ and thus are determined by the flag
on E. This flag space is a stratified space with strata indexed by elements of the Weyl
group of the symplectic group. The stratum corresponding to the longest so-called
final element (or Kostant element) of the Weyl group (see [4, Section 3]) parametrizes
flags compatible with the action of V and F . Its closure contains the final stratum
lying over the p-rank zero locus V0.

Thus we work on the closure of the final stratum Fw of F corresponding to p-rank
zero. This stratum allows a morphism that is generically finite to V0. The symplectic
flags over a generic point of V0 are compatible with the action of V and F and also
compatible with the filtration defined by the basis used in the description by Oort of
the display given above.
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We can view the induced map F/p : Gg−1 → Hg−1 as a symmetric mor-
phism between modules of rank g − 1 that induces a morphism of vector bundles
G〈1〉 → H〈1〉 on Fw. The vector bundles induced by G and H have filtrations whose
graded quotients are Frobenius twists of of the graded quotients of the Hodge bundle
E(i)/E(i − 1) or their duals. Therefore the Chern classes of their graded quotients
are of the form ±pri �i where �i = c1(E(i)/E(i − 1)) (i = 1, . . . , g) are the Chern
classes of the graded quotients of the Hodge bundle on the final stratum and ri ∈ Z.

The conditions on the vanishing modulo p of rows of entries can now be viewed
as a degeneracy condition for a morphism between vector bundles on Fw.

We shall calculate the cycle class of the Zariski closure of the degeneracy locus of
this map over the open part of V0 where a = 1. Note that on the open stratum Fw we
have a = 1. This Zariski closure is contained in the supersingular locus as the Newton
polygon can only go up under specialization. Moreover, for g ≥ 2 each irreducible
component of Sg has an open dense set with a = 1, hence intersects the degeneracy
locus over V0.

We know that the codimension of the degeneracy locus equals the number of
conditions imposed by Corollary 6.4 in the supersingular case, hence also for the inter-
mediate cases defined by the vanishing of G〈 j〉 → H〈 j〉. The theory of degeneracy
loci [8] tells us that the cycle classes of these degeneracy loci on Fw are polynomials
in the classes �i .

To calculate these, we begin by remarking that the cycle class of the p-rank zero
locus V0 in Ãg ⊗ Fp is a multiple of λg by [4]. We carry out induction and assume
that the image under the Gysin map from Fw to Ag ⊗ Fp of the class of the locus
over V0 where F/p maps G〈s〉 to zero in H〈s〉 for s = 1, . . . , j − 1 is a multiple of
λgλg−2 · · · λg+2−2 j .

The locus where the morphism G〈 j〉 → H〈 j〉 is zero has as cycle class the (g −
2 j)th Chern class of the dual of G〈 j〉 ⊗ (H〈 j〉)∨. With r = g − 2 j = rank(H〈 j〉)
this Chern class is

(−1)r (cr (H〈 j〉) − cr−1(H〈 j〉)c1(G〈 j〉)) .

In order to calculate the class of the corresponding locus on Ãg ⊗Fp we have to apply
a Gysin map from the Chow group of Fw to the Chow group of Ãg ⊗Fp and calculate
the image of the class of the degeneracy locus.

We first look at the case j = 1.

Lemma 6.5 The pushdowns to Ãg ⊗ Fp of the classes cg−2(H〈1〉) and
cg−3(H〈1〉)c1(G〈1〉) on Fw are multiples of λg−2.

Proof The filtration on E is extended to the de Rham bundle by Eg+i = (Eg−i )
⊥ as in

[4, Section 3]. This symplectic pairing is different from the one used in the description
of the display in [27]. Since we use covariant Dieudonné modules we have to take
duals and Frobenius twists to relate the Chern roots of G〈 j〉 and H〈 j〉 to those of the
Hodge bundle. The Chern roots of G〈 j〉 and H〈 j〉 are determined by the filtrations
Gi and Hi . We write li for these roots, while writing �i for the roots of E. Then the
Chern roots of H〈1〉 given by this filtration are l2, ..., lg−1 and that of G〈1〉 is −l1.
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The Chern class cg−2(H〈1〉) is then the (g − 2)th elementary symmetric function in
l2, . . . , lg−1. The (g − 2)th symmetric function in l2, . . . , lg−1 is a Frobenius twist of
the (g−2)th symmetric function in l1, . . . , lg−2 (cf. the proof of [4, Lemma 12.3]) and
is amultiple of λg−2(g−2) = cg−2(E(g−2)). Now by [4, Lemma 12.3] the pushdown
of λg−2(g−2) equals a non-zero multiple of λg−2. The morphism from F toAg ⊗Fp

is fibered by generically finite morphisms πi defined by forgetting a step of the flag
E(i) � E(i +1) � · · · � E(g). We have for the Chern classes λr (i) = cr (E(i)) of the
partial flag the formula (πi )

∗(λr (i + 1)) = �i+1λr−1(i) + λr (i). For the Chern roots
li that we use here a similar formula holds. Therefore, again by [4, Lemma 12.3], the
pushdown of cg−3(H〈1〉)c1(G〈1〉) is also a multiple of λg−2. ��

We conclude that the class of the locus where G〈1〉 → H〈1〉 vanishes on V0 is a
multiple of the class λg−2 on V0. Since this is a Chern class of a vector bundle on
Ãg ⊗ Fp and the class of V0 is a multiple of λg we find that the class of the vanishing
locus in Ãg ⊗ Fp of this bundle morphism on V0 is a multiple of λgλg−2.

We now carry out induction. We restrict to the locus Z where the consecutive
morphisms G〈s〉 → H〈s〉 for s = 1, . . . , j − 1 vanish. Then the class of the locus of
vanishing of (5) equals up to a sign the (g−2 j)th Chern class of G〈 j〉⊗ (H〈 j〉)∨ and
this is cg−2 j (H〈 j〉)− cg−2 j−1(H〈 j〉)c1(G〈 j〉). By the argument given in Lemma 6.5
the class cg−2 j (H〈 j〉) is a non-zero multiple of the (g − 2 j)th elementary symmetric
function in g − 2 j consecutive classes �i . We can view this as obtained by applying
a Frobenius power to �1, . . . , �g−2 j , or use [4, Lemma 12.3], hence this elementary
symmetric function represents a multiple of λg−2 j (g−2 j). The pushdown of this is a
multiple of λg−2 j . The argument for cg−2 j−1(H〈 j〉)c1(G〈 j〉) is similar, as in Lemma
6.5. Therefore the cycle class of the vanishing locus is a multiple of λg−2 j on the
locus Z and Z has as class a multiple of λgλg−2 · · · λ2g+2−2 j . As λg−2 j is the Chern
class of a vector bundle on Ãg ⊗ Fp we find as cycle class on Ãg ⊗ Fp a multiple of
λgλg−2 · · · λ2g−2 j .

By induction wemay assume that the class has as coefficient a polynomial in pwith
rational coefficients as this is true for the class of V0. By the formula for the Chern
class of G〈 j〉 ⊗ (H〈 j〉)∨ and the fact that under the Gysin map no denominators are
introduced we see that the coefficient is a polynomial in p. This finishes the proof of
Theorem 6.1. ��
Remark 6.6 i) By analyzingmore precisely the characteristic classes of the degeneracy
loci in the proof, it should be possible to determine the multiple f (p) as a polynomial
in p, but this involves many subtleties. ii) By interpreting Newton polygon strata
contained in the p-rank zero locus as degeneracy loci as done in the proof of Theorem
6.1 we saw that the cycle classes of these loci lie in the tautological ring. This suggests
that all Newton polygon classes are tautological.

7 Moduli of flag type quotients for g = 3

In this section and the next we calculate the cycle class of the supersingular locus S3.
We consider an irreducible component of the space of polarized flags of Dieudonné
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modules for g = 3, defined by the choice of a quasi-polarization on A3
1,1. This space

is the Zariski closure of the moduli of rigid polarized Dieudonné flags. A description

was given in [22, p. 58]. Thus we look at polarized flags (E3, η) = (Y2, η)
ρ2−→

(Y1, η1)
ρ1−→ (Y0, η0) corresponding to a polarized flag of Dieudonné modules

M0 ⊂ M1 ⊂ M2 = A3
1,1 = A〈x, y, z〉

with the quasi-polarization given by

〈x, Fx〉 = 〈y, Fy〉 = 〈z, Fz〉 = 1/p .

Since FM2 ⊂ M1 with dim(M1/FM2) = 1 the module M1 is determined by a 1-
dimensional subspace of M2/FM2, say generated by a vector v = ax + by + cz. The
condition (F, V )M1 ⊂ Mt

1 requires 〈v, Fv〉 ∈ W , that is, if we view the coefficients
a, b, c as elements of k, the condition (F, V )M1 ⊂ Mt

1 is satisfied if and only if

a p+1 + bp+1 + cp+1 = 0 .

Thus the moduli spaceF1 of truncated flags M1 ⊂ M2 can be identified with a Fermat
curve Xp+1 ⊂ P

2 = Gr(1, 3) (when using Dieudonné modules). The module M0 is
determined by a 2-dimensional subspace M0/FM1 ⊂ M1/FM1. Assuming rigidity,
we see that it is spanned by two vectors

w1 = v0, w2 = αFx + βFy + γ Fz ,

and the condition M0 ⊆ Mt
0 gives aα + bβ + cγ = 0. This implies that M1/M0

defines a sheaf isomorphic to OF1(1). Moreover, the degree p2 homomorphism

η1 : Y1 → Y0
∼−→ Y t

0 → Y t
1

shows that M1/Mt
1 is self dual, and it defines a locally free sheaf isomorphic to

OF1(1) ⊕ OF1(−1).
This implies that the moduli space of rigid polarized Dieudonné flags with given

quasi-polarization η admits a structure

F0
0 → F1 → F2 = point

withF0
0 the open dense part of the P

1-bundleF0 = P(OF1(1)⊕OF1(−1)) that is the
complement of the unique section with negative self-intersection number. The Zariski
closure is obtained by taking the full P

1-bundle F0.
The morphism F0 → S3 ⊂ A3 ⊗ Fp is of finite degree onto its image, and the

image forms an irreducible component of S3. The degree equals #Aut(E3, η)/{±1},
but we may consider instead of F0 the stack by dividing F0 through the action of
Aut(E3, η) and then have a morphism of degree 1. This is what we shall do. The
natural morphism to A3 ⊗ Fp contracts the section.
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8 The cycle class of S3

Here we give the proof of the formula for the cycle class of S3 stated in [10, Thm.
11.3]. The first author learned from Ekedahl at that time how to calculate the Hodge
bundle for flag type quotients. Ekedahl employed this in [2, Cor. 3.4]. This idea was
used in [10] to calculate the cycle class of S3. As done at the time of [10], here we
will not use the results of Section 6.

The Chow rings with rational coefficients of A3 ⊗ Fp and Ã3 ⊗ Fp are known by
[11]. The ring CH∗

Q
(Ã3 ⊗ Fp) is generated by the Chern classes of the Hodge bundle

and boundary classes σ1 and σ2. A priori the class of S3 is a linear combination of
the generators of CH4

Q
(Ã3 ⊗ Fp), viz. λ41, λ

3
1σ1, λ

2
1σ

2
1 and λ1σ1σ2, see [11]. But since

S3 · σ 2
1 = 0 = S3 · σ2 we see from the multiplication table 3f in [11, p. 765] that the

class of S3 is a multiple of λ41 = 8 λ1λ3. Alternatively, this follows from the fact that
S3 is contained in V0, the p-rank 0 locus, whose class is a multiple of λ3.

Theorem 8.1 The class of the supersingular locus for genus 3 in the Chow ring with
rational coefficients of a Faltings-Chai compactification of A3 ⊗ Fp is given by

[S3] = (p − 1)2(p3 − 1)(p4 − 1) λ1λ3 .

Proof The class [S3] is a multiple of λ1λ3 and the multiple can be determined by
calculating the intersection number with λ2. Using the flag type quotients we see
above that an irreducible component of the supersingular locus S3 in A3 ⊗ Fp is the
image of a surface F0 under a map F0 → A3 ⊗ Fp of degree #Aut(E3, η)/{±1} (or
degree 1 if we consider the corresponding stack) and F0 is of the form

F0
π0−→ F1

π1−→ F2 = point ,

where Fi parametrizes partial flag type quotients Y2 → · · · → Yi . More precisely,
a component of S3 is the image under a morphism of a P

1-bundle B = F0 over the
Fermat curve F1 = Xp+1 of degree p + 1 in P

2 that blows down the unique section
S with negative self-intersection number of the P

1-bundle P(O(1) ⊕ O(−1)) over
Xp+1. A point of F1 corresponds to the choice of a subgroup scheme α2

p in E3[F].
If we use contravariant Dieudonné modules over a geometric point of Fi we have

for i = 0 and i = 1 an exact squence

0 → pMi+1/pMi → V Mi/pMi → V Mi+1/pMi+1 → V Mi+1/V Mi → 0.

Over Fi , we can identify Lie(Yi )∨ with V Mi/pMi (cf. [1, 4.3.12] and [22, 5.4, 7.4]),
more precisely with Qi/IOFi

Pi , where (Pi ,Qi , F, V−1) is the display associated to
Yi . (Note that Qi and IOFi

Pi become V Mi and pMi respectively if we pull them back
to the spectrum of a perfect field.) By the exact sequence we have in the Grothendieck
group K0(Fi ) the relation

Lie(Yi )
∨ = Lie(Yi+1)

∨ − Qi + Q(p)
i
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with Qi the locally freeOF1 -module defined byV Mi+1/V Mi . HereLie(Yi+1)denotes
the pull back under πi . We pull back the relation

Lie(Y1)
∨ = Lie(Y2)

∨ − Q1 + Q(p)
1

under π0 to K0(F0) and then find in K0(F0) suppressing the π∗
0

E = Lie(Y0)
∨ = [3] − Q1 + Q(p)

1 − Q0 + Q(p)
0 ,

where the [3] stands for the class of the trivial rank 3 bundle π∗
0π∗

1 (Lie(Y2))∨. From
the short exact sequence

0 → V M1/pM1 → V M2/pM2 → V M2/V M1 → 0

we get the exact sequence of vector bundles

0 → U1 → π∗
1 (Lie(Y2)

∨) → Q1 → 0

with rank(Q1) = 2 that comes from the universal tautological exact sequence of
bundles on the Grassmannian. Here U1 has rank 1 and π∗

1 Lie(Y2) is trivial. This
implies that [Q1] = [3] − [U1] in the Grothendieck group of vector bundles and so
the total Chern class of Lie(Y0)∨ is given by

(1 − �1)(1 − p�1)
−1(1 + �0)

−1(1 + p�0) ,

where �i = c1(Qi ). Now �1 lives on the curve F1 = Xp+1, so �21 = 0. This gives for
the classes λ1 and λ2 the relations in CH∗

Q
(F0)

λ1 = (p − 1)(�0 + �1), λ2 = (p − 1)2�0�1 − (p − 1)�20 .

The identity λ21 = 2λ2 that holds in the tautological ring R3 implies that (p−1)2(�20−
�21) = 0, hence �20 = 0. Since deg(�1) = p + 1 on F1 and �0 represents O(1) on
the fibres of F0 → F1 we find deg(�0�1) = p + 1. We thus find that deg(λ2) =
(p + 1)(p − 1)2 on each irreducible component of S3. We get

deg(λ2[S3]) = (p + 1)(p − 1)2 N3

= (p + 1)(p − 1)2(p − 1)(p2 + 1)(p3 − 1) v(3) .

On the other hand, deg(λ1λ2λ3) = v(3) and this implies the result. ��
The morphism π0 : F0 → F1 is a P

1-bundle over a Fermat curve of degree p + 1
with a section with image S. The Picard group of F0 is generated by the pullback
under π0 of the Picard group of F1 and by the class of the section S.

Proposition 8.2 We have [S] = �0 − �1 and S2 = −2(p + 1).
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Proof Let X be a fibre of π0. We have XS = 1 and (S − �0)X = 0, hence S −
�0 = π∗

0 (D) with D a divisor class on F1. This gives (S − �0)
2 = 0. The identity

λ21 = 2 λ2 implies �20 = 0 and thus S2 − 2�0S = 0. Now we use the fact that S
is contracted under the map of F0 to A3 ⊗ Fp. This implies that λ1 restricted to S
vanishes, hence (�0 + �1)S = 0. We thus get S2 = 2�0S = −2�1S and on the other
hand S2 = �0S+π∗

0 (D)S = −�1S+π∗
0 (D)S, hence π∗

0 (D) = −�1 and S = �0−�1.
The fact that �0�1 = p + 1 and �20 = �21 = 0 implies S2 = −2(p + 1). ��

9 Loci for g = 3 defined by conditions on the a-number

We now discuss subloci of S3 defined by the inequality a ≥ 2. Here a indicates the a-
number of an abelian variety. Let J with #J = N3 be the set of irreducible components
of S3 (where we count in the stacky way). Each irreducible component of S3 is the
image under a morphism of a P

1-bundle F0 → F1 that blows down a section. The
curve F1 has p3 + 1 points rational over Fp2 and #F0(Fp2) = (p3 + 1)(p2 + 1)

and each point of F0(Fp2) defines a superspecial abelian variety. Let � j∈JF j
0 be the

disjoint union of the smooth models of the irreducible components of S3. Under the
natural morphism

m : � j∈JF j
0 −→ S3 ⊂ A3 ⊗ Fp .

the N3(p3 +1)(p2 +1) superspecial points of � j∈JF j
0 map to N3 superspecial points

of S3. Thus each superspecial point of S3 is the image of (p3+1)(p2+1) points and this
multiplicity can be explained as follows. On each surface F j

0 a section is contracted

giving a factor p3 + 1, while the image of an Fp2 -rational fibre of F j
0 → F j

1 lies on

the image of p2 + 1 surfaces F j
0 . This can be checked by using Ekedahl-Oort strata

and their classes as follows.
Each Fp2 -rational point of F j

1 determines a fibre in the P
1-bundle F j

0 → F j
1 and

the image under m of such a fibre provides a component of the Ekedahl-Oort locus
V[3,2]. This locus V[3,2] consists of a finite union of P

1s. By [4] we know the class of
this locus:

[V [3,2]] = (p − 1)2(p6 − 1) λ2λ3 .

Since the degree of the determinant λ1 of the Hodge bundle restricted to such a P
1 is

p − 1, we find that V [3,2] has

m3,2 = deg([V [3,2]] λ1)

p − 1
= (p − 1)(p6 − 1) v(3)

irreducible components, each a copy of P
1. Here we count in the stacky sense. Each

such component contributes p2 + 1 superspecial points and we see from

m3,2 (p2 + 1) = deg(V [3,2,1]) (p3 + 1)
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that this fitswith the fact that through a superspecial point there pass p3+1 components
of V [3,2]. In fact, under the map F j

0 → A3 ⊗ Fp a section is blown down and this

section intersects the p3 + 1 fibres of F j
0 → F j

1 over F j
1 (Fp2).

We can also check that each such fibre lies on p2 + 1 irreducible components of
S3; hence we find for the number of superspecial points

N3 (p3 + 1)(p2 + 1) = deg(V [3,2,1])(p2 + 1)(p3 + 1)

in agreement with the fact that V[3,2,1] is the superspecial locus and that Ng equals the
degree of the superspecial locus for odd g.

10 Moduli of flag type quotients for g = 4

In this section we construct a smooth model for each irreducible component of the
supersingular locus S4. The model is obtained by taking the Zariski closure of the
moduli of rigid flag type quotients for g = 4 and by showing that this moduli space is
smooth.

We consider the space M = Mη of polarized flags of contravariant Dieudonné
modules

M0 ⊂ M1 ⊂ M2 ⊂ M3

satisfying

(1) M3 = A4
1,1 provided with η, a fixed quasi-polarization 〈 , 〉 that induces an iden-

tification Mt
3 = F3M3;

(2) (F, V )Mi ⊂ Mi−1 and dim(Mi/Mi−1) = i ;
(3) (F, V )i Mi ⊂ Mt

i .

We say that it is rigid if Mi = M0 + F3−i M3 for i = 0, . . . , 3.

Theorem 10.1 The Zariski closure F0 of the moduli space of rigid polarized
Dieudonné flags of length 4 with given quasi-polarization on M3 inside M is non-
singular.

Proof By [20, 6.1] we can choose generating elements x1, x2, x3, x4 of M3 in the
skeleton M̃3 = {m ∈ M3 : (F − V )m = 0} of M3 such that the pairing defined by η

satisfies
〈xi , F4x j 〉 = δi,5− j and 〈xi , F3x j 〉 = 0

for 1 ≤ i ≤ j ≤ 4. For a rigid polarizedDieudonné flagM themoduleM2 is generated
by FM3 and a vector

v0 =
4∑

i=1

ai xi ∈ M3/FM3
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with the condition 〈v0, F2v0〉 ∈ W . Viewing the coefficients ai as lying in k, this
amounts to the equation

f := a1a
p2

4 − a p2

1 a4 + a2a
p2

3 − a p2

2 a3 = 0 .

This defines a smooth surface F2 in P
3. This surface was studied in detail by Katsura

[18]. Locally on this surface wemay assumewithout loss of generality that a1 �= 0 and
that a1 = 1. Now M1 is generated by FM2 and a 2-dimensional subspace M1/FM2 in
M2/FM2. Since a1 = 1 we can assume that this 2-dimensional subspace is generated
by non-zero elements v and w with

v = a5v0 + a6Fx2 + a7Fx3 + a8Fx4, w = a9Fx2 + a10Fx3 + a11Fx4 . (6)

We then have the conditions

〈v, Fv〉 ∈ W , 〈v, Fw〉 ∈ W , 〈Fv,w〉 ∈ W . (7)

Viewing the coefficients as elements of k we find three equations all divisible by a5.
But a5 = 0 yields a flag that is not rigid; indeed,

M1+FM3 = (F, V )M2+ Aw+FM3 = (F, V )(Av+FM3)+ Aw+FM3 ⊂ FM3

but M2 �⊂ FM3, hence M2 �= M1 + FM3, contradicting rigidity. Removing the factor
a5 from the equations (7) by considering 〈v, Fv〉/a5, 〈v, Fw〉/a5 and 〈Fv,w〉/a p

5 ,
we get the equations

g1 := a1a
p
8 − a p

1 a
p−1
5 a8 + a2a

p
7 − a p

2 a
p−1
5 a7 + a p

3 a
p−1
5 a6 − a3a

p
6 = 0,

g2 := a1a
p
11 + a2a

p
10 − a3a

p
9 = 0 ,

g3 := a p
1 a11 + a p

2 a10 − a p
3 a9 = 0 .

(8)

Remark 10.2 The reader may verify that if the point (1 : a2 : a3 : a4) ∈ F2(k) is not
rational over Fp2 then we may choose as w the element

(F − V ) v0 .

Indeed, it satisfies g2 = 0 and g3 = 0 for any non-zero choice of v; namely with

a1 = 1 we have a1(a
p2

4 − a4) + a2(a
p2

3 − a3) − a3(a
p2

2 − a2) = 0 and similarly for
g3.

Nowwefirst look at a pointwitha5 �= 0. If botha9 anda10 vanishwehave by g3 = 0
that w = 0. So we may assume that, say, a9 �= 0 and then have a1 = a5 = a9 = 1
and by changing v to v − a6w we may assume a6 = 0. The Jacobian matrix of the
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equations f , g1, g2, g3 with respect to the variables a j for j = 2, 3, 4, 7, 8, 10, 11 is

⎛
⎜⎜⎜⎝
a p2

3 −a p2

2 −a p2

1 0 0 0 0
a p
7 −a p

6 0 −a p
2 a

p−1
5 −a p

1 a
p−1
5 0 0

a p
10 −a p

9 0 0 0 0 0
0 0 0 0 0 a p

2 a p
1

⎞
⎟⎟⎟⎠

and this is of rank 4.
Next we look at the case where a5 = 0. The vanishing of a9 and a10 implies by

g3 that a11 = 0, so we may assume that a9 �= 0 or a10 �= 0. Again without loss of
generality we may assume a9 �= 0. Changing v by a multiple of w we may assume
a6 = 0. If now a7 = 0 then g1 forces a8 = 0, hence v = 0. So we may assume that
a7 �= 0. Then it suffices to treat the case of a1 = a7 = a9 = 1 and a6 = 0. Then
the Jacobian matrix of the equations f , g1, g2, g3 with respect to the variables a j for
j = 2, 3, 4, 5, 8, 10, 11 is

⎛
⎜⎜⎜⎝
a p2

3 −a p2

2 −a p2

1 0 0 0 0
a p
7 0 0 (a p

1 a8 + a p
2 a7)a

p−2
5 −a p

1 a
p−1
5 0 0

a p
10 −a p

9 0 0 0 0 0
0 0 0 0 0 a p

2 a p
1

⎞
⎟⎟⎟⎠

which is of rank 4 as required. This shows that F1 is non-singular. Since F0 is a
P
1-bundle over F1 the result follows. ��
By writing Fi for the Zariski closure in M of the moduli space of rigid polarized

Dieudonné flags Mi ⊂ · · · ⊂ M3 we get a sequence

F0
π0−→ F1

π1−→ F2
π2−→ F3 = point

with dimFi = 4 − i for i = 0, 1, 2.
We now describe the fibres of the morphism π1 : F1 → F2. We start by remarking

that by using the symmetry of F2 there is no loss of generality if we look at the fibre
of a point (a1 : a2 : a3 : a4) of F2 with a1 = 1. If one of a2, a3, a4 lies in Fp2

then the point lies on one of the lines of F2. Indeed, if a4 ∈ Fp2 then such a line is
parametrically (1 : t : t : a4), while if, say, a2 ∈ Fp2 then such a line is (t : a2 : 1 : t).

For describing the fibre over a point (1 : a2 : a3 : a4) we consider the equations

a p
8 + a2a

p
7 − a3a

p
6 − a p−1

5 (a8 + a p
2 a7 − a p

3 a6) = 0 , (9)

and

a p
11 + a2a

p
10 − a3a

p
9 = 0, a11 + a p

2 a10 − a p
3 a9 = 0 . (10)
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By the two equations g2, g3 of (10) we eliminate a11 and get

a p
10

a p
9

= a p2

3 − a3

a p2

2 − a2
. (11)

In the neighborhoodof anFp2 -valuedpoint ofF2, say (1 : a2 : a3 : a4), the expressions
a2 − a p2

2 and a3 − a p2

3 are local coordinates. This shows that the function field of F1
can be generated over the function field of F2 by adjoining the pth root of (a2 −
a p2

2 )/(a3 − a p2

3 ) as determined by (11) and then adjoining a further element via an
Artin-Schreier equation (9). Hence the degree of inseparability of F1 over F2 is p.

Over an openneighborhoodU of aFp2 -rational pointwith local coordinatesa2−a p2

2

and a3 − a p2

3 , the equation (11) describes an inseparable cover of the blow-up of U
(in U × P

1 with coordinates (u : v) on P
1) given by

u(a2 − a p2

2 ) − v(a3 − a p2

3 ) = 0, u/v = (a10/a9)
p .

Thus we see that the morphism π1 : F1 → F2 factors via an inseparable cover of the
blow-up F̃2 of F2 in the Fp2 -rational points.

If we have a point not on a line we may assume a9 = 1 and then that a6 = 0. The
reduced fibre is a curve in P

2 with coordinates (a5, a7, a8) given by

a p
8 + a2a

p
7 − a p−1

5 (a8 + a p
2 a7) = 0 .

This is a curve with one singularity of order p − 1, a cusp located at a5 = 0 and
a8 + a1/p2 a7 = 0.

Next we consider the case of a point on a line. Since the automorphism group of
F2 acts transitively on the set of lines defined over Fp2 (by Witt’s theorem, see [18])
we may assume that the line is given as (1 : t : 0 : 0). The last two equations give
(t p

2 − t)a p
10 = 0 and the first equation yields a p

8 + ta p
7 − a p−1

5 (a8 + t pa7) = 0, again
a curve with a cusp. So if the point is not a Fp2 -valued point of F2 we get a p

10 = 0
and as reduced fibre again a curve with a single singularity, a cusp. If t ∈ Fp2 , then
the first equation splits as the union of p lines passing through one point.

We summarize.

Proposition 10.3 Let F̃2 be the blow-up ofF2 in allFp2 -rational points. Themorphism

π1 : F1 → F2 factors through F1 → F̃2 → F2. The morphism π ′
1 : F1 → F̃2

has inseparability degree p. The reduced fibre over a non-Fp2 -rational point is an
irreducible curve with one singularity, a cusp singularity of order p − 1, while the
fibre over a point on an exceptional curve is a union of p lines meeting in one point.
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11 Interpretation of themorphismF1 → F2

The morphism π1 : F1 → F2 is inseparable and factors through the blown-up surface
F̃2. We give an interpretation of this factorization by describing the blow-up F̃2 in
terms of Dieudonné modules and by showing thatF1 is realized in a natural P2-bundle
over F̃2.

We begin with a moduli interpretation of the fibers of F̃2 → F2.

Proposition 11.1 The fiber of F̃2 → F2 over a point (M2 ⊂ M3) ∈ F2(k) is given by
a set of lines in a 2-dimensional vector space

{L ⊂ V−1Mt
2/FM2 | dim L = 1, L contains (F, V )M2 mod FM2}.

Proof We begin by observing two facts:

(i) (FM2 ⊂) (F, V )M2 ⊂ V−1Mt
2

(ii) V−1Mt
2/FM2 is a k-vector space of dimension two.

Indeed, (i) follows from V (F, V )M2 ⊂ (F, V )2M2 ⊂ Mt
2. To prove (ii), consider the

dual of FM3 ⊂ M2 ⊂ M3:
Mt

3 ⊂ Mt
2 ⊂ V−1Mt

3.

By V−1Mt
3 = F−1Mt

3 = F2M3 ⊂ FM2, we have Mt
2 ⊂ FM2. This means that

V (and therefore p) kills V−1Mt
2/FM2, whence V−1Mt

2/FM2 is a k-vector space.
Looking at the inclusions Mt

2 ⊂ FM2 ⊂ V−1Mt
2, we have

dim V−1Mt
2/FM2 = dim V−1Mt

2/M
t
2 − dim FM2/M

t
2

= 4 − dim FM2/F
2M3 − dim V−1Mt

3/M
t
2

= 4 − 1 − 1 = 2

and this proves ii). If (M2 ⊂ M3) represents a point of F2 that is not rational over Fp2

then FM2 �= V M2 and L is unique. If (M2 ⊂ M3) represents a Fp2 -rational point,
then FM2 = V M2 and the fibre is a P

1. ��
Remark 11.2 We point out that the Dieudonné module V−1Mt

2/FM2 is self-dual.

We now describe the morphism π ′
1 : F1 → F̃2. On F̃2 we have by Proposition

11.1 the subspace L ⊂ V−1Mt
2/FM2. It determines a W -module L̃ with

(F, V )M2 ⊂ L̃ ⊂ V−1Mt
2 ,

the inverse image of L under the projection V−1Mt
2 → V−1Mt

2/FM2. It has the
property that outside π̃−1

2 (F2(Fp2)) we have L̃ = (F, V )M2, where we write π̃2 for

the blow-down morphism F̃2 → F2. We can now consider over a point of F̃2 the
3-dimensional vector space M2/L̃ . This should define a rank 3 vector bundle B, but
as the equations show we can realize B only after an inseparable base change.
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Lemma 11.3 The threefold F1 is a divisor in a P
2-bundle P(B) with B the rank 3

vector bundle defined by M2/L̃ over a surface F̃ ′
2 obtained by an inseparable base

change F̃ ′
2 → F̃2 of degree p.

Proof Recall that in order to define M1 ⊂ M2, we chose a basis

v = a5v0 + a6Fx2 + a7Fx3 + a8Fx4, w = a9Fx2 + a10Fx3 + a11Fx4

as in (6) with 〈v, Fv〉, 〈v, Fw〉, 〈Fv,w〉 all in W . The equations (g2) and (g3) corre-
spond to the inseparable base change F̃ ′

2 → F̃2 given on the locus with a1 �= 0 by
(11)

(a9/a10)
p = (a2 − a p2

2 )/(a3 − a p2

3 ) .

Then on F̃ ′
2 we have the bundle P(B). If a5 �= 0 the morphism F1 → F̃2 is defined

by sending (M1 ⊂ M2 ⊂ M3) to the point defined by L := M1 ∩ V−1Mt
2 mod FM2.

Indeed, by (F, V )M2 ⊂ M1, the subspace L contains (F, V )M2 mod FM2, and L is
the one-dimensional space generated byw of (6), since one can check 〈Vw, M2〉 ⊂ W
and if a5 �= 0, then 〈V v, M2〉 �⊂ W .

For a5 �= 0 we find from 〈v, Fv〉 ∈ W an equation

a1a
p
8 + a2a

p
7 − a3a

p
6 − a p−1

5 (a p
1 a8 + a p

2 a7 − a p
3 a6) = 0 .

This defines a rational curve with a cusp in P
2 = P(M2/L̃). As F1 is defined as the

closure of the space of rigid flags, we obtain that this equation defines F1 in P(B).
Observe that in order to analyze this wemay assume as we did in the preceding section
that a1 = 1 and a2 �= 0 and then a6 = 0 and the curve can be written in coordinates
(a5 : a7 : a8) as

a1a
p
8 + a2a

p
7 − a p−1

5 (a p
1 a8 + a p

2 a7) = 0 .

The cusp is determined by a5 = 0 and a8 + a1/p2 a7 = 0. ��
In particular we see that after an inseparable base change the bundle B admits a

nowhere vanishing section.

12 The Hodge bundle on the supersingular locus

The description of principally polarized supersingular abelian varieties of dimension
4 via a flag gives us for each irreducible component S of S4 a morphism F0 → S and
a fibration of F0

F0
π0−→ F1

π1−→ F2 → F3 ,

where Fi for i = 0, . . . , 3 is the closure of the moduli space of rigid polarized flag
type quotients Y3 → · · · → Yi . Note that F3 is a point.

We have seen above that these spacesFi are non-singular. In the following we view
these as moduli stacks. This corresponds to dividing by the appropriate automorphism
groups, here by Aut(Y3, η).
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Lemma 12.1 For each irreducible component S of S4 inA4⊗Fp the natural morphism
F0 → S is a morphism of degree p.

Proof Let x be a geometric point of F2. Let F1,x be the fiber π−1
1 (x). We claim

that π−1
0 (F1,x ) → Ag is a p-to-1 map onto the image. Indeed if x is represented

by (a1, a2, a3, a4) ∈ k4 for an algebraically closed field k, then the fiber π−1
1 (x) is

described in a5, . . . , a11 by

g1 := a1a
p
8 − a p

1 a
p−1
5 a8 + a2a

p
7 − a p

2 a
p−1
5 a7 + a p

3 a
p−1
5 a6 − a3a

p
6 = 0,

g2 := a1a
p
11 + a2a

p
10 − a3a

p
9 = 0 ,

g3 := a p
1 a11 + a p

2 a10 − a p
3 a9 = 0 .

But g2 is the p-th power of

g′
2 := a1/p1 a11 + a1/p2 a10 − a1/p3 a9 .

The space defined by g1, g′
2, g3, say F ′

1,x , coincides on an open part of F1 with the
fiber of V11 → V2 studied in [22, 9.7], where V2 corresponds to our F2 and V11 is the
non-garbage component considered in [22, 9.7]. Note thatF ′

1,x is a closed subscheme
ofF1,x . Thanks to the proof by Li andOort (cf. [22, 7.11]), themap (π0)

−1(F ′
1) → Ag

is one-to-one on its image as stacks; indeed, the proof of Li and Oort was done by
fiberwise arguments. The claim follows. ��

The space Fi carries an abelian variety Yi . Its cotangent bundle along the zero
sectionmay be described by Dieudonné theory. Using contravariant Dieudonné theory
with the Dieudonné module Mi of a fibre Yi of Yi , we have

Lie(Yi )
∨ = V Mi/pMi .

The flag type quotient provides an inductive construction. For i = 2, 1, 0 we have the
exact sequence

0 → pMi+1/pMi → V Mi/pMi → V Mi+1/pMi+1 → V Mi+1/V Mi → 0 .

In the Grothendieck group of vector bundles on Fi we thus get the identity

[Lie(Yi )
∨] = [π∗

i (Lie(Yi+1)
∨)] − [Qi ] + [Q(p)

i ] ,

where Qi is the locally freeOFi -module of rank i+1 corresponding to V Mi+1/V Mi .
Moreover, the exact sequence for i = 1 and i = 2

0 → V Mi/pMi+1 → V Mi+1/pMi+1 → V Mi+1/V Mi → 0

gives us an exact sequence of OFi -modules

0 → Ui → π∗
i (Lie(Yi+1)

∨) → Qi → 0
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with Ui the locally free OFi -module defined by V Mi/pMi+1. For i = 0 we have

0 → V M0/V Mt
1 → V M1/V Mt

1 → V M1/V M0 → 0

and this gives a short exact sequence of OF0 -modules

0 → U0 → π∗
0 (K1) → Q0 → 0

with K1 the locally free sheaf corresponding to the Dieudonné module of ker(Y1
η1−→

Y t
1).
In the following we will abuse the notation Qi also for the pullback of Qi to Fi−1

in order to simplify notation. Since Lie(Y3)
∨ is trivial of rank 4 we get from the above

the class of the Hodge bundle E = Lie(Y0)
∨ in the Grothendieck group of vector

bundle on F0.

Proposition 12.2 The class of Hodge bundle ofY0 in the Grothendieck group of vector
bundles on F0 is given by

[E] = 4 − [Q2] + [Q(p)
2 ] − [Q1] + [Q(p)

1 ] − [Q0] + [Q(p)
0 ]

= 4 + [U2] − [U (p)
2 ] − [Q1] + [Q(p)

1 ] − [Q0] + [Q(p)
0 ] ,

where 4 stands for the class of trivial rank 4 bundle and where U2 and Q0 have rank
1, while Q1 has rank 2.

Note that here we abuse the notation Qi for the pull back of Qi to F0.
We now set

�i = c1(Qi ) for i = 0, 1, 2.

We may consider �i as a class living on Fi , but we will denote the pull back π∗
0 (�1),

π∗
1 (�2) and π∗

0 (π∗
1 (�2)) also by �1, �2 in order to simplify notation.

Proposition 12.2 implies the following.

Proposition 12.3 The total Chern class c(E) of the Hodge bundle on F0 is given by

c(E) = (1 − �2)(1 + p �1 + p2c2(Q1))(1 + p �0)

(1 − p �2)(1 + �1 + c2(Q1))(1 + �0)
.

Corollary 12.4 Wehave c2(Q1) = (�20+�21−�22)/2.Moreover, the class �20 is a pullback
from F1.

Proof We deduce λ1 = (p − 1)(�0 + �1 + �2) and

2 λ2 − λ21 = (p2 − 1)(2 c2(Q1) − �20 − �21 + �22)

and since λ21 = 2 λ2 on A4 the formula for c(E) follows. Since Q1 lives on F1 it
implies that the class �20 is a pullback from F1. ��



The cycle class of the supersingular… Page 27 of 40    95 

13 Loci with a-number≥ 2 for g = 4

The abelian variety corresponding to the generic point of an irreducible component S
of S4 has a-number equal to 1. An irreducible component of the closed stratum of S
where a ≥ 2 is of one of two types, as shown in [22, Section 9.9]. See also [12]. A
component of the preimage of the first type for the natural morphism F0 → S maps
under F0 → F2 to a line on F2, while such a component of the second type maps
either dominantly to F2, or maps to a line of F2, or maps to a point of F2(Fp2).

13.1 Loci of the first type.

The first type parametrizes flag types M3 ⊃ M2 ⊃ M1 ⊃ M0 such that there exists a
totally isotropic subspace I ofM3/FM3 such thatM1 ⊂ N with N ⊂ M3 the submod-
ule generated by I and FM3. Since the automorphism group of M3 acts transitively
on totally isotropic subspaces defined over Fp2 , we may assume that I = 〈x1, x2〉. In
terms of abelian varieties, such a flag type can be obtained from a flag type

E4 = Y3
ρ3−→ Y2

ρ2−→ Y1
ρ1−→ Y0 (12)

with quasi-polarization η3 : Y3 → Y t
3 with ker η3 = E4[F3] if the composition

ρ2ρ3 : E4 → Y1 factors through

1E2 × FE2 : E4 −→ E2 × E2/E2[F] .

By identifying E2 × E2/E2[F] with E4 and thus factoring ρ2ρ3, we put Z2 = E2 ×
E2/E2[F] ∼= E4 and Z1 = Y1 and then associate to it the flag

E4 = Z2
ζ2−→ Z1

ζ1−→ Z0 , (13)

where deg(ζ2) = p3 and deg(ζ1) = p and θ2 : Z2 → Zt
2 is a quasi-polarization with

kernel equal to E4[p].
This can be described by Dieudonné modules: consider the Dieudonné module

N2 = 〈x1, x2, Fx3, Fx4〉 with x1, x2, x3, x4 the skeleton of M3. It satisfies Nt
2 =

F2N2. We choose a submodule N1 generated by u = ax1 + bx2 + cFx3 + dFx4 and
FN2 with 〈u, Fu〉 = 0. By viewing u as an element of N2/FN2 and the coefficients
a, b, c, d in k we obtain an equation

ad p − a pd + bcp − bpc = 0 . (14)

Then dim N2/N1 = 3 and dim N1/Nt
1 = 2. We then can choose a Dieudonné sub-

module N0 with Nt
1 ⊂ N0 ⊂ N1 with dim N1/N0 = 1. The filtration N0 ⊂ N1 ⊂ N2

corresponds to (13). The moduli of N2 ⊃ N1 defines a surface G1 in projective space
P
3 given by (14) and choosing N0 defines a P

1-bundle G0 → G1.
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Let S1 be the subscheme of G1 where a = b = 0 and let S0 be the inverse image
of S1 under G0 → G1. We now discuss how to map G1\S1 to F1. Given u we choose
v0 as a multiple of u. This determines a submodule M2 of M3, generated by FM3
and v0, that contains N1 and we set M1 = N1. Note that M2 is generated also by
ax1 + bx2 and FM3. Then we can choose two generators v,w for M1 modulo FM2
and assuming that a �= 0 we may choose

v = a5v0 + cFx3 + dFx4 = ax1 + bx2 + cFx3 + dFx4, w = Fx2 .

In terms of the coordinates in Section 10 we have

a = a1a5, b = a2a5, c = a7, d = a8 .

The fibre of G1\S1 → F1 over a point v0 = (1 : t : 0 : 0) of F2 consists of all
(a : b : c : d) with d p − a p−1d + tcp − t pa p−1c = 0; it is defined by a Lefschetz
pencil onG1 defined by b = ta.We refer to the paper [18] for such a Lefschetz fibering.
The general fibre is a rational curve with one singularity given by a = 0.

Recall that the automorphism group of F2 acts transitively on the set of lines of F2
defined over Fp2 . For each line L defined over Fp2 on the surfaceF2 we find a surface

isomorphic to G1 that is contained in the inverse image π−1
1 (L).

The fibration G0 → G1 has a natural section S by taking Z0 = Z2/Z2[F]. Note
that then N0 = FN2 ⊂ N1. This implies that Z0, determined by N0, is constant for
all choices of N1. It also implies that this section is blown down under the natural
morphism G0 → S4 ⊂ A4 that associates to a flag type quotient (13) the isomorphism
class of Z0. We summarize:

Let M3 = A4
1,1 with quasi-polarization such that Mt

3 = F3M3.

Proposition 13.1 For each totally isotropic subspace of M3/FM3 there is a threefold
G0 that is a P

1-bundle G0 → G1 over a surface given by (14) with a section and
a morphism G0\S0 → F0 whose image is a locus of supersingular abelian 4-folds
with a ≥ 2. Under G0\S0 → F2 it maps to a line on F2. Under the morphism
G0 → A4 ⊗ Fp the section of G0 → G1 is blown down.

13.2 Loci of the second type

An irreducible component of the preimage under F0 → S of the locus of a-number
≥ 2 of the second type inside an irreducible component S of the supersingular locus S4
is realized as follows. It is the locus ofM• withM0 ⊂ N ⊂ M3 for a fixed superspecial
quasi-polarizedDieudonnémodule N with Nt = FN . Such N come in three sorts: the
first sort with N = FM3, the second with N = 〈x1, Fx2, Fx3, px4〉 and the third sort
where N = 〈x1, x2, px3, px4〉 after we change generators as in the proof of Theorem
10.1.

In this subsection we treat the case where N is of the first sort, while the case of
the second sort in treated in the next section and the last case is left to the reader. The
first case is characterized by the condition M1 ⊂ FM3. This condition is determined
on F1.
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Let T be an irreducible component in F0 of the preimage of an irreducible compo-
nent of the locus with a ≥ 2 of the second type and first sort.

The condition M1 ⊂ FM3 can be paraphrased by saying that the natural homo-
morphism

M1/(F, V )M2 → M2/FM3 (15)

induced by M1 ↪→ M2 is zero. Let L be the sheaf corresponding to the module
M1/(F, V )M2 and U2 the one corresponding to V M2/pM3. The invertible sheaf U2
lives on F2, and L lives on F1 and is invertible only outside π−1

1 (F2(Fp2)). Thus we

work on the open setF0
1 that is the complement ofπ−1

1 (F2(Fp2)). The homomorphism
(15) defines a homomorphism of sheaves

ψ : L → π∗
1 (U (p)

2 ) .

The locusH1 can now be defined as the Zariski closure in F1 of the zero locus D(ψ)

in F0
1 of the map ψ .

Lemma 13.2 The cycle class of the Zariski closure in F1 of the zero locus D(ψ) of ψ
equals

[D(ψ)] = p �1 − (p2 + 1)�2 + e ,

where e is a class with support in the fibres of π1 over F2(Fp2).

Proof Wework on the open setF0
1 that is the complement of π−1

1 (F2(Fp2)). Consider
the exact sequence

0 → V M2/FM2 ∩ V M2 → M1/FM2 → M1/(F, V )M2 → 0 .

IfM2 is generated by FM3 and v0 = a1x1+a2x2+a3x3+a4x4 with (a1 : a2 : a3 : a4)
determining a point not in F2(Fp2) then FM2 ∩ V M2 = pM3 and

V M2/FM2 ∩ V M2 = V M2/pM3.

This translates into a short exact sequence of OF0
1
-modules

0 → π∗
1 (U2) → U (p)

1 → L → 0

with U1 the locally free OF1 -module determined by V M1/pM2. We view ψ as a

section of π∗
1 (U (p)

2 ) ⊗ L−1 on F0
1 with class (p + 1)[U2] − p[U1]. From Section 12

we use the identities [U2] = [4] − [Q2], [U1] = [Lie(Y2)∨] − [Q1] = [4] − [Q2] +
[Q(p)

2 ]− [Q1], hence c1((p+1)[U2]− p[U1]) = p�1 − (p2 +1)�2. When taking the
closure of the degeneracy locus of ψ we have to take into account a class with support
in the fibres over F2(Fp2) and the result follows. ��
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Corollary 13.3 A locus T of the second type and first sort as above maps dominantly
to F2.

Proof We claim that such a T is not contained in the fibres over F2(Fp2). Indeed,
otherwise T lives inside a P

1-bundle over the one-dimensional locus in F1 defined
by (a1 : a2 : a3 : a4) ∈ P

3(Fp2) and a5 = 0. This contradicts that the stratum of S
where a ≥ 2 has dimension 3, see [22, 9.9]. The claim implies that T is contained in
D(ψ) and the class is given by Lemma 13.2. The intersection number of D(ψ) with
a generic fibre of π1 equals the degree of �1 on such a fibre, that is, 1. That means that
it intersects the generic fibre of π1 and is irreducible. ��

The resulting abelian variety of a flag type with M1 ⊂ FM3 is defined by the
filtration of Dieudonné modules FM3 ⊃ M1 ⊃ M0. By forgetting M1 between FM3
and M0, we have polarized flag types

E4 = Z1
ρ1

η1

Z0

∼=

E4 = Zt
1 Zt

0

with ker(η1) = E4[F] and ker(ρ1) ∼= α2
p. The choice of ker(ρ1) in E4[F] defines a

point in the Grassmann variety G = Gr(2, 4). Note that G can be identified with a
quadric in P

5 in terms of Plücker coordinates. If we choose a basis x1, x2, x3, x4 of
the Dieudonné module of E4 with (F − V )xi = 0 and quasi-polarization with

〈xi , p x5− j 〉 = δi j , 〈xi , Fx j 〉 = 0 ,

then M0 can be generated by two vectors a = ∑4
i=1 ai xi , b = ∑4

i=1 bi xi and the
condition 〈a, b〉 ∈ W says

a1b4 − a4b1 + a2b3 − a3b2 ≡ 0 (mod p)

and this defines a hyperplane section Q = H ∩ G of the Grassmann variety. Indeed,
with the Plücker coordinates λi j = aib j − a jbi the variety G is given by λ12λ34 −
λ13λ24 + λ14λ23 = 0 and H by λ14 + λ23 = 0.

Recall that we interpret moduli in the stacky way meaning that we divide by the
automorphism groups of objects. We summarize.

Lemma 13.4 The image in S4 of an irreducible component of the locus of second type
with a ≥ 2 can be identified with (the quotient of) a hyperplane section Q of the
Grassmann variety Gr(2, 4).

We will analyze the case of loci of the second type contained in the fibres over
Fp2 -rational points on F2 in the next section.
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14 The fibres overF2(Fp2)

Here we study the fibre under F0 → F2 of a rational point ξ ∈ F2(Fp2). Since
F0 → F1 is a P

1-bundle it suffices to study the fibre under F1 → F2.
The automorphism group Aut(F2) can be identified with the quotient by its center

of the general unitary group GU4(p2) of 4-dimensional space over Fp2 that fixes the
Hermitian form

ξ1ξ̄4 − ξ4ξ̄1 + ξ2ξ̄3 − ξ3ξ̄2

where ξ̄ = ξ p2 . By a theoremofWitt this group acts transitively on isotropic subspaces
of dimension 1 and 2. This implies that it acts transitively on the set of lines of F2
and on the set of Fp2 -rational points, see [18, Appendix]. We thus may restrict to
analyzing the fibre over the point (1 : 0 : 0 : 0) of F2. This corresponds to the case
with M2 ⊂ M3 generated by v0 = x1 and FM3. The fibre π−1

1 (ξ) corresponds to the
choices of M1. It can be given by a choice of basis

v = a5v0 + a6Fx2 + a7Fx3 + a8Fx4, w = a9Fx2 + a10Fx3 + a11Fx4,

satisfying the equations g1, g2 and g3 of Section 10

a p
8 − a p−1

5 a8 = 0, a p
11 = 0, a11 = 0 .

We distinguish whether a5 �= 0 or a5 = 0.
Case i). a5 �= 0. We may assume a5 = 1 and find a8 ∈ Fp. We can change

basis of M3 by (x1, x2, x3, x4) �→ (x1 + a8Fx4, x2, x3, x4) and then may assume that
a8 = 0. Then M1 is generated inside M2 by FM2 = 〈Fx1, F2x2, F2x3, F2x4〉 and
v = x1 + a6Fx2 + a7Fx3 and w = a9Fx2 + a10Fx3. We now construct a flag of
Dieudonné modules

F2M ′
3 ⊂ Mt

1 ⊂ M1 ⊂ FM ′
3

with M ′
3 = 〈F−1x1, x2, x3, Fx4〉 and show that we can extend it to a flag type

M1 ⊂ FM ′
3 ⊂ M ′

2 ⊂ M ′
3 (16)

so that we can associate to it a point of a locus of the second type as treated in
the Section 13.2 with respect to a changed basis 〈F−1x1, x2, x3, Fx4〉 of M3. To
prove our claim we have to construct M ′

2 with (F, V )M ′
2 ⊂ M1. We take v′

0 =
α1F−1x1 + α2x2 + α3x3 + Fx4 and impose the following conditions

(1) 〈v′
0, Fv′

0〉 ∈ W , that is, α1 − α
p2

1 + α2α
p2

3 − α
p2

2 α3 = 0,
(2) Fv′

0 ∈ M1, equivalently, there exists β with Fv′
0 = α

p
1 v + βw + F2x4, that is,

α
p
2 = α

p
1 a6 + βa9 and α

p
3 = α

p
1 a7 + βa10,

(3) V v′
0 ∈ M1, equivalently, there exists γ with V v′

0 = α
1/p
1 v + γw + F2x4, that is,

α
1/p
2 = α

1/p
1 a6 + γ a9 and α

1/p
3 = α

1/p
1 a7 + γ a10.

For generic ai (that is, a7a9 − a6a10 and a9a10 not in Fp2 ) we find a solution. We then
set

M ′
2 = Av′

0 + FM ′
3
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and then by (2) we have 〈v,w, FM ′
2〉 = 〈v,w, FM2〉 = M1. Thus we have a filtration

(16) and it gives a point of a locus H1 with respect to the module M ′
3.

Case ii). Here a5 = 0. Then by g2 we have a11 = 0 and find that M1 is
generated by v = a6Fx2 + a7Fx3, w = a9Fx2 + a10Fx3 and F2M3, hence
M1 = 〈Fx1, Fx2, Fx3, F2x4〉. So M1 is fixed and this case thus yields one point.
Moreover Mt

1 = 〈Fx1, F2x2, F2x3, F2x4〉.
We thus see that the supersingular abelian variety corresponding to a generic point

of an irreducible component E of the fibre over a rational point ξ ∈ F2(Fp2) can be
viewed as the supersingular abelian variety defined by a generic point of a locus with
a ≥ 2 of the second kind with M1 ⊂ FM ′

3.
This means that there is an irreducible component S′ of S4 with model F ′

0 and a
locusH′

0 mapping dominantly toF ′
2 such that image of E andH′

0 coincide in S4 ⊂ A4.
We summarize.

Proposition 14.1 Let S be a component of S4 and F0 be the model constructed in
Section 10. The fibre inF0 over a rational point ξ ∈ F2(Fp2) consists of p irreducible
components. The image of each of these in S4 is a hyperplane section of the Grassmann
variety Gr(2, 4) and can be seen as the image of a locus of a ≥ 2 of the second type
in another component S′ of S4.

15 Superspecial points of S4

The number of points of S4 representing isomorphism classes of superspecial abelian
varieties counted in the stacky sense was given in formula (2) in Section 2 and equals

�4 = (p − 1)(p2 + 1)(p3 − 1)(p4 + 1) v(4) .

Each superspecial principally polarized abelian variety of dimension 4 defines an Fp2 -
rational point of S4 ⊂ A4. By Proposition 3.1 we have N4 = (p2 − 1)(p6 − 1) v(4)
irreducible components (again counted in the stacky sense) of S4. Each irreducible
component is the image of F0 under a degree p morphism in the stacky sense to its
image in S4 that induces a bijection between geometric points of the stacks on the
open parts of a-number one.

Lemma 15.1 We have #F0(Fp2) = (p2 + 1)3(p3 + 1)(p4 + 1).

Proof Wehave #F2(Fp2) = (p2+1)(p4+1), see for example [18], hence #F̃2(Fp2) =
(p2+1)2(p4+1) and these points are theFp2 -rational points on the exceptional curves

of F̃2. The fibre in F1 over a Fp2 -rational point of F̃2 consists of a union of p lines
through one point. So we find #F1(Fp2) = (p2 + 1)2(p4 + 1)(p3 + 1). Since F0 is a
P
1-bundle over F1 the formula follows. ��
Let J be the set of irreducible components of S4 and for j ∈ J we let F j

0 be the
corresponding smooth model. The disjoint union of these smooth models has

#(
⊔
j∈J

F j
0 )(Fp2) = N4 (p2 + 1)3(p3 + 1)(p4 + 1)



The cycle class of the supersingular… Page 33 of 40    95 

Fp2 -rational points mapping to �4 superspecial points of S4. The variety F0 contains
(p2+1)(p4+1) loci Gn

0 of the first kind, each isomorphic to G0. We have #G1(Fp2) =
(p2+1)(p3+1) (see [18]) and #G0(Fp2) = (p2+1)2(p3+1) since G0 is a P

1-bundle
over G1. On F1 these loci G1 of the first kind are disjoint and we see

#F0(Fp2) = (p2 + 1)(p4 + 1) #G0(Fp2) .

On each component Gn
0 a section of G0 → G1 is blown down. This section has

(p2 + 1)(p3 + 1) points rational over Fp2 .

Lemma 15.2 Each superspecial point of S4 lies on (p + 1)(p3 + 1) irreducible com-
ponents of S4.

Proof The number of totally isotropic subspaces of dimension 2 in a 4-dimensional
unitary space overFp2 with conjugation given by Frobenius is equal to (p+1)(p3+1).
A choice of an irreducible component corresponds exactly to the choice of a totally
isotropic subspace. ��

We thus see that under the natural map

⊔
j∈J

F j
0 −→ S4

the inverse image of each of the �4 superspecial points of S4 has

(p + 1)(p3 + 1) × (p2 + 1)(p3 + 1) × (p2 + 1)

points, where the second factor corresponds to blowing down the section of G0 → G1,
and the third one comes from the fact that each exceptional curve on F̃2 intersects
p2 + 1 proper images of the lines defined over Fp2 , in agreement with the formula

N4 (p2 + 1)3(p3 + 1)(p4 + 1) = �4 (p + 1)(p2 + 1)2(p3 + 1)2 .

16 The cycle class of S4 and intersection numbers

In this section we express the cycle class of the supersingular locus S4 for dimension
g = 4 in terms of intersection numbers.

We know that the cycle class of S4 lies in the tautological ring and is a multiple
of λ4λ2. This multiple can be determined by intersection numbers. We identify the
degree of a top-dimensional Chern class with an intersection number.

Proposition 16.1 We have [S4] = a λ4λ2 with

a = λ3λ1 [S4]
v(4)

= λ41[S4]
8 v(4)

with v(4) the proportionality constant defined in Section 2.
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Proof We have λ3λ1[S4] = a λ4λ3λ2λ1 = a v(4). In the tautological ring R4 we have
λ3λ1 = λ41/8. ��

We shall calculate the intersection number [S]·λ3λ1 for each irreducible component
S of S4. We will do this by pulling back the Hodge bundle ofA4 toF0 and calculating
the degrees of the top Chern classes of the Hodge bundle on F0.

17 Determination of intersection numbers

Our goal is to calculate the intersection number λ1λ3[S] for each irreducible compo-
nent S of the supersingular locus. For this we calculate deg(λ3λ1) on the 4-dimensional
variety F0.

By Proposition 12.3, which describes the total Chern class of the Hodge bundle, and
byCorollary 12.4 this intersection number canbe expressed in the intersection numbers
given by the monomials of degree 4 in �0, �1, �2 evaluated at the fundamental class
of F0. Note that we write �1 and �2 for their pullbacks to F0 and sometimes identify
such a monomial �a0�

b
1�

c
2 with deg(�

a
0�

b
1�

c
2).

Lemma 17.1 The following intersection numbers vanish on F0:

�40, �
2
0�

2
1, �

2
0�1�2, �

2
0�

2
2, �0�

3
2, �

4
1, �

3
1�2, �

2
1�

2
2, �1�

3
2, �

4
2 .

Proof Since dimF1 = 3 and �20 is a pullback from F1 by Corollary 12, and �1 and �2
are also pullbacks from F1 we find that �40, �

2
0�

2
1, �

2
0�1�2, �

2
0�

2
2 vanish.

Since the class �2 is a pullback from F2, which is of dimension 2, we have �32 = 0,
implying that �42 = �0�

3
2 = �1�

3
2 = 0. Similarly, �2 and �1 are induced fromF1, which

is of dimension 3, hence the monomials of degree 4 in �1 and �2 vanish. ��
Proposition 12.3 together with Lemma 17.1 implies the following relation.

Corollary 17.2 We have on F0

deg(λ3λ1) = 1

2
(p − 1)4

(
�30�1 + �30�2 + �0�

3
1 + 3 �0�

2
1�2 + 3 �0�1�

2
2

)
.

Thus we need the intersection numbers defined by the five monomials in �0, �1, �2
appearing in Corollary 17.2.

The intersection numbers (�0�
3
1, �0�

2
1�2, �0�1�

2
2) onF0 are equal to the intersection

numbers (�31, �
2
1�2, �1�

2
2) on F1 as the degree of �0 on a generic fibre of π0 is 1.

Lemma 17.3 We have deg �1�
2
2 = p2(p2 + 1) on F1.

Proof The space F2 can be identified with the surface in P
3 over Fp given by the

equation

x1x
p2

4 − x p2

1 x4 + x2x
p2

3 − x p2

2 x3 = 0

and �2 is represented by the pullback under π1 of the hyperplane class h on F2.
Therefore h2 can be represented by an effective zero cycle of degree p2 + 1. The



The cycle class of the supersingular… Page 35 of 40    95 

surface F2 is unirational (see [18]), hence h2 can be represented by p2 + 1 times
a point. The morphism π1 is inseparable of degree p, hence the pullback of a point
F2 is p times a fibre of F1. Since the degree of �1 on a fibre of π1 is p we get
deg(�1�22) = p · p · (p2 + 1). ��
Lemma 17.4 We have on F0 the relation

p �30�1 − (p2 + 1) �30�2 + p �0�
3
1 − (p − 1)2 �0�

2
1�2 − (2p2 − p + 2)�0�1�

2
2 = 0 .

Proof This follows from the fact that λ4 vanishes in the Chow ring ofAg as explained
in Section 2 and the expression for λ4 as a polynomial in the �i by Proposition 12.3
and Corollary 12.4. ��
Corollary 17.5 On F1 we have the relation

p �20�1 − (p2 + 1) �20�2 + p �31 − (p − 1)2 �21�2 − (2p2 − p + 2)�1�
2
2 = 0 .

Proof Weknow thatF0 is aP
1-bundle overF1. Therefore each cycle class ξ ∈ Ak(F0),

the dimension k Chow group ofF0, can be written uniquely as ξ = π∗
0 (ξ0)+π∗

0 (ξ1)�0
with ξ0 ∈ Ak−1(F1) and ξ1 ∈ Ak(F1). In particular, the map ξ1 �→ π∗

0 (ξ1)�0 is
injective. The result thus follows from Lemma 17.4. ��
Lemma 17.6 We have on F1 the relation

2 �20�1 − (p − 1)�20�2 + (p − 1)�21�2 − 2(p2 − p + 1)�1�
2
2 = 0 .

Proof We have the exact sequence of Dieudonné modules

0 → A → V M2/pM2 → V M2/V M1 → 0

with Lie(Y2)∨ = V M2/pM2 and Q1 = V M2/V M1. The total Chern class of the
sheaf corresponding to A has the form

c(A) = (1 − �2)(1 − p �2)
−1(1 + �1 + c2(Q1))

−1 .

Since rank(A) = 2 the third Chern class should vanish; this gives a relation on F1

2�20�1 − (p − 1)�20�2 + (p − 1)�21�2 − 2(p2 − p + 1)�1�
2
2 = 0 .

��
Lemma 17.7 On F1 we have the relation

p �20�2 − p �21�2 + 2(p2 − p + 1)�1�
2
2 = 0 .
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Proof Let H be a hyperplane section of F2 with H ∩ F(Fp2) = ∅. We work on

π−1
1 (H). Here we have that dim M2/(F, V )M2 = 3 and we thus have a rank 3 locally

free sheaf B on H determined by M2/(F, V )M2. Because of the exact sequence

0 → V M2/V M2 ∩ FM2 → M2/FM2 → M2/(F, V )M2 → 0

we have the exact sequence

0 → U2 → Lie(Y2)
(p)∨ → B → 0 ,

since V M2/V M2 ∩ FM2 = V M2/pM3. We thus find

[B] = [4] − [Q(p)
2 ] + [Q(p2)

2 ] − [U2] = [4] + [U (p)
2 ] − [U (p2)

2 ] − [U2] .

We also have the inclusions (F, V )M2 ⊂ M1 ⊂ M2 on π−1
1 (H) and we thus have

a locally free sheaf L corresponding to M1/(F, V )M2. In the Grothendieck group
we have the corresponding relation [B] = [L] + [Q(p)

1 ]. Thus we find [L] = [4] +
[U (p)

2 ] − [U (p2)
2 ] − [U2] − [Q(p)

1 ] and we see that the total Chern class of L is given
by

c(L) = (1 − p�2)

(1 − p2�2)(1 − �2)

1

(1 + p�1 + p2c2(Q1))
.

But L has rank 1, so c2(L) = 0. With c2(Q1) = (�20 + �21 − �22)/2 this gives

(p4 − p3 + 3

2
p2 − p + 1)�22 − (p3 − p2 + p)�1�2 − 1

2
p2�20 + 1

2
p2�21 = 0 .

Recall now that the class of H is �2. Multiplying the preceding relation by �2 and
using �32 = 0 we find

p�20�2 − p�21�2 + 2(p2 − p + 1)�1�
2
2 = 0 .

��
As remarked above we need five intersection numbers:

�30�1, �30�2, �0�
3
1, �0�

2
1�2, �0�1�

2
2 .

We know already the last one by Lemma 17.3. By multiplying the relations of Lemma
17.6 and 17.7 by �0 we find in total three relations coming from Lemmas 17.4, 17.6
and 17.7 between these five intersection numbers.

Corollary 17.8 We have deg(�30�1) = p(p2 + 1)(p2 − p + 1).

Proof The sum of p times the relation of 17.6 and (p− 1) times that of 17.7 gives the
relation 2p �30�1 − 2(p2 − p + 1)�0�1�22 = 0. ��
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Using the three relations and Lemma 17.3 our five intersection numbers depend on
one unknown.

Corollary 17.9 With x = deg(�0�21�2) we find that

deg

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�30�1

�30�2

�0�
3
1

�0�
2
1�2

�0�1�
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

p(p2 + 1)(p2 − p + 1)
x − 2p(p2 + 1)(p2 − p + 1)

2(p − 1 + 1/p)x − (p2 + 1)2(2p2 − 3p + 2)
x

p2(p2 + 1)

⎤
⎥⎥⎥⎥⎦ .

Remark 17.10 We have on F0

deg λ41 = 8 (p − 1)4(p2 + p + 1)

(
deg(�0�21�2)

p
− (p2 + 1)(p − 1)2

)
.

Since λ1 is ample on S4 this should be positive and this gives

deg(�0�
2
1�2) > p(p2 + 1)(p − 1)2 .

We now determine the last intersection number. Recall that the second Chern class
c2(Q1) satisfies c2(Q1) = (�20+�21−�22)/2. Furthermore, recall the cycle class [D(ψ)]
of a ‘horizontal’ a ≥ 3-locus on F1 given by

[D(ψ)] = p �1 − (p2 + 1)�2 + e

with e a class with support in the exceptional fibres as given in Lemma 13.2.

Proposition 17.11 We have c2(Q1) · [D(ψ)] = 0 and c2(Q1) · e = 0.

Proof Since Q1 is the tautological quotient of the OF1 -module associated toM2/FM2
by the universal rank 2 subbundle U1, the second Chern class can be realized as the
class of the locus where the fibre of U1 contains a fixed vector. For this we choose
an element v′ of M2/FM2 that has the property that over each affine part of F2 with
ai �= 0 (for i = 1, . . . , 4) it is of the form

v′ = α5 v0 + α6 Fx2 + α7Fx3 + α8Fx4

with the property that the equation g2 = 0, that is,

a1 α
p
8 − a p

1 α
p−1
5 α8 + a2α

p
7 − a p

2 α
p−1
5 α7 + a p

3 α
p−1
5 α6 − a3α

p
6 = 0

has no solutions with (a1, a2, a3, a4) ∈ Fp2 with ai �= 0. Indeed, choosing α5 �= 0,
α6 and α7 there are only finitely many α8 satisfying this equation. Then since α5 �= 0,
we see that this locus has zero intersection with D(ψ). We get c2(Q1) · [D(ψ)] = 0.
By the requirement that we put over F2(Fp2) we see that also c2(Q1) · e = 0. ��
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Corollary 17.12 We have (�20 + �21 − �22)(p�1 − (p2 + 1)�2) = 0.

Proof Recall that c2(Q1) = (�20 + �21 − �22)/2 and [D(ψ)] = p�1 − (p2 + 1)�2 + e
with e a class with support in the exceptional fibres. ��

By combining Corollary 17.9 and Corollary 17.12 we can determine all the inter-
section numbers.

Corollary 17.13 We have on F0

deg

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�30�1

�30�2

�0�
3
1

�0�
2
1�2

�0�1�
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= p (p2 + 1)

⎡
⎢⎢⎢⎢⎣

p2 − p + 1
−p2 + p − 1
−(p − 1)2

p2 − p + 1
p

⎤
⎥⎥⎥⎥⎦ .

Finally we are ready to calculate the coefficient f4(p) of Theorem 1.2.

Theorem 17.14 The class of the supersingular locus S4 ⊂ A4 ⊗ Fp in the Chow ring
of Ã4 ⊗ Fp equals

[S4] = (p − 1)3(p3 − 1)(p4 − 1)(p6 − 1)λ4λ2 .

Proof For each irreducible component S of S4 we calculate the degree of λ3λ1 on the
modelF0 of S. Indeed, we have [S4] = aλ4λ2 with a = λ3λ1[S4]/v(4) by Proposition
16.1. A calculation using Corollary 17.13 and taking into account the degree p of the
map F0 → S (see Lemma 12.1) yields that deg(λ3λ1) on S equals 1/p times the
degree on F0 of

(p2 − 3p + 1)�30�1 + (2p2 − 2p + 2)�30�2 + (p2 − 3p + 1)�0�
3
1

+ 4(p − 1)2�0�
2
1�2 + (5p2 − 7p + 5)�0�1�

2
2

and this equals (p − 1)4(p2 + p + 1)(p2 + 1). Multiplying this with the number
of irreducible components (p2 − 1)(p6 − 1)v(4) we find the coefficient a = (p −
1)3(p3 − 1)(p4 − 1)(p6 − 1). ��
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