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Abstract

We prove a formula for the cycle class of the supersingular locus in the Chow ring
with rational coefficients of the moduli space of principally polarized abelian varieties
of dimension g in characteristic p. This formula determines this class as a monomial
in the Chern classes of the Hodge bundle up to a factor that is a polynomial in p. This
factor is known for g < 3. We also determine the factor for g = 4.
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1 Introduction

An abelian variety over a field k of characteristic p > 0 is called supersingular if it is
isogenous to a product of supersingular elliptic curves over the algebraic closure of k.
Equivalently, by [25, Thm. 4.2], if its formal isogeny type has a Newton polygon with
all slopes equal to 1/2. Recall that the Newton polygon of an abelian variety starts at
(0, 0), ends at (2g, g) and is lower convex and satisfies a symmetry condition. The
two extreme cases are the Newton polygon with slopes 0 and 1 and break point (g, 0)
(the ordinary case) and the Newton polygon with slope 1/2 (the supersingular case).

Let A, ® F, be the moduli space of principally polarized abelian varieties of
dimension g in characteristic p > 0. The supersingular locus S, is defined as the closed
subset of principally polarized abelian varieties of A, ® IF), that are supersingular.
This locus can be considered as the most degenerate stratum in the Newton polygon
stratification on A, ® F. Its dimension is known by Li and Oort to be [g?/4] and
also the number of irreducible components is known, see below. Besides the Newton
polygon stratification there is another stratification on A, ® IF),, the Ekedahl-Oort
stratification. While the cycle classes of the Ekedahl-Oort stratification on A ® IF),
are known, the cycle classes of the Newton polgon strata in general are not. For
g = 1 and g = 2 the supersingular locus is a (closed) stratum of the Ekedahl-Oort
stratification and thus the class is known. For g = 3 the supersingular locus is not a
(closed) stratum of the Ekedahl-Oort stratification, but its cycle class was determined
in joint work of the first author with Ekedahl, and the result was presented in [10].

In this paper we will prove a formula for the cycle class of the supersingular locus in
the Chow ring with rational coefficients of a Faltings-Chai compactification flg QF,.
This formula determines this class as a monomial in the Chern classes of the Hodge
bundle up to a factor that is a polynomial in p. This shows that this class lies in the
tautological ring, a subring of the rational Chow ring of the moduli space /Ig QF,,
and is given by a beautiful formula that generalizes Deuring’s famous formula for the
number of supersingular elliptic curves.

Theorem 1.1 The cycle class of the supersingular locus Sg in the Chow ring with

rational coefficients of a Faltings-Chai compactification flg ® I, of the moduli space
Ag ® F), lies in the tautological ring. More precisely, it is of the form

Aghg—2 Ay g even,

[Sg] = fg(p) {)Lg)th"')Ll godd,

where fq(p) is a polynomial in p with rational coefficients and A; is the ith Chern
class of the Hodge bundle on Ay @ I ,.

The method for proving this rests upon a way to translate conditions on the supersin-
gularity of Dieudonné modules into degeneracy conditions of morphisms of bundles
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made from the Hodge bundle. We hope that this method can be used to show that all
the cycle classes of the Newton polygon stratification lie in the tautological ring. In
principle, the method should lead to the determination of the missing factor, but the
details of nailing this down seem formidable.

We also determine the factor f, (p) in the formula for the cycle class of the super-
singular locus for g = 4 by different methods. This determination builds upon the
method used for the case of g = 3 and calculates the degree of a Chern class of the
Hodge bundle on a component of the supersingular locus. For this we construct an
explicit smooth model of each irreducible component of Sy. In addition, for complete-
ness we give the proof for the class for g = 3 that was not published in [10]. Including
the well-known results for g = 1 and g = 2 we arrive at the following theorem.

Theorem 1.2 The cycle class of the supersingular locus Sg in the Chow ring with
rational coefficients of a Faltings-Chai compactification flg ®TF, of the moduli space
Ay, ® F), for g < 4 is given by

(p—Dx g=1

e -Dpr =D §=2
[Sg]_ 20,3 4

(p—D2(p> = D(p* — D Azhy g=3

(p— D3P = D(p* = D(p® — D aghy g=4.

We also discuss for g = 3 and g = 4 the loci in the supersingular locus where the
a-number is at least 2.

2 The moduli space A4 ® [,

By Ag we denote the moduli stack of principally polarized abelian varieties of
dimension g and by 7 : X, — A, the universal abelian variety over A,. It is a
Deligne-Mumford stack defined over Z. The moduli space A, carries a natural vector

bundle E of rank g, the Hodge bundle, defined as rr*Q}Yg J A We denote by flg a
Faltings-Chai compactification of A, as defined and treated in [6]. The Hodge bundle
extends to /Ig and will again be denoted by E.

In the rest of this paper we consider the moduli stack Ag ® I}, in characteristic
p > 0. Let CH(’@ (.flg ® IF),) be the Chow ring with rational coefficients of ./Ig ®F,.
We set A; = ¢;(E) € CHf@(.Ag ® IF,) for the ith Chern class of E fori =1,..., g,
see [7, Ch. 3]. These classes satisfy the relation

I+ a4+ 2= A4+ (=D3A) =1
and these classes generate a subring R, of the Chow ring CH{ (./Ig ® [F)) called the
tautological ring, see 5, 10]. For 0 < n < g(g + 1)/2 the graded part of R, of degree

n has abasis A" - Agf with0 < ¢; < 1and Y, ¢;i = n. The ring R, is a Gorenstein
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ring with socle generated by 115 - - - A,. We will denote the degree of this 0-cycle by
v(g) =degAira---Ag,
the Hirzebruch proportionality constant, and we have
v(g) = (=228 (1) (=3) - ¢(1 - 29),

where ¢ (s) is the Riemann zeta function, see [10]. We give a little table with relevant
values:

g |0 1 2 3 4
v(g) |1 | 1/24 | 1/5760 | 172903040 | 1/1393459200

The tautological ring of A, ® IF, is the quotient Ry /(Ag) = Ry—1.

The moduli space A, ® IF, carries two important stratifications, the Ekedahl-Oort
stratification and the Newton polygon stratification, see [26] and [27]. The strata of
the Ekedahl-Oort stratification V,, are indexed by Young diagrams or tuples u =
[i1, ..., ;] of integers with O < r < g and u; > W41, according to the usage of
[4, 10]. The largest open stratum Vg is the locus of ordinary abelian varieties. The
codimension of V,, is 3" 11;. The stratification can be extended to A,.

By [4, 10] we can calculate the cycle classes of the closed Ekedahl-Oort strata in
Ag ® F, and /Ig ® IF,. For example the cycle class of the locus of abelian varieties
with p-rank < f (corresponding to © = [g — f]) is

Vig—pl=@—D@E* =D ¥ = Drg_y 1)

and the cycle class of the smallest stratum, the locus of superspecial abelian varieties
(corresponding to u = [g, g — 1,..., 1])is

Dige—t1,..1]=@ = D@P*+ 1D (p8 + (=D®)rAa - Ag .

This formula implies as a special case a result of Ekedahl [3], namely that

S DGRt DO () @
#Aut(X) ’

where the sum is over the isomorphism classes of principally polarized superspecial
abelian varieties over FI, and v(g) the proportionality constant defined above. A for-
mula for the actual number of isomorphism classes of superspecial abelian varieties
with a level n > 3 structure is obtained by multiplying the formula for the degree of
Vig.g—1,...,1] by the degree of the natural map Ag[n] — A, (as stacks) with A, [n] the
moduli space of principally polarized abelian varieties with a level n structure.
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3 Irreducible components of the supersingular locus

The number of irreducible components of the supersingular locus S, in 4, ® I,
was determined by Deuring for g = 1, by Katsura and Oort for g = 2 ([19, 20])
and in general by Li and Oort for g > 3, [22, 4.9]. The actual number of irreducible
components in A, ® F,, is given by a class number 1, (g) for g odd and a similar class
number h;, (g) for g even. Here h , (g) (resp. h;, (g)) is the class number of the principal
(resp. non-principal) genus in the hermitian space B¢, with B the definite quaternion
algebra over Q ramified exactly at p and co. These class numbers are difficult to deal
with, see for example [16, p. 147], and one gets better and more useful formulas by
counting in a stacky way, that is, taking into account weights equal to the inverse of
the order of the automorphism groups of the objects that one counts. For example, for
g = 1 the class number of the quaternion algebra B over Q split outside p and oo, is

given by
By = P— 1 1 =3\\ 1 1 -4\ 1

with the Legendre symbols. But a stacky interpretation of this number leads to the
much more elegant formula

#AU(E) 24

with the summation over all isomorphism classes of supersingular elliptic curves
defined over F p-

We will denote by N, the number of irreducible components of the supersingular
locus in the stacky sense, that is, where each irreducible component is counted with a
certain weight w related to the automorphism group as explained below.

This number N, has the property that the number Ng[n] of irreducible components
of the supersingular locus on the moduli space Ag[n] with alevel n > 3 structure with
p prime to n equals

Ngl[n] = Ng - deg(Agy[n] — Ag) .

An irreducible component of the supersingular locus of A,[n] is given by a triple
(E#, n,v) with E a supersingular elliptic curve, n a polarization with kernel equal to
the kernel ES[F8~1] of F&~! with F Frobenius and v a level n structure, see [22] and
the next section. Since p does not divide n, a level n structure on E$ does not interfere
with the inseparable isogenies E§ — Y that give rise to the objects of an irreducible
component and descends to a level n structure on Y. So we count such an irreducible
component of the supersingular locus of A, with weight w = 1/#Aut(ES$, n).

Proposition 3.1 The number N, of irreducible components of the supersingular locus
in A, ® F,, (in the stacky sense) is

(p— D>+ D> =1 (p% — Dv(g) forg odd,
P*=DP* =1 (p¥2 =D v(g) for g even.
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The stacky interpretation that we use reduces to the mass of the principal (resp.
non-principal genus) and can be deduced from [3] or [13—15]. One finds this mass
formula also in [9, p. 123] and in [28].

For odd g the irreducible components of S, are in bijective correspondence with the
isomorphism classes of superspecial principally polarized abelian varieties of dimen-
sion g, hence the formula for N, follows immediately from Ekedahl’s result (2). For
even g one has a correction factor

P+DPP+D---(p 4+ 1)
PE+ D+ 1D (ps+1)

Here for g even the numerator can be interpreted as the number of totally isotropic sub-
spaces of dimension g /2 in a g-dimensional hermitian space over IF ,> with conjugation
given by Frobenius, while the denominator equals the number of totally isotropic sub-
spaces of dimension g/2 in a symplectic space of dimension g over I >. See also the
description in [28].

4 Flag type quotients

Work of Oda and Oort ([24]) makes it possible to parametrize the irreducible com-
ponents of the supersingular locus S, by so-called flag type quotients. For an abelian
variety X over an algebraically closed field k of characteristic p we will denote the
subgroup scheme ker(F)Nker(V) by A(X) with F and V Frobenius and Verschiebung
on X. It is a subgroup scheme of order p®X) with a(X) the a-number of X. A super-
singular abelian variety has 1 < a(X) < g and if a(X) = g and g > 2 then X is
isomorphic to the base change to k of a product Ef with E a supersingular elliptic
curve defined over IF,.

For a supersingular abelian variety X of dimension g the a-number tends to go
up when one replaces X by X/A(X), though it is not true that a(X/A(X)) >
min(g, a(X) + 1) as asserted in the proof of [22, 1.8 Lemma] that refers to [21];
see [17, Remark 3.17] for a counterexample. Nevertheless, by starting with X = X
and putting X;+1 = X;/A(X;) one arrives after g — 1 steps at a superspecial abelian
variety X,_1, that is, an abelian variety with with a(X,_1) = g, as follows from
[30, Lemma 9]. Then the kernel of the dual map is contained in ker(F$ _1), hence
one finds a homomorphism ¥ — X with ¥ = Xép_g 1 l). This implies the fact that
for a supersingular abelian variety X there exists a minimal isogeny p : E§ — X
with E a supersingular elliptic curve with the property that any other homomorphism
h : Z — X of asuperspecial abelian variety Z factors uniquely through p.Ifa(X) = 1
this minimal isogeny is obtained in g — 1 steps

Yg,I — Yg,2—> o= Yo=X
where Yo_1 = E¢ ® Spec(k) and ¥; = Yo_1/G; fori =1,...,g — 1 with G; =

ker(p) N Yg_1 [F&~1=1]. If a(X) > 1 this sequence needs not be unique. Taking into
account also the polarizations leads to the definition of a (polarized) flag type quotient.

W Birkhauser
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Definition 4.1 A polarized flag type quotient of dimension g is a diagram of abelian
varieties and homomorphisms

Ye1 Yoo o Yo
lﬂg—l \L’?g—Z lﬂ()
T

where Y/ is the dual of ¥; and the abelian variety Y,_; is superspecial with ng_; a
polarization with kernel Y, [ F$ ~1 satisfying

(1) ker(p;) C A(Y;) 'is of Qrder Pl
(2) ker(n;) Cker(V/ o F'/)forO < j<i/2.

This flag type quotient is called rigid if G; = GoNG[F&¢~ 1~ ]with Gy = ker(Y,_1 —
Yo)NYe_1[F8~1]. The term ‘rigid’ refers to the fact that in this case the corresponding
flag type is unique.

The main references for flag type quotients are [24] and [22, Sections 7,9.6,9.7].

5 Dieudonné modules and displays
The theory of Dieudonné modules makes it possible to describe flag type quotients in
terms of Dieudonné modules.

Here k will denote an algebraically closed field of characteristic p and W = W (k)
the ring of Witt vectors of k. We define a ring

A=W[F,V]/(FV —-p,VF—p,Fa—a°F,aV —Va’,Va e W)
andset Ay :=A/(F = V).
A polarized flag type quotient as described in Definition 4.1 corresponds to a flag
of contravariant Dieudonné modules

Moy C My CMyC---C Mg

with dual modules M/ satisfying
() Mgy = A‘f’l provided with a quasi-polarization
() Mgy @w ML_y — Q(W),
with Q(W) the field of quotients of W, that induces an identification M ;_1 =
F& 1M, _y;
2) (F,V)M; C M;_y anddim(M; /M;_y) =ifori =0,...,¢g—1;

) Birkhauser
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(3) (F,V)IM; C M! fori =0,...,g— 1.

We call such a flag a polarized Dieudonné flag of length g. It is called rigid if M; =
Mg + Fe~1- Mgy fori =0,..., g — 1. We observe that rigidity implies

M; =My + F M,y form <i<(g—1).

We can translate rigid polarized flag type quotients in terms of displays, replacing
Dieudonné modules by displays. We recall the definition of displays (cf. [29, Section
1]). Let R be a commutative unitary ring of characteristic p. Let W(R) be the ring
of Witt vectors. Let f : W(R) — W(R) be Frobenius and v : W(R) — W(R)
Verschiebung. Set Ig = v(W(R)). A display over R is a quadruple (P, Q, F, v—h
consisting of a finitely generated projective W (R)-module P, a W(R)-submodule Q
of P and homomorphisms F : P??) — Pand V™' : Q) — P, where MP) .=
W(R) ®j,wr) M, with the properties:

(1) IrRP C Q C P and there exists a decomposition of P into a direct sum of W(R)-
modules P = L @ T, suchthat Q = L @ IrT;
(ii) V~!is an epimorphism;
(iii) Forx € P and w € W(R) we have V~!(1 ® v(w)x) = wFx.

By [29, Lemma 9], we have an isomorphism
vieF:LeT)?” > P. (3)

The matrix (with respect to a basis of P) associated to this isomorphism is a general-
ization of the classical display ([23]).

Remark 5.1 If R is aperfect field, then P is the usual Dieudonné module, Ig = p W(R)
and Q is the V-image V P, so Q is determined by the Dieudonné module P. Butif R
is not a perfect field, then Q is not determined by P together with F, V; conversely
P is determined by the V~!-image of Q?).

By a result of Li-Oort [22, 3.7] the moduli space of polarized Dieudonné flags of
length g exists and is projective. Moreover, by [22, 3.7] the moduli of rigid polarized
Dieudonné flags of length g exists and is quasi-projective, and by [22, 7.6] it is non-
singular.

6 The cycle class of the supersingular locus

In this section we will show that the cycle class of the supersingular locus S, in A, ®F,
lies in the tautological ring R, generated by the Chern classes A; (i = 1, ..., g) of the
Hodge bundle E on a Faltings-Chai compactification of A, ® F, and give a formula
for it that fixes the class up to a multiplicative constant.

Here the cycle class is taken in the Chow ring with rational coefficients of a Faltings-
Chai compactification A, ® F, of A, ® .

W Birkhauser
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Theorem 6.1 The cycle class of the supersingular locus on A, ®F , in CH(B (,Zlg ®F),)
is a non-zero multiple of Aghg_ -+ A1 if g is odd and of Aghg_2 - - - A2 if g is even.
The multiple is a polynomial in p with rational coefficients.

Before we give the details of the proof we describe the set-up. For the proof we will
use the presentation of Frobenius on the covariant Dieudonné module M of p-rank
0 and a-number 1 with a principal quasi-polarization (, ) as given by Oort in [27].
His description of the display of such a module M is as follows. With W the Witt
ring of k, an algebraically closed field of characteristic p > 0, there exists a W-basis
el,...,€g,Ceyl,...,e that is symplectic (meaning that {(e;,e;) = 0 fori,j < g
and for i, j > g and (e;, egyj) = 6;; for 1 < i, j < g) such that Frobenius is given
by the formulas

2g
Fej :Zyijeh I=<j=<g,

i=1

2g
ej = V(Z)/ijei)7 (g+1=j=2¢),
i=1

where y = (y;;) is a W-valued 2g x 2¢ matrix which is symplectic in the sense that

0 1\, (0 1,
()= 8)

We write y as a matrix of g x g blocks

ab
V=(Vij)=(cd>~

We denote the Frobenius endomorphism of the Wittring W by o . Note that the o-linear
map F is given by the matrix
a pb
(C pd ) '

Oort shows ([27, p. 191] that if M has p-rank 0 and a-number 1 we may choose the
basis such that the matrix y is of the form (called normal)

=g rap=ap
ajj =dijj = o . Cij = ,
0 i#j+1, 0 else

and b;j; = O fori # 1. In particular, since we assume p-rank zero we have a;; = 0
fori =1,...,g,see[27, page 191] after Lemma 2.2.

) Birkhauser
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Lemma 6.2 For a normal form y we have y; 2o =0 fori =2,...,gand y1j; =0
forj=g+1,...,2¢ — 1and y1 2, = —1. Moreover, the square matrix

V2,841 -+ V2,2¢—1
V= : :
Vg.g+1 " Vg 2g—1

is symmetric.

Proof We have ab' = ba' and b'd = d'b. In view of the shape of the matrices a and
d the result follows as y is symplectic. O

We now change this normal form into a so-called strong normal form as follows. We
can take y;; as a Teichmiiller lift fori # g and j # 2g—1, after changing the basis {e; }
of M. Now we consider the y; j only for2 <i < gand g < j < 2g — 1, as the others
are kept as Teichmiiller lifts under the following operation. Let ¢;; := (y;,; —[vi, ;D /p,
where [u] denotes the Teichmiiller lift of # € k. We replace ej 1 by ej11 + ptije;
and egy; by egyi + ptijej 1. After the change this new basis is still symplectic
and the new y; ; becomes the Teichmiiller lift [;;] and the new ;41,11 becomes
Yitl, j+1 + tg.; by symmetry (Lemma 6.2), similar things hold for y;11_g ¢+;—1 and
Vj+2—g.g+i; at the same time the other new y;/ ;> do not change.

By carrying out this operation going from lower i + j to higher, we get the desired
the basis. We call such (y;;) a strong normal form.

Given such a basis in strong normal form, we have according to [27, Lemma 2.6]
that there exists an element P € A such that

g 2 _
Fzgel — Pe1 with P = Zzpj*gyi;lg*] F2g+l*]*l , (4)
i=1j=¢g

with Fx = x? F for x € W and repeated application of F is in the o -linear sense (cf.
[27, p. 195]).

Remark 6.3 We know that the Ekedahl-Oort stratum V,, with u = [g, 1] corresponding
to p-rank 0 and a-number 2 has codimension 1 in the p-rank O locus Vj, hence the
generic point of every irreducible component of Vjy has a = 1. Moreover, by the results
of Li-Oort [22] we know that each irreducible component of the supersingular locus
S, has an open dense subset where the a-number equals 1.

One can read off supersingularity from the matrix y in strong normal form using
Oort’s result on the action of F on e given in (4), see [27, Cor. 2.8].

Corollary 6.4 Let y be the matrix in strong normal form for the module M. Then the
module M is supersingularif y;; = 0 (mod p)for2 <i <g—1,g+1=<j<2g-2
withi+j < 2g. Equivalently, since y;j is a Teichmiiller lift, if y;; = Ofor2 <i < g—1,
g+1<j<2¢g—2withi+ j <2g.

W Birkhauser
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Note that because of the symmetry this gives a priori

Lg/2]

—1 2
Z(g—Zj):%—[gZ] = dim Vp — dim S,
j=1

conditions for supersingularity, where Vj is the p-rank zero locus.
We now begin the proof of Theorem 6.1.

Proof The strategy is now to impose consecutively conditions that together imply
supersingularity by Corollary 6.4, where we assume that y is in strong normal form;
we begin by requiring the vanishing modulo p of the column of entries that is the
transpose of

(V2,g+1’ cees Vg—l,g+1) s

and continue by requiring the vanishing modulo p of the column of entries whose
transpose is

(V3,g+2a LR ngz,g+2) )

and so on, till finally the column with transpose (yg/2,3¢/2—1, Vg/2+1,3g/2—1) of length
2 for g even or the vanishing of the single entry y(¢11),2,(3¢—1),2 for g odd.
For example, for g = 5 we require the vanishing modulo p of the red entries in the
symmetric matrix
Y26 V27 V28 V29
V36 V37 V38 V39
Y46 VAT V48 V49
V56 V57 V58 V59

<
Il

giving 4 conditions.
In terms of displays, we have an f-linearmap V' @ F : M = L ® T — M, see
(3). We write F/p for the composition

-1
VM/pM — M/pM ~—25 MipM — M/VM.

This map is given by the square matrix (¥;j)1<i<g,g+1<j<2¢- Then by the vanishing
indicated in Lemma 6.2 we may restrict to submodules of rank g — 1 generated by
g — 1 consecutive generators in VM /pM and M /V M:

G =(egr1,€542,...,€201) —> H ={(ez,e3,...,¢e,).
We have increasing filtrations fori = 1, ..., g — 1 of G and H given by
Gi = (eg+1, €442, ..., €g4i) and H; = (ez, e3,...,¢€i4+1).

That the p-rank is zero means that the image of G,_1 isin H,_1. If we identify Lie(X)
with VM / p M for the abelian variety X corresponding to the dual of M (cf. [1, 4.3.12]
and [22,5.4,7.4]), we can view the inducedmap F'/p : Gg_1 — H,_1 as asymmetric
morphism between vector bundles of rank g — 1 made from the Hodge bundle and its

) Birkhauser
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dual by Frobenius twists. Since we wish to have the filtrations we will have to work
on a cover of the p-rank zero locus Vj.

We now consider G(1), the module generated by e, 1. We require that it maps
to zero modulo p under F/p : G(1) — H(l) with the module H (i) generated by
€i41,...,€g;. We can view the semi-linear map G(1) — H(1) defined by F/p
modulo p as a morphism of a line bundle to a vector bundle of rank g — 2, where
these bundles are made from the Hodge bundle by truncations and Frobenius twists.
We consider the locus where this morphism vanishes. The vanishing of this morphism
corresponds to the vanishing modulo p of the vector (Y2, g+1, ..., Yg—1,5+1)-

If this morphism vanishes then by the symmetry y2 12 vanishes modulo p and we
can consider a morphism G(2) — H(2) induced by F/p with G(j) = G;/G ;4
generated by ey ; and require its vanishing modulo p. By induction, assuming the
vanishing modulo p of the semi-linear morphism

G(j) — H{j) )

for j = 1,...,s, we get a next morphism G(s + 1) — H{(s + 1). We require
inductively that these morphisms vanish for j = 1, ..., [(g — 1)/2] on an appropriate
covering space of Vy where we have the filtrations. Supersingularity follows if the
conditions that the induced map G(j) — H(j) is zero are satisfied successively for

The locus where the morphism (5) vanishes has cycle class expressed in the Chern
classes of G(j) and H (j); for example for j = 1 the cycle class is the (g — 2)th Chern
class of the dual of G(1) ® (H(1))".

We now work on the space of flags § on the cohomology Hle of the universal
principally polarized abelian variety as introduced in [4, Section 3]. The de Rham
cohomology sheaf HAR(X /S) for a principally abelian variety X — S is a locally free
sheaf H of rank 2g on S fitting in an exact sequence

0DE—->H-—->EY—0.

The flags in question are complete symplectic flags on H extending flags IE(i) on the
Hodge bundle with rank(E(i)) = i fori = 1,..., g. These flags on the de Rham
cohomology sheaf H satisfy E(g +i) = E(g —i)" and thus are determined by the flag
on E. This flag space is a stratified space with strata indexed by elements of the Weyl
group of the symplectic group. The stratum corresponding to the longest so-called
final element (or Kostant element) of the Weyl group (see [4, Section 3]) parametrizes
flags compatible with the action of V and F. Its closure contains the final stratum
lying over the p-rank zero locus Vj.

Thus we work on the closure of the final stratum §,, of § corresponding to p-rank
zero. This stratum allows a morphism that is generically finite to Vj. The symplectic
flags over a generic point of Vj are compatible with the action of V and F and also
compatible with the filtration defined by the basis used in the description by Oort of
the display given above.
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We can view the induced map F/p : Gg_1 — Hg_1 as a symmetric mor-
phism between modules of rank g — 1 that induces a morphism of vector bundles
G(1) — H(l) on F,. The vector bundles induced by G and H have filtrations whose
graded quotients are Frobenius twists of of the graded quotients of the Hodge bundle
E@)/E( — 1) or their duals. Therefore the Chern classes of their graded quotients
are of the form £p’i¢; where ¢; = ci(EG)/EG — 1)) (i =1, ..., g) are the Chern
classes of the graded quotients of the Hodge bundle on the final stratum and r; € Z.

The conditions on the vanishing modulo p of rows of entries can now be viewed
as a degeneracy condition for a morphism between vector bundles on §,.

We shall calculate the cycle class of the Zariski closure of the degeneracy locus of
this map over the open part of Vy where a = 1. Note that on the open stratum F, we
have a = 1. This Zariski closure is contained in the supersingular locus as the Newton
polygon can only go up under specialization. Moreover, for g > 2 each irreducible
component of S, has an open dense set with a = 1, hence intersects the degeneracy
locus over Vj.

We know that the codimension of the degeneracy locus equals the number of
conditions imposed by Corollary 6.4 in the supersingular case, hence also for the inter-
mediate cases defined by the vanishing of G(j) — H{(j). The theory of degeneracy
loci [8] tells us that the cycle classes of these degeneracy loci on §, are polynomials
in the classes ¢;.

To calculate these, we begin by remarking that the cycle class of the p-rank zero
locus Vj in .,Zlg ® [F, is a multiple of A, by [4]. We carry out induction and assume
that the image under the Gysin map from §, to A, ® I, of the class of the locus
over Vo where F'/p maps G(s) to zero in H(s) fors = 1,..., j — 1 is a multiple of
Aghg2++ Agra2j.

The locus where the morphism G(j) — H{(j) is zero has as cycle class the (g —
2 j)th Chern class of the dual of G{j) ® (H{j))Y. With r = g — 2j = rank(H {j))
this Chern class is

(=D (er(H{j) — cr—1 (H(jDec1(G(j))) .

In order to calculate the class of the corresponding locus on flg ®IF), we have to apply
a Gysin map from the Chow group of §,, to the Chow group of flg ® I, and calculate
the image of the class of the degeneracy locus.

We first look at the case j = 1.

Lemma 6.5 The pushdowns to Ag ® F, of the classes cqy_2(H(1)) and
cg—3(H(1))c1(G(1)) on §y are multiples of Ag_».

Proof The filtration on [E is extended to the de Rham bundle by E, ; = (IEg,,-)L asin
[4, Section 3]. This symplectic pairing is different from the one used in the description
of the display in [27]. Since we use covariant Dieudonné modules we have to take
duals and Frobenius twists to relate the Chern roots of G(j) and H (j) to those of the
Hodge bundle. The Chern roots of G(j) and H(j) are determined by the filtrations
G; and H;. We write [; for these roots, while writing ¢; for the roots of [E. Then the
Chern roots of H(1) given by this filtration are /5, ..., ;1 and that of G(1) is —/;.

) Birkhauser



95  Page 14 of 40 G. van der Geer, S. Harashita

The Chern class c,_2(H (1)) is then the (g — 2)th elementary symmetric function in
lp,...,lg_1. The (g — 2)th symmetric functionin l, ..., [, is a Frobenius twist of
the (g —2)th symmetric functionin/y, ..., [y (cf. the proof of [4, Lemma 12.3]) and
isamultiple of Ag_7(g—2) = cg2(E(g—2)). Now by [4, Lemma 12.3] the pushdown
of Ay_2(g —2) equals a non-zero multiple of ;5. The morphism from Fto A, ®F,
is fibered by generically finite morphisms 7; defined by forgetting a step of the flag
EG@ CEG@+1) € --- C E(g). We have for the Chern classes A, (i) = ¢, (E(i)) of the
partial flag the formula (7r;)*(A, (i + 1)) = €;41A,—1(i) + A, (i). For the Chern roots
[; that we use here a similar formula holds. Therefore, again by [4, Lemma 12.3], the
pushdown of ¢, 3(H (1))c1(G(1)) is also a multiple of A, ». O

We conclude that the class of the locus where G (1) — H (1) vanishes on Vj is a
multiple of the class Ag_» on Vj. Since this is a Chern class of a vector bundle on
A; ® F, and the class of V; is a multiple of A, we find that the class of the vanishing
locus in A, ® I, of this bundle morphism on Vy is a multiple of Aghg_».

We now carry out induction. We restrict to the locus Z where the consecutive
morphisms G(s) — H(s) fors =1, ..., j — 1 vanish. Then the class of the locus of
vanishing of (5) equals up to a sign the (g —2j)th Chern class of G(j) ® (H(j))" and
thisis cg 2 (H(j)) —cg—2j—1(H{j))c1(G(j)). By the argument given in Lemma 6.5
the class ¢y (H (j)) is a non-zero multiple of the (g — 2j)th elementary symmetric
function in g — 2j consecutive classes ¢;. We can view this as obtained by applying
a Frobenius power to {1, ..., £gz_2;, or use [4, Lemma 12.3], hence this elementary
symmetric function represents a multiple of A, 2 (g — 2 ). The pushdown of this is a
multiple of A, ;. The argument for cg_5; 1 (H(j))c1(G(j)) is similar, as in Lemma
6.5. Therefore the cycle class of the vanishing locus is a multiple of Ag_5; on the
locus Z and Z has as class a multiple of Aghg 2 -+ A2g12-2j. As Ag_7; is the Chern
class of a vector bundle on A, ® IF,, we find as cycle class on A, ® IF), a multiple of
Aghg 2+ A2g2j.

By induction we may assume that the class has as coefficient a polynomial in p with
rational coefficients as this is true for the class of Vj. By the formula for the Chern
class of G(j) ® (H{(j))" and the fact that under the Gysin map no denominators are
introduced we see that the coefficient is a polynomial in p. This finishes the proof of
Theorem 6.1. O

Remark 6.6 1) By analyzing more precisely the characteristic classes of the degeneracy
loci in the proof, it should be possible to determine the multiple f(p) as a polynomial
in p, but this involves many subtleties. ii) By interpreting Newton polygon strata
contained in the p-rank zero locus as degeneracy loci as done in the proof of Theorem
6.1 we saw that the cycle classes of these loci lie in the tautological ring. This suggests
that all Newton polygon classes are tautological.

7 Moduli of flag type quotients forg = 3

In this section and the next we calculate the cycle class of the supersingular locus S3.
We consider an irreducible component of the space of polarized flags of Dieudonné
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modules for g = 3, defined by the choice of a quasi-polarization on Ail. This space
is the Zariski closure of the moduli of rigid polarized Dieudonné flags. A description

was given in [22, p. 58]. Thus we look at polarized flags (E3,n) = (Y2, 1) LN
Y1, n1) LN (Yo, no) corresponding to a polarized flag of Dieudonné modules

My C My C My = A} | = Alx, y,2)
with the quasi-polarization given by
(x, Fx) =(y, Fy) = (z, Fz) = 1/p.

Since FM, C Mj with dim(M/FM>) = 1 the module M is determined by a 1-
dimensional subspace of M,/ F M>, say generated by a vector v = ax + by + cz. The
condition (F, V)M C M { requires (v, Fv) € W, that is, if we view the coefficients
a, b, c as elements of k, the condition (F, V)M C M i is satisfied if and only if

a4 pP 4Pt = 0.

Thus the moduli space Fi of truncated flags M} C M> can be identified with a Fermat
curve X1 C P2 = Gr(1, 3) (when using Dieudonné modules). The module My is
determined by a 2-dimensional subspace My/F M| C M;/F M;. Assuming rigidity,
we see that it is spanned by two vectors

w1 = Vg, wy=oaFx+pFy+yFz,

and the condition My € M gives aa + bp + cy = 0. This implies that M; /M,
defines a sheaf isomorphic to Oz, (1). Moreover, the degree p? homomorphism

171:Y1—>Y0:>Y6—>Y]t

shows that M;/M] is self dual, and it defines a locally free sheaf isomorphic to
OF, (1) ® OF, (—1).

This implies that the moduli space of rigid polarized Dieudonné flags with given
quasi-polarization n admits a structure

]78 — F1 — F» = point

with ) the open dense part of the P!-bundle 7y = P(Oz, (1) ® O, (—1)) that is the
complement of the unique section with negative self-intersection number. The Zariski
closure is obtained by taking the full P!-bundle F.

The morphism Fy — S3 C A3 ® IF, is of finite degree onto its image, and the
image forms an irreducible component of S3. The degree equals #Aut(E>, )/{=£1},
but we may consider instead of F the stack by dividing F¢ through the action of
Aut(E3, ) and then have a morphism of degree 1. This is what we shall do. The
natural morphism to A3 ® IF,, contracts the section.
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8 The cycle class of S3

Here we give the proof of the formula for the cycle class of S3 stated in [10, Thm.
11.3]. The first author learned from Ekedahl at that time how to calculate the Hodge
bundle for flag type quotients. Ekedahl employed this in [2, Cor. 3.4]. This idea was
used in [10] to calculate the cycle class of S3. As done at the time of [10], here we
will not use the results of Section 6.

The Chow rings with rational coefficients of A3 ® IF), and flg ® I}, are known by
[11]. The ring CH(’@(/E ®IF),) is generated by the Chern classes of the Hodge bundle
and boundary classes o1 and o;. A priori the class of S3 is a linear combination of
the generators of CH&%2 (./213 ® 1)), viz. )»‘1‘, )\?01 s )L%olz and L0107, see [11]. But since
S3 - 012 = 0 = S3 - 0» we see from the multiplication table 3f in [11, p. 765] that the
class of S3 is a multiple of A‘l‘ = 8 A1A3. Alternatively, this follows from the fact that
S3 is contained in Vp, the p-rank 0 locus, whose class is a multiple of A3.

Theorem 8.1 The class of the supersingular locus for genus 3 in the Chow ring with
rational coefficients of a Faltings-Chai compactification of A3 @ F, is given by

[S31=(p — D*(P* — DP* = D rrs.

Proof The class [S3] is a multiple of A;A3 and the multiple can be determined by
calculating the intersection number with A;. Using the flag type quotients we see
above that an irreducible component of the supersingular locus S3 in A3 ® F/’ is the
image of a surface Fy under a map Fy — A3 ® F,, of degree #Aut(E3, n)/{£1} (or
degree 1 if we consider the corresponding stack) and Fy is of the form

TT| T .
Fo SN Fi AN F> = point,

where F; parametrizes partial flag type quotients Yo — --- — Y;. More precisely,
a component of S3 is the image under a morphism of a P!-bundle B = Fy over the
Fermat curve 71 = &), of degree p + 1 in IP? that blows down the unique section
S with negative self-intersection number of the P'-bundle P(O(1) & O(—1)) over
Xp11. A point of Fy corresponds to the choice of a subgroup scheme otlz, in E3[F].

If we use contravariant Dieudonné modules over a geometric point of F; we have

fori = 0 and i = 1 an exact squence

0— pMiy1/pM; — VM;/pM; — VMi11/pMiy1 — VMiy1/VM; — 0.
Over F;, we can identify Lie(Y;)" with V. M;/pM; (cf. [1, 4.3.12] and [22, 5.4, 7.4]),
more precisely with Q;/ loy P;, where (P;, Q;, F, V™) is the display associated to
Y;. (Note that Q; and /p 5, P; become V M; and pM; respectively if we pull them back

to the spectrum of a perfect field.) By the exact sequence we have in the Grothendieck
group Ko(F;) the relation

Lie(Y;)" = Lie(Yi41)" — Qi + 0
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with Q; thelocally free O, -module defined by V M, 11/V M;. Here Lie(Y;41) denotes
the pull back under ;. We pull back the relation

Lie(Y))" = Lie(Y2)" — Q1 + 0"

under 7o to Ko(Fp) and then find in K¢ (Fo) suppressing the 7

E = Lie(Yo)v =[3]- 01+ Qgp) — Qo+ Q(()P) ,

where the [3] stands for the class of the trivial rank 3 bundle 7'[6k Ty (Lie(Y3))". From
the short exact sequence

0— VM /pMy — VMy/pMy — VM>/VM; — 0
we get the exact sequence of vector bundles
0— U; — n{(Lie(Y2)Y) — 01 — 0

with rank(Q) = 2 that comes from the universal tautological exact sequence of
bundles on the Grassmannian. Here U; has rank 1 and 7{Lie(Y>) is trivial. This
implies that [Q1] = [3] — [U1] in the Grothendieck group of vector bundles and so
the total Chern class of Lie(Yy)" is given by

(1= €)1 = pe)~ A+ ) (1 + peo),

where £; = ¢ (Q;). Now £ lives on the curve F| = &)1, so E% = 0. This gives for
the classes A; and XA, the relations in CH(*@(]-'O)

M= —DWE+L), ra=(p—1D*t —(p—1E.

The identity A% = 2X, that holds in the tautological ring R3 implies that (p — 1)2(63 -
E%) = 0, hence ¢2 = 0. Since deg(£;) = p + 1 on F; and £, represents O(1) on
the fibres of Fy — F1 we find deg(€pf1) = p + 1. We thus find that deg(A;) =
(p + )(p — 1)? on each irreducible component of S3. We get
deg(A2[S3]) = (p+ (p — 1)* N3
=(p+D(p-D’(p-Dp*+ D’ - D).

On the other hand, deg(A;12A3) = v(3) and this implies the result. O

The morphism g : Fo — F) is a P!-bundle over a Fermat curve of degree p + 1
with a section with image S. The Picard group of Fy is generated by the pullback
under 7r¢ of the Picard group of F7 and by the class of the section S.

Proposition 8.2 We have [S] = £y — £1 and S* = —2(p + 1).
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Proof Let X be a fibre of my. We have XS = 1 and (S — £9)X = 0, hence S —
Lo = nS‘(D) with D a divisor class on Fi. This gives (S — £0)2 = 0. The identity
A7 = 22, implies £ = 0 and thus S? — 2¢pS = 0. Now we use the fact that S
is contracted under the map of F to A3 ® IF),. This implies that A; restricted to S
vanishes, hence (¢o + £1)S = 0. We thus get $2 = 2008 = —2¢,1 S and on the other
hand §% = LoS +n5(D)S = —£1S+n§(D)S, hence n§(D) =—frand S = ¢y — ;.
The fact that £o¢ = p + 1 and €3 = €] = 0 implies S* = —2(p + 1). O

9 Loci for g = 3 defined by conditions on the a-number

We now discuss subloci of S3 defined by the inequality a > 2. Here a indicates the a-
number of an abelian variety. Let J with #J = N3 be the set of irreducible components
of S3 (where we count in the stacky way). Each irreducible component of S3 is the
image under a morphism of a P!-bundle Fy — | that blows down a section. The
curve Fj has p® + 1 points rational over F,» and #Fo(F ) = PP+ D2+

and each point of Fo(IF ,») defines a superspecial abelian variety. Let Lje 1.7-'({ be the
disjoint union of the smooth models of the irreducible components of S3. Under the
natural morphism

mIIJjeJ./T({ —)S3C.A3®Fp.

the N3(p> + 1)(p? + 1) superspecial points of Uje ].7-'0/ map to N3 superspecial points
of S3. Thus each superspecial point of S3 is the image of (p>+ D( p2+1) points and this
multiplicity can be explained as follows. On each surface .7-'({ a section is contracted
giving a factor p> + 1, while the image of an F p2-rational fibre of _7-'({ —- F ‘1’ lies on
the image of p? + 1 surfaces .’Fé. This can be checked by using Ekedahl-Oort strata
and their classes as follows. ' ‘ '
Each F > -rational point of 7 1] determines a fibre in the P!-bundle ]-'d - F 1] and
the image under m of such a fibre provides a component of the Ekedahl-Oort locus

Vi3,2)- This locus V3,2 consists of a finite union of Pls. By [4] we know the class of
this locus:

Vil = (p — D2(p® — 1) 2223

Since the degree of the determinant A of the Hodge bundle restricted to such a P! is
p — 1, we find that V3 2] has

L= deg([Vi3.21121) _

(p—D(P® = DHv3)
p—1

irreducible components, each a copy of P'. Here we count in the stacky sense. Each
such component contributes p> + 1 superspecial points and we see from

m3a2 (p? +1) =deg(Vp32.17) (PP + 1)
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that this fits with the fact that through a superspecial point there pass p>+1 components
of V[3,2]. In fact, under the map }'0’ — A3 @ IF,, a section is blown down and this
section intersects the p3 + 1 fibres of f({ — F IJ over F; 1/ (F p2)-

We can also check that each such fibre lies on p? + 1 irreducible components of
S3; hence we find for the number of superspecial points

Ny (PP 4+ 1D)(p? + 1) = degWVp 21N>+ D(p* + 1)

in agreement with the fact that V3 5 1 is the superspecial locus and that N, equals the
degree of the superspecial locus for odd g.

10 Moduli of flag type quotients forg = 4

In this section we construct a smooth model for each irreducible component of the
supersingular locus S4. The model is obtained by taking the Zariski closure of the
moduli of rigid flag type quotients for g = 4 and by showing that this moduli space is
smooth.
We consider the space M = M, of polarized flags of contravariant Dieudonné
modules
Moy C My C My C M3

satisfying

(1) M3z = A?,l provided with 7, a fixed quasi-polarization (, ) that induces an iden-
tification M} = F3Ms;

2) (F,V)M; C M;_y and dim(M; /M;_1) =i,

(3) (F,V)'M; C M!.

We say that it is rigid if M; = Mo + F3~'M3 fori =0, ..., 3.

Theorem 10.1 The Zariski closure Fo of the moduli space of rigid polarized
Dieudonné flags of length 4 with given quasi-polarization on M3 inside M is non-
singular.

Proof By [20, 6.1] we can choose generating elements xp, x, x3, x4 of M3 in the
skeleton M3 = {m € M3 : (F — V)m = 0} of M3 such that the pairing defined by 7
satisfies

(xi, F*x;) =8 5-; and (x;, F°x;) =0

for1 <i < j < 4.Forarigid polarized Dieudonné flag M the module M5 is generated
by F M3 and a vector

4
vo =Y aix; € M3/FMs
i=1
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with the condition (v, F?vg) € W. Viewing the coefficients a; as lying in k, this
amounts to the equation

2 2 2 2
. P P p p
fi=aay —ay ag+aray; —a, a3 =0.

This defines a smooth surface 7> in IP3. This surface was studied in detail by Katsura
[18]. Locally on this surface we may assume without loss of generality thata; 7 0 and
thata; = 1. Now M is generated by F M, and a 2-dimensional subspace M/ F M> in
M, /F M>. Since a; = 1 we can assume that this 2-dimensional subspace is generated
by non-zero elements v and w with

v=asvg+agFx) +a7Fx3+agFxqy, w=a9oFxy+aoFx3+aFxs. (6)
We then have the conditions
(v, Fv) e W, (v, Fw)e W, (Fv,w)eW. @)

Viewing the coefficients as elements of k we find three equations all divisible by as.
But as = 0 yields a flag that is not rigid; indeed,

M\ +FM; = (F,V)Ma+Aw+FM; = (F, V)(Av+ FM3)+Aw+FM; C FM;

but M>» ¢ F M3, hence My # M + F M3, contradicting rigidity. Removing the factor
as from the equations (7) by considering (v, F'v)/as, (v, Fw)/as and (Fv, w)/aé’,
we get the equations

p,p—

1 -1 -
g1 == alag —ajas ag—i—awé7 —aé’aé’ ar —i—a;ap

1
ag — a3ag =0,
& = aiay) + mafy — aza§ =0, ®

g3 ::afau—i—afalo—aé’agzo.

Remark 10.2 The reader may verify that if the point (1 : a> : a3 : a4) € Fp(k) is not
rational over I > then we may choose as w the element

(F—=V)vy.

Indeed, it satisfies go = 0 and g3 = 0 for any non-zero choice of v; namely with
2 2

a; = 1 we have al(af —ay) + ag(af —a3z) —as (aé7 — a2) = 0 and similarly for

83-

Now we firstlook ata point with as # 0.If both ag and ajg vanish we have by g3 = 0

that w = 0. So we may assume that, say, a9 # 0 and then have a; = as = a9 = 1
and by changing v to v — agw we may assume ag = 0. The Jacobian matrix of the
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equations f, g1, g2, g3 with respect to the variables a; for j =2,3,4,7,8,10, 11 is

2 2 2

al” —al" —af 0 0 0 0
af —ag 0 —agag’_l —afag_l 0O O
afo —aé’ 0 0 0 0 0

0 0 0 0 0 aé’ af

and this is of rank 4.

Next we look at the case where as = 0. The vanishing of a9 and aj¢ implies by
g3 that a;; = 0, so we may assume that ag # 0 or ajg # 0. Again without loss of
generality we may assume a9 7# 0. Changing v by a multiple of w we may assume
ae = 0. If now a7 = 0 then g; forces ag = 0, hence v = 0. So we may assume that
a7 # 0. Then it suffices to treat the case of a; = a7 = a9 = 1 and ag = 0. Then
the Jacobian matrix of the equations f, g1, g2, g3 with respect to the variables a; for
Jj=2,3,4,5,8,10,111is

o —al —a 0 0 0 0
aé’ 0 0 (afag + afm)aé’_z —a{’a‘"_l 0 0
aly, —dab 0 0 0 0 0

0 0 0 0 0 af af

which is of rank 4 as required. This shows that F] is non-singular. Since Fy is a
P!-bundle over F; the result follows. O

By writing F; for the Zariski closure in M of the moduli space of rigid polarized
Dieudonné flags M; C --- C M3 we get a sequence

Fo SN F N Fa LN JF3 = point

withdimF; =4 —ifori =0,1, 2.

We now describe the fibres of the morphism 7; : F; — F,. We start by remarking
that by using the symmetry of F, there is no loss of generality if we look at the fibre
of a point (a1 : ap : a3 : as) of > with a; = 1. If one of ay, a3, a4 lies in sz
then the point lies on one of the lines of F,. Indeed, if a4 € F 2 then such a line is
parametrically (1 : 7 : 7 : as), while if, say, ap € ]sz thensuch alineis (r : ap : 1 : 1).

For describing the fibre over a point (1 : as : a3 : as) we consider the equations

P P P p—1 P P
ag +ama; —azag —as (ag +aya; —azag) =0, ©)]
and

aly + aaly —azad =0, ay +ajag—alag=0. (10)
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By the two equations g2, g3 of (10) we eliminate aj; and get

2
P P
a al —a
fo_ 4B 798 (11)

D 2
) af —aj

Inthe neighborhood of an ¥ > -valued point of 7>, say (1 : as : a3 : as), the expressions

2 2
ar —aj and a3 —a} are local coordinates. This shows that the function field of F;
can be generated over the function field of F, by adjoining the pth root of (a» —

2 2
aé’ )/ (a3 — af ) as determined by (11) and then adjoining a further element via an
Artin-Schreier equation (9). Hence the degree of inseparability of Fj over F is p.

2
Over an open neighborhood U of a[F 2 -rational point with local coordinates az —aé’

2
and a3 — ag , the equation (11) describes an inseparable cover of the blow-up of U
(in U x P! with coordinates (« : v) on P!) given by

P’ P’ p
u(ap —ay, )—v(az—ay; ) =0, u/v=(ajp/a)’.

Thus we see that the morphism 1 : F; — F, factors via an inseparable cover of the
blow-up Fy of F inthe F p2-rational points.

If we have a point not on a line we may assume a9 = 1 and then that ag = 0. The
reduced fibre is a curve in P2 with coordinates (as, a7, ag) given by

p P p—1 p
ag +aa; —as (ag+ayay) =0.

This is a curve with one singularity of order p — 1, a cusp located at as = 0 and
as +a21/pa7 =0.

Next we consider the case of a point on a line. Since the automorphism group of
J> acts transitively on the set of lines defined over F 2 (by Witt’s theorem, see [18])
we may assume that the line is given as (1 : # : 0 : 0). The last two equations give
(t”2 — t)afo = 0 and the first equation yields aéj + ta§7 — ag_l (ag +tPa7) = 0, again
a curve with a cusp. So if the point is not a I »>-valued point of 7> we get afo =0
and as reduced fibre again a curve with a single singularity, a cusp. If 7 € I 2, then
the first equation splits as the union of p lines passing through one point.

We summarize.

Proposition 10.3 Let F be the blow-up of F» inall ¥ >-rational points. The morphism

m : F1 — F> factors through Fi — .7}2 — F». The morphism 711’ cF1 — .7:"2
has inseparability degree p. The reduced fibre over a non-F »-rational point is an
irreducible curve with one singularity, a cusp singularity of order p — 1, while the
fibre over a point on an exceptional curve is a union of p lines meeting in one point.
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11 Interpretation of the morphism 7, — 7,

The morphism 71 : 1 — JF> is inseparable and factors through the blown-up surface
F>. We give an interpretation of this factorization by describing the blow-up Fs in
terms of Dieudonné modules and by showing that 7 is realized in a natural P>-bundle
over fz.

We begin with a moduli interpretation of the fibers of .7:'2 — F.

Proposition 11.1 The fiber of.7-'2 — F> over a point (M C M3) € F(k) is given by
a set of lines in a 2-dimensional vector space

{L C V_IME/FMZ | dim L =1, L contains (F, V)M; mod FM>}.

Proof We begin by observing two facts:

(i) (FMy C) (F, V)M, C V™' M}
(i1) V_lMé /F M3 is a k-vector space of dimension two.

Indeed, (i) follows from V (F, V)M, C (F, V)*M, C Mé. To prove (ii), consider the
dual of FM3 C My C Mj3:
Mic My cvTML

By V_lMé = F_1M§ = F2M3 C FM,, we have M} C FM,. This means that
V (and therefore p) kills V_lMé/FMz, whence V_lMé/FMz is a k-vector space.
Looking at the inclusions Mé C FM, C V’lMé, we have

dim V=ML /F My = dim V' ML/ M} — dim F My/ M)
=4 —dim FMy/F>*M5 — dim V' M}/ M}
=4-1-1=2

and this proves ii). If (M, C M3) represents a point of F; that is not rational over F »?
then FM, # VM; and L is unique. If (M> C M3) represents a IF pz-rational point,

then F M, = V M, and the fibre is a P!. O

Remark 11.2 We point out that the Dieudonné module V_lMé /F M3 is self-dual.

We now describe the morphism 7| : Fj — F>. On F> we have by Proposition
11.1 the subspace L C V_lMé/FMz. It determines a W-module L with

(F,VYMyCcLc V™M,

the inverse image of L under the projection V_lMé — V_lMé /F M. It has the
property that outside 77, ! (F2(F 2)) we have L = (F, V)M, where we write 7, for
the blow-down morphism .7:'2 - JF>. We can now consider over a point of fz the
3-dimensional vector space M;/L. This should define a rank 3 vector bundle B, but
as the equations show we can realize B only after an inseparable base change.
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Lemma 11.3 The threefold F, is a divisor in a lP’z-bundle P(B) with B the rank 3
vector bundle defined by Ma/L over a surface F), obtained by an inseparable base

change .735 — F» of degree p.

Proof Recall that in order to define M| C M,, we chose a basis
v=uasvg+agFx>+a7Fx3+agFx4, w=a9gFxy+ aoFx3+aiFxs

as in (6) with (v, Fv), (v, Fw), (Fv, w) all in W. The equations (g2) and (g3) corre-
spond to the inseparable base change 7, — >, given on the locus with a; # 0 by
(11

(ag/a0)? = (az — 6152)/(% - afz)~

Then on }N"ﬁ we have the bundle P(B). If a5 # 0 the morphism F; — .7:"2 is defined
by sending (M| C M, C M3) to the point defined by L := M| N V_lMé mod FM>.
Indeed, by (F, V)M, C My, the subspace L contains (F, V)M, mod F M, and L is
the one-dimensional space generated by w of (6), since one can check (Vw, Mp) C W
and if as # 0, then (Vv, M) ¢ W.

For as # 0 we find from (v, Fv) € W an equation

-1
alaé7 +a2a§7 — a3ag — aé’ (afag +a5a7 — a§a6) =0.

This defines a rational curve with a cusp in P2 = ]P’(MZ/I:). As F is defined as the
closure of the space of rigid flags, we obtain that this equation defines i in P(B).
Observe that in order to analyze this we may assume as we did in the preceding section
that a; = 1 and a; # 0 and then a¢ = 0 and the curve can be written in coordinates
(as : a7 : ag) as

alaé’ + azaf — aéj_l(afag + aé)m) =0.

/p

The cusp is determined by as = 0 and ag + a; a7 =0. O

In particular we see that after an inseparable base change the bundle B admits a
nowhere vanishing section.

12 The Hodge bundle on the supersingular locus

The description of principally polarized supersingular abelian varieties of dimension
4 via a flag gives us for each irreducible component S of S4 a morphism Fo — § and
a fibration of Fy

TT| g
Fo—> Fi — F2— F3,

where F; fori = 0, ..., 3 is the closure of the moduli space of rigid polarized flag
type quotients Y3 — --- — Y;. Note that F3 is a point.

We have seen above that these spaces F; are non-singular. In the following we view
these as moduli stacks. This corresponds to dividing by the appropriate automorphism
groups, here by Aut(Y3, n).
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Lemma 12.1 Foreach irreducible component S of Sy in A4 ®@F , the natural morphism
Fo — S is a morphism of degree p.

Proof Let x be a geometric point of F5. Let Fj  be the fiber 7~ 1(x). We claim
that 7, l(.?’-'Lx) — A, is a p-to-1 map onto the image. Indeed if x is represented

by (a1, a2, a3,a4) € k* for an algebraically closed field &, then the fiber 7~ ! (x) is
described in as, . .., ajj by

—1 —1 —1
g1 = a]aé’ —af’aé’ ag +a2a§7—a§a§7 a7—}—a§7a§7 aﬁ—agag =0,
g2 = alaﬁ + azafo - a3aé7 =0,
g3:=alan +alaig—alas=0.
But g5 is the p-th power of
/ 1 1 1
g = al/pan +a2/pa10 —a3/pa9.

The space defined by g1, g5, g3, say F { +» coincides on an open part of F with the
fiber of V|1 — V) studied in [22, 9.7], where ), corresponds to our J> and V1 is the
non-garbage component considered in [22, 9.7]. Note that F i’x is a closed subscheme

of F1 . Thanks to the proof by Li and Oort (cf. [22, 7.11]), the map (7o) ~! (F) — A,
is one-to-one on its image as stacks; indeed, the proof of Li and Oort was done by
fiberwise arguments. The claim follows. O

The space F; carries an abelian variety );. Its cotangent bundle along the zero
section may be described by Dieudonné theory. Using contravariant Dieudonné theory
with the Dieudonné module M; of a fibre Y; of );, we have

Lie(Y;)V = VM;/pM,; .

The flag type quotient provides an inductive construction. For i = 2, 1, 0 we have the
exact sequence

0— pMiy1/pM; - VM;/pM; — VMit1/pMiy1 - VM1 /VM; — 0.
In the Grothendieck group of vector bundles on F; we thus get the identity
[Lie(V)"] = [ Liei+) )] = [Qi1+ 01,

where Q; is the locally free Oz, -module of rank i + 1 corresponding to V M;1/V M,;.
Moreover, the exact sequence fori = 1 andi = 2

0— VM;/pMir1 — VMiy1/pMiv1 — VM1 /VM; — 0
gives us an exact sequence of Oz, -modules
0— U; - nLieQVit1)Y) — Qi — 0
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with U; the locally free O r,-module defined by VM, /pM; ;. For i = 0 we have
0— VMy/ VM| — VM /VM, — VM;/VMy— 0
and this gives a short exact sequence of O x,-modules

0— Uy — n5(K1) > Qo — 0

with K the locally free sheaf corresponding to the Dieudonné module of ker () SN
D).

In the following we will abuse the notation Q; also for the pullback of Q; to F;_
in order to simplify notation. Since Lie())3)" is trivial of rank 4 we get from the above
the class of the Hodge bundle E = Lie()))" in the Grothendieck group of vector
bundle on Fy.

Proposition 12.2 The class of Hodge bundle of Y in the Grothendieck group of vector
bundles on Fy is given by

[E] = 4 — [02]+ (01— Q11+ [2{"] — [Qo] + [0]
=4+ [Ua] - (U371 - [Q1] + 101”1 — [Qo] + (041,

where 4 stands for the class of trivial rank 4 bundle and where Uy and Q¢ have rank
1, while Q| has rank 2.

Note that here we abuse the notation Q; for the pull back of Q; to Fy.
We now set
li =c1(Q;) fori=0,1,2.

We may consider ¢; as a class living on J;, but we will denote the pull back 7y (£1),
7} (€2) and 7 (] (€2)) also by £1, £3 in order to simplify notation.
Proposition 12.2 implies the following.

Proposition 12.3 The total Chern class c(IE) of the Hodge bundle on Fy is given by

(1= €)1+ p i+ p*e2(Q)(1 + p o)

c(E) =
(I =pl)(+ L1+ c2(01))(1 + £o)

Corollary 12.4 We havecy(Q1) = (E% ~|—Z% —Z%)/Z Moreover, the class E% is a pullback
from Fi.

Proof We deduce A = (p — 1)(¢o + £1 + £2) and
20 = A1 = (p> = DQ2c2(Q1) — &5 — €7 + £3)

and since )\% = 2 Xy on Ay the formula for ¢(E) follows. Since Q; lives on Fj it
implies that the class 6(2) is a pullback from F. O
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13 Loci with a-number > 2 forg = 4

The abelian variety corresponding to the generic point of an irreducible component S
of S4 has a-number equal to 1. An irreducible component of the closed stratum of §
where a > 2 is of one of two types, as shown in [22, Section 9.9]. See also [12]. A
component of the preimage of the first type for the natural morphism Fy — S maps
under Fy — F; to a line on 5, while such a component of the second type maps
either dominantly to J,, or maps to a line of >, or maps to a point of >, (FF pz).

13.1 Loci of the first type.

The first type parametrizes flag types M3 D My D M D My such that there exists a
totally isotropic subspace I of M3/ F M3 suchthat M1 C N with N C M3 the submod-
ule generated by I and F M3. Since the automorphism group of M3 acts transitively
on totally isotropic subspaces defined over I >, we may assume that / = (x1, x2). In
terms of abelian varieties, such a flag type can be obtained from a flag type

E=vrs 5y, 2y 2y, (12)

with quasi-polarization n3 : Y3 — Y3’ with kernz = E*[F3] if the composition
p2p3 : E* — Y factors through

12 x Fpo : E* — E? x E?/E?[F].

By identifying EZ x E?/E?[F] with E* and thus factoring p,p3, we put Z = E2 x
E2/E2[F] =~ E* and Z; = Y; and then associate to it the flag

B =27, -2 70 25 74, (13)

where deg(£) = p> and deg(¢y) = pand 6, : Zr — 7, is a quasi-polarization with
kernel equal to EY pl.

This can be described by Dieudonné modules: consider the Dieudonné module
N> = (x1,x2, Fx3, Fx4) with x1, xp, x3, x4 the skeleton of Ms3. It satisfies Né =
F2N,. We choose a submodule N; generated by u = ax| + bxy + cFx3 +dFx4 and
F Ny with (u, Fu) = 0. By viewing u as an element of N>/ F N> and the coefficients
a, b, c,d in k we obtain an equation

ad? —a?d 4+ bc? —bPc=0. (14)
Then dim N,/N; = 3 and dim Ny /N f = 2. We then can choose a Dieudonné sub-
module Ng with N{ C Ny C Np with dim N{/Ny = 1. The filtration Ng C N1 C N3
corresponds to (13). The moduli of N, D N defines a surface G; in projective space

IP? given by (14) and choosing Ny defines a P!-bundle Gy — Gj.
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Let S be the subscheme of G; where @ = b = 0 and let Sy be the inverse image
of 1 under Gy — G;. We now discuss how to map G;\S; to F;. Given u we choose
vo as a multiple of u. This determines a submodule M; of M3, generated by F M3
and v, that contains Nj and we set M| = Nj. Note that M, is generated also by
ax1 + bx, and F M3. Then we can choose two generators v, w for M| modulo F M,
and assuming that a # 0 we may choose

v=oasvg+cFx3+dFx4 =ax| +bxy)+cFx3+dFxs, w=Fx;.
In terms of the coordinates in Section 10 we have
a=ajas, b=auas, c=a7, d=uag.

The fibre of G|\S; — Fj over a point vy = (1 : ¢t : 0 : 0) of F, consists of all
(a:b:c:d)withd?P — al=ld + teP — tPaP~ ¢ = 0; it is defined by a Lefschetz
pencil on G| defined by b = ta. We refer to the paper [18] for such a Lefschetz fibering.
The general fibre is a rational curve with one singularity given by a = 0.

Recall that the automorphism group of 7 acts transitively on the set of lines of 7>
defined over F P2 For each line L defined over [F p2 on the surface F, we find a surface

isomorphic to G that is contained in the inverse image 7, L.

The fibration Go — G has a natural section S by taking Zo = Z,/Z>[F]. Note
that then No = F N> C Nj. This implies that Z(, determined by Ny, is constant for
all choices of Nj. It also implies that this section is blown down under the natural
morphism Gy — Ss4 C A4 that associates to a flag type quotient (13) the isomorphism
class of Zy. We summarize:

Let M3 = A‘l‘y1 with quasi-polarization such that M} = F 3 M.

Proposition 13.1 For each totally isotropic subspace of M3/ F M3 there is a threefold
Go that is a P'-bundle Gy — Gy over a surface given by (14) with a section and
a morphism Go\So — Fo whose image is a locus of supersingular abelian 4-folds
with a > 2. Under Go\Soy — F» it maps to a line on F,. Under the morphism
Go — A4 @ F), the section of Gy — G\ is blown down.

13.2 Loci of the second type

An irreducible component of the preimage under 7o — S of the locus of a-number
> 2 of the second type inside an irreducible component S of the supersingular locus Sy
isrealized as follows. It is the locus of M, with My C N C M3 for a fixed superspecial
quasi-polarized Dieudonné module N with N* = FN. Such N come in three sorts: the
first sort with N = F M3, the second with N = (x1, Fx2, Fx3, px4) and the third sort
where N = (x1, x2, px3, pxa) after we change generators as in the proof of Theorem
10.1.

In this subsection we treat the case where N is of the first sort, while the case of
the second sort in treated in the next section and the last case is left to the reader. The
first case is characterized by the condition M| C F M3. This condition is determined
on Fji.
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Let T be an irreducible component in F of the preimage of an irreducible compo-
nent of the locus with a > 2 of the second type and first sort.

The condition M; C F M3 can be paraphrased by saying that the natural homo-
morphism

Mi/(F,V)My — My/F M3 (15)

induced by M| — M is zero. Let L be the sheaf corresponding to the module
M1 /(F, V)M, and U, the one corresponding to V M>/p M3. The invertible sheaf U,
lives on >, and L lives on F; and is invertible only outside 7, ! (F(F p2))- Thus we

work on the open set ]—"? thatis the complement of 77~ ! (F2(F 2)). The homomorphism
(15) defines a homomorphism of sheaves

lﬂ:£—>n1*(U2(p)).

The locus H; can now be defined as the Zariski closure in F; of the zero locus D ()
in }"? of the map .

Lemma 13.2 The cycle class of the Zariski closure in F\ of the zero locus D({r) of ¥
equals
(DA =pti— (P> + Dla+e,

where e is a class with support in the fibres of wy over F»(F 2).

Proof We work on the open set .7-'? thatis the complement of 77|~ ! (Fr(F P2 )). Consider
the exact sequence

0— VMy/FMoNVMy - M{/FMy — My/(F,V)My; — 0.

If M5 is generated by F' M3 and vg = a1x1 +axxa+azxz+asxa with (ay : az : asz : ag)
determining a point not in F>(F 2) then FM> NV M, = pM3 and

VMy/FM, N VMy, =VMy/pMs.

This translates into a short exact sequence of (’)}-})—modules

O—>71i"(U2)—>U1(p)—>E—>O

with U the locally free Or,-module determined by VM;/pM>. We view ¢ as a
section of nl*(Uz(p)) ® L' on ]—"? with class (p + 1)[U2] — p[U;]. From Section 12
we use the identities [U2] = [4] — [Q2], [U1] = [Lie(Y2)"] — [Q1] = [4] — [Q2] +
(05711011, hence ¢1((p+ D[Ual — p[Ui1) = p&; — (p> + 1). When taking the
closure of the degeneracy locus of ¢ we have to take into account a class with support
in the fibres over F>(F ,2) and the result follows. O
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Corollary 13.3 A locus T of the second type and first sort as above maps dominantly
to F.

Proof We claim that such a T is not contained in the fibres over J, (F »2)- Indeed,
otherwise T lives inside a P!-bundle over the one-dimensional locus in JF; defined
by (a1 : a2 : a3 : aq) € 3 (Isz) and as = 0. This contradicts that the stratum of S
where a > 2 has dimension 3, see [22, 9.9]. The claim implies that 7 is contained in
D(¥) and the class is given by Lemma 13.2. The intersection number of D () with
a generic fibre of | equals the degree of £1 on such a fibre, that is, 1. That means that
it intersects the generic fibre of 1 and is irreducible. O

The resulting abelian variety of a flag type with M; C F M3 is defined by the
filtration of Dieudonné modules F M3 D M| D My. By forgetting M; between F M3
and My, we have polarized flag types

Et=z, 2 7,

-

E*=27! <7}

with ker(n1) = E*[F] and ker(p1) = «;. The choice of ker(p;) in E*[F] defines a
point in the Grassmann variety G = Gr(2, 4). Note that G can be identified with a
quadric in PS5 in terms of Pliicker coordinates. If we choose a basis x, x2, x3, x4 of
the Dieudonné module of E* with (F — V)x; = 0 and quasi-polarization with

(xi, pxs—j) =46j, (xi,Fxj)=0,

then My can be generated by two vectors a = 2?21 aixi, b = Z?:l b;x; and the
condition (a, b) € W says

aiby — asby + axbz — azbr = 0 (mod p)

and this defines a hyperplane section @ = H N G of the Grassmann variety. Indeed,
with the Pliicker coordinates A;; = a;b; — a;b; the variety G is given by AjpA34 —
A13A24 + A1aro3 = 0and H by Ayg + A3 = 0.

Recall that we interpret moduli in the stacky way meaning that we divide by the
automorphism groups of objects. We summarize.

Lemma 13.4 The image in S4 of an irreducible component of the locus of second type
with a > 2 can be identified with (the quotient of) a hyperplane section Q of the

Grassmann variety Gr(2, 4).

We will analyze the case of loci of the second type contained in the fibres over
F 2 -rational points on J; in the next section.
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14 The fibres over F; (Isz)

Here we study the fibre under 7y — J; of a rational point & € fz(Isz). Since
Fo — F is a Pl-bundle it suffices to study the fibre under 7| — F>.

The automorphism group Aut(F3) can be identified with the quotient by its center
of the general unitary group GU4(p?) of 4-dimensional space over F 2 that fixes the
Hermitian form

§164 — 6461 + 5263 — 635
where & = &P . By a theorem of Witt this group acts transitively on isotropic subspaces
of dimension 1 and 2. This implies that it acts transitively on the set of lines of 7>
and on the set of I >-rational points, see [18, Appendix]. We thus may restrict to
analyzing the fibre over the point (1 : 0 : 0 : 0) of F5. This corresponds to the case
with M, C M3 generated by vo = x1 and F M3. The fibre 7|~ ! (&) corresponds to the
choices of M. It can be given by a choice of basis

v=asvg+agFx) +arFx3+agFx4, w=a9gFxy+aogFx3+aiFxs,

satisfying the equations g1, g and g3 of Section 10

af —a§71a8 =0, al; =0, a; =0.
We distinguish whether a5 # 0 or as = 0.

Case i). as # 0. We may assume as = 1 and find ag € F,. We can change
basis of M3 by (x1, x2, X3, x4) — (x1 + ag F x4, X2, X3, x4) and then may assume that
ag = 0. Then M is generated inside M by FM, = (Fxi, F2xs, F2x3, F2x4) and
v =x1 +agFx; +a7Fx3 and w = agFx> + ajoFx3. We now construct a flag of
Dieudonné modules

F?M4 C M| Cc My C FM}

with Mé = (F_lxl , X2, x3, Fx4) and show that we can extend it to a flag type
M; C FM5 C My C M; (16)

so that we can associate to it a point of a locus of the second type as treated in
the Section 13.2 with respect to a changed basis (F_lxl, x2, x3, Fxgq) of M3. To
prove our claim we have to construct M} with (F, V)M}, C M;. We take v, =
a1 F~1x) + asxs + azxs + Fxa and impose the following conditions

2 2 2
(1) (v, Fvg) € W, thatis, o] —a] +araf —ab a3 =0,
(2) Fyy € My, equivalently, there exists 8 with Fuv| = (va + Bw + F2xy, that is,
Otg :a{?ag—i—ﬂag anda_f :afm—i—ﬂalo, 1
3) Vv(/) € M, equivalently, there exists y with Vv(’) = al/‘"v +yw+ FZX4, that is,

1/p 1/p I/p
@ o)

=a,' "ag + yay and a3l/p = a7 + yay.

For generic a; (thatis, ajag — agajp and agajp notin F pz) we find a solution. We then

set
Mj; = Avy + FM;
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and then by (2) we have (v, w, FM}) = (v, w, F M>) = Mj. Thus we have a filtration
(16) and it gives a point of a locus 1 with respect to the module Mj.

Case ii). Here as = 0. Then by g» we have a;; = 0 and find that M; is
generated by v = acFx2 + a7Fx3, w = a9Fxy; + ajoFx3 and F2Ms5, hence
M, = (Fxy, Fxy, Fx3, F2x4). So M is fixed and this case thus yields one point.
Moreover M| = (Fxi, F2xz, F2x3, F2x4).

We thus see that the supersingular abelian variety corresponding to a generic point
of an irreducible component £ of the fibre over a rational point § € F,(F pz) can be
viewed as the supersingular abelian variety defined by a generic point of a locus with
a > 2 of the second kind with M C FMj.

This means that there is an irreducible component S’ of S; with model F and a
locus H, mapping dominantly to 7, such that image of £ and H, coincide in Sy C Aj4.

We summarize.

Proposition 14.1 Let S be a component of S4 and Fqy be the model constructed in
Section 10. The fibre in Fq over a rational point § € F»(F ,2) consists of p irreducible
components. The image of each of these in Sa is a hyperplane section of the Grassmann
variety Gr(2,4) and can be seen as the image of a locus of a > 2 of the second type
in another component S’ of Sy.

15 Superspecial points of S,

The number of points of S4 representing isomorphism classes of superspecial abelian
varieties counted in the stacky sense was given in formula (2) in Section 2 and equals

Si=(p—-D@P*+ D =D+ DHv@).

Each superspecial principally polarized abelian variety of dimension 4 defines an ¥ 2
rational point of S4 C A4. By Proposition 3.1 we have Ny = (P —D(p® — D)
irreducible components (again counted in the stacky sense) of S4. Each irreducible
component is the image of F( under a degree p morphism in the stacky sense to its
image in S4 that induces a bijection between geometric points of the stacks on the
open parts of a-number one.

Lemma 15.1 We have #F(F ,2) = (p* + D3(p* + D(p* + 1).

Proof Wehave#F>(F ,2) = (p*>+1)(p*+1), see for example [ 18], hence #F> (F,2) =
(p*+1)*(p*+1) and these points are the IF > -rational points on the exceptional curves
of ]:'2. The fibre in | over a F pz—rational point of ﬁz consists of a union of p lines
through one point. So we find #F7 (F ,2) = (P2 + D2(p* + 1)(p> +1). Since Fyis a
P!-bundle over F; the formula follows. O

Let J be the set of irreducible components of S4 and for j € J we let .7-'({ be the
corresponding smooth model. The disjoint union of these smooth models has

#(|| FDE,2) = Na(p* + D’ + Dt + 1)
jeJ
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IF »-rational points mapping to X4 superspecial points of S4. The variety F( contains
(p>+ D (p*+1) loci G} of the first kind, each isomorphic to Gy. We have #G; (F ) =

(P> + 1) (p>+1) (see [18]) and #Go(F ,2) = (p>+1)2(p> +1) since Gy is a P!-bundle
over Gi. On F these loci G| of the first kind are disjoint and we see

#FoF ) = (p° + D(p* + D#Go(F ,2) .
On each component G} a section of Gy — §; is blown down. This section has
(p* + 1)(p> + 1) points rational over F 2.

Lemma 15.2 Each superspecial point of Sy lies on (p + 1)(p> + 1) irreducible com-
ponents of Sa.

Proof The number of totally isotropic subspaces of dimension 2 in a 4-dimensional
unitary space over I > with conjugation given by Frobenius is equal to (p+1)( pP+1).
A choice of an irreducible component corresponds exactly to the choice of a totally
isotropic subspace. O

We thus see that under the natural map
I_l fé — 54
jeJ
the inverse image of each of the X4 superspecial points of S4 has

(P+DEP+ D x PP+ DEP+ D x (p?+1)

points, where the second factor corresponds to blowing down the section of Gy — G,
and the third one comes from the fact that each exceptional curve on F intersects
p? + 1 proper images of the lines defined over [F 2, in agreement with the formula

Ne PP+ D3P+ D+ D =Za(p+ DP?+ D2 + D2

16 The cycle class of S; and intersection numbers

In this section we express the cycle class of the supersingular locus S4 for dimension
g = 4 in terms of intersection numbers.

We know that the cycle class of Sy lies in the tautological ring and is a multiple
of A4A;. This multiple can be determined by intersection numbers. We identify the
degree of a top-dimensional Chern class with an intersection number.

Proposition 16.1 We have [S4] = a Agho with

_ A3hi[Sal _ A{[S4]
v 8sv®)

with v(4) the proportionality constant defined in Section 2.
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Proof We have A3\ [S4] = a AarzioA; = a v(4). In the tautological ring R4 we have
A3hi = A1/8. o

We shall calculate the intersection number [ S]-A3A1 for each irreducible component
S of S4. We will do this by pulling back the Hodge bundle of .44 to Fy and calculating
the degrees of the top Chern classes of the Hodge bundle on Fj.

17 Determination of intersection numbers

Our goal is to calculate the intersection number A1A3[S] for each irreducible compo-
nent S of the supersingular locus. For this we calculate deg(13A1) on the 4-dimensional
variety JFy.

By Proposition 12.3, which describes the total Chern class of the Hodge bundle, and
by Corollary 12.4 this intersection number can be expressed in the intersection numbers
given by the monomials of degree 4 in ¢, £1, £> evaluated at the fundamental class
of Fy. Note that we write £ and £; for their pullbacks to Fy and sometimes identify
such a monomial Eg@lfﬂg with deg(ﬂgﬁﬁ’ﬁg).

Lemma 17.1 The following intersection numbers vanish on Fy:
04,0303, 030100, 0363, €003, €1, 6305, 0303, 0163, €5 .

Proof Since dim F; = 3 and E% is a pullback from F7 by Corollary 12, and ¢; and ¢,
are also pullbacks from 7 we find that o E%Z%, 566162, Z%E% vanish.

Since the class ¢ is a pullback from F,, which is of dimension 2, we have E% =0,
implying that 0= Eoﬂg = @123 = 0. Similarly, £, and ¢; are induced from F7, which
is of dimension 3, hence the monomials of degree 4 in £ and ¢, vanish. O

Proposition 12.3 together with Lemma 17.1 implies the following relation.

Corollary 17.2 We have on Fy
1
@gmm)=§@_1f@yl+%Q+¢M§+3%ﬁ@+3%m@).

Thus we need the intersection numbers defined by the five monomials in £g, €1, £
appearing in Corollary 17.2.

The intersection numbers (Z0£3, 206%22, Lol Z%) on JFg are equal to the intersection
numbers (53, E%Ez, Elég) on F as the degree of £y on a generic fibre of mrq is 1.

Lemma 17.3 We have deg £1¢3 = p*(p* + 1) on Fi.

Proof The space F» can be identified with the surface in P3 over F p given by the
equation
o r r_
X1xy, —Xx] x4+x2x3 —x5 x3=0
and ¢, is represented by the pullback under 7; of the hyperplane class 7 on F.
Therefore h? can be represented by an effective zero cycle of degree p> + 1. The
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surface > is unirational (see [18]), hence h? can be represented by p2 + 1 times
a point. The morphism 7; is inseparable of degree p, hence the pullback of a point
JF> is p times a fibre of Fj. Since the degree of £1 on a fibre of 71 is p we get
deg(€163) = p-p - (p* +1). O
Lemma 17.4 We have on Fy the relation

p L — (P* + 1) €3t + p Lol — (p — D* Lot — 2p® — p +2)lol165 = 0.
Proof This follows from the fact that A4 vanishes in the Chow ring of .4, as explained

in Section 2 and the expression for A4 as a polynomial in the ¢; by Proposition 12.3
and Corollary 12.4. O

Corollary 17.5 On Fi we have the relation

PO — (PP + DG+ p i — (p— D> 616 — 2p* — p+2)0165 =0,
Proof We know that Fy is aP!-bundle over . Therefore each cycle class £ € A (Fo),
the dimension k Chow group of Fj, can be written uniquely as & = 7 (&) + 7 (§1)£o

with &y € Ap_1(F1) and & € Ax(F1). In particular, the map & +— ng(gl)zo is
injective. The result thus follows from Lemma 17.4. O

Lemma 17.6 We have on F the relation
20500 — (p— D3+ (p — DO —2(p* — p+ D3 = 0.
Proof We have the exact sequence of Dieudonné modules
0> A— VMy/pM, - VMy/VM; — 0

with Lie(Y2)Y = VMy/pM;, and Q1 = V M,/V M. The total Chern class of the
sheaf corresponding to A has the form

c(A)=(1—)(1—pt) '+ +c2Q)) "
Since rank(A) = 2 the third Chern class should vanish; this gives a relation on F

20301 — (p— D3la + (p — DL —2(p> — p+ D13 =0.

Lemma 17.7 On Fi we have the relation
Pty —p i +2(p* —p+ Dt3 =0.
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Proof Let H be a hyperplane section of J, with H N F(F,2) = ¥. We work on

Jrfl (H). Here we have that dim M>/(F, V)M, = 3 and we thus have a rank 3 locally
free sheaf B on H determined by M>/(F, V)M;. Because of the exact sequence

00— VMy/VMyNFMy — My/FMy — My/(F, V)M, — 0
we have the exact sequence
0— Uy — Lie(Y))?" = B0,

since VMy/V My N FM> =V M,/ pMs. We thus find
[B] = [4] — 0] + [0 — (U] = [4] + (U] — (U] — U],

We also have the inclusions (F, V)M, C M| C M; on nl_l(H) and we thus have
a locally free sheaf L corresponding to M;/(F, V)M>. In the Grothendieck group

we have the corresponding relation [B] = [L] + [Qgp)]. Thus we find [L] = [4] +
2
[Uz(p)] - [Uz(p )] —[U2] - [Qip)] and we see that the total Chern class of L is given
by
(I—pta) 1
(1= p26)(1 = £2) (1+ ply+ p>e2(Q1)

But L has rank 1, 50 c2(L) = 0. With c2(Q1) = (€ + €2 — ¢€3)/2 this gives

c(L) =

3 1 1
W =P+ 5P =P+ DG~ (P = PP+ Pl = PP G + S =0,

Recall now that the class of H is ¢,. Multiplying the preceding relation by ¢, and
using E% = 0 we find

pl3ts — plita +2(p* — p+ D013 = 0.

As remarked above we need five intersection numbers:
e, €3, 0oL, Lol3ey, Lol163.

We know already the last one by Lemma 17.3. By multiplying the relations of Lemma
17.6 and 17.7 by £¢ we find in total three relations coming from Lemmas 17.4, 17.6
and 17.7 between these five intersection numbers.

Corollary 17.8 We have deg(¢3¢1) = p(p* + 1)(p? — p + 1).

Proof The sum of p times the relation of 17.6 and (p — 1) times that of 17.7 gives the
relation 2p €3¢, — 2(p* — p + 1)€ot,¢3 = 0. O
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Using the three relations and Lemma 17.3 our five intersection numbers depend on
one unknown.

Corollary 17.9 With x = deg(@oﬁ%ez) we find that

— 6861 —
/30 p(p?+D(p* —p+1)
0°2 x=2p(p*+ (P> —p+1)
deg | €3 | =|2(p—1+1/p)x — (p*+1)>Q2p*—3p+2)
0205 2
: PP+ 1)
[ 00163
Remark 17.10 We have on F
deg(fotitr)

degk?=8(p—l)4(p2+p+l)( (p2+1)(p—1)2> :

Since A is ample on Sy this should be positive and this gives
deg(€olit2) > p(p* + 1)(p — 1*.

We now determine the last intersection number. Recall that the second Chern class
c2(Q) satisfies c(Q1) = (E% +E% - E%)/Z Furthermore, recall the cycle class [ D (/)]
of a ‘horizontal’ a > 3-locus on F; given by

DWW =ptr— (P> +)ta+e

with e a class with support in the exceptional fibres as given in Lemma 13.2.
Proposition 17.11 We have c2(Q1) - [D(¥)] = 0 and c2(Q1) - e = 0.

Proof Since Q) is the tautological quotient of the O r,-module associated to M> / F M>
by the universal rank 2 subbundle Ui, the second Chern class can be realized as the
class of the locus where the fibre of U contains a fixed vector. For this we choose
an element v’ of M,/ F M that has the property that over each affine part of 7, with
ai #0 (fori =1,...,4)itis of the form

vV =as5v0 +ag Fxo + a7 Fx3 + agFxa

with the property that the equation go = 0, that is,

-1 —1 —1
al oeé’ —afaé’ asg +a2a§’ —aé’aé’ a7 —i—afoté’ g — agaé’ =0

has no solutions with (ay, az, a3, aq) € F 2 with a; # 0. Indeed, choosing o5 # 0,

a6 and o7 there are only finitely many «g satisfying this equation. Then since a5 # 0,

we see that this locus has zero intersection with D (/). We get c2(Q1) - [D(y)] = 0.

By the requirement that we put over > (sz) we see that also c2(Q1) - e = 0. O
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Corollary 17.12 We have (€3 + €2 — €3)(pt1 — (p*> + 1)€2) = 0.

Proof Recall that ¢2(Q1) = (€3 + €2 — ¢3)/2 and [D(Y)] = pti — (p> + Dl + e
with e a class with support in the exceptional fibres. O

By combining Corollary 17.9 and Corollary 17.12 we can determine all the inter-
section numbers.

Corollary 17.13 We have on Fy

C 630 ] ,
3 p-—p+1
tot2 -p*+p—1
deg| & |=p*+ 1 (P 1)?
0020, pP-ptl
)4
[ 00163

Finally we are ready to calculate the coefficient f4(p) of Theorem 1.2.

Theorem 17.14 The class of the supersingular locus Sy C A4 @ F), in the Chow ring
of Ay ® F), equals

[S41= (p— D*(p® — D(p* = D(P® — Daars.

Proof For each irreducible component S of Sy we calculate the degree of AzA; on the
model Fg of S. Indeed, we have [S4] = alary witha = A3A([S1]/v(4) by Proposition
16.1. A calculation using Corollary 17.13 and taking into account the degree p of the
map Fy — S (see Lemma 12.1) yields that deg(A3A1) on S equals 1/p times the
degree on Fy of

(P> =3p+ D)3 + 2p* —2p +2)032 + (p* = 3p + DEol3
+4(p — )23y + (5p* —Tp + 5)lol 65

and this equals (p — D*(p? + p + 1)(p? + 1). Multiplying this with the number
of irreducible components ( p* — D(p® — Dv(4) we find the coefficient a = (p —
D?(p? = D(p* = DH(P® - D). O
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