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Summary. We introduce a stratification on the space of symplectic flags on the
de Rham bundle of the universal principally polarized abelian variety in positive
characteristic. We study its geometric properties, such as irreducibility of the strata,
and we calculate the cycle classes. When the characteristic p is treated as a formal
variable these classes can be seen as a deformation of the classes of the Schubert
varieties for the corresponding classical flag variety (the classical case is recovered
by putting p equal to 0). We relate our stratification with the E-O stratification on
the moduli space of principally polarized abelian varieties of a fixed dimension and
derive properties of the latter. Our results are strongly linked with the combinatorics
of the Weyl group of the symplectic group.
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1 Introduction

The moduli space Ag of principally polarized abelian varieties of dimension g
is defined over the integers. For the characteristic-zero fiber Ag ⊗ C we have
an explicit description as an orbifold Sp2g(Z)\Hg with Hg the Siegel upper
half-space of degree g. It is a recent insight, though, that perhaps the positive
characteristic fibres Ag ⊗ Fp are more accessible than the characteristic-zero
one. A good illustration of this is provided by the E-O stratification of Ag⊗Fp,
a stratification consisting of 2g quasi-affine strata. It was originally defined by
Ekedahl and Oort (see [Oo01]) by analyzing the structure of the kernel of
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multiplication by p of an abelian variety. It turns out that this group scheme
can assume 2g forms only, and this led to the strata. For g = 1 the two
strata are the loci of ordinary and of supersingular elliptic curves. Some strata
possess intriguing properties. For example, the stratum of abelian varieties of
p-rank 0 is a complete subvariety of Ag ⊗ Fp of codimension g, the smallest
codimension possible. No analogue in characteristic 0 of either this stratum
or the stratification is known. In fact, Keel and Sadun [KS03] proved that
complete subvarieties of Ag ⊗ C of codimension g do not exist for g ≥ 3.

While trying to find cycle classes for the E-O strata we realized that the
strata could be described as degeneration loci for maps between vector bun-
dles, and since such loci are indexed by Young diagrams, our attention was
turned towards the combinatorics of the Weyl group. When considered in this
light it is clear that much of the combinatorics of [Oo01] is closely related to
the Weyl group Wg of Sp2g, which is the semisimple group relevant for the
analytic description of Ag ⊗C. The main idea of this paper is to try to make
this connection more explicit. More precisely, the combinatorics of the E-O
strata is most closely related to the combinatorics associated to Wg and the
Weyl subgroup corresponding to the maximal parabolic subgroup P of ele-
ments of Sp2g stabilizing a maximal isotropic subspace in the 2g-dimensional
symplectic vector space. Indeed, this sub-Weyl group is Sg, the group of per-
mutations on g letters (embedded as a sub-Weyl group in Wg), and the E-O
strata are in bijection with the cosets in Wg/Sg; we shall use the notation Vν

for the (open) stratum of Ag ⊗ Fp corresponding to ν ∈ Wg/Sg (and Vν for
its closure). The coset space Wg/Sg is also in bijection with the set of Bruhat
cells in the space of maximal totally isotropic flags Sp2g /P and we believe
this to be no accident. (The formal relation between Ag and Sp2g /P is that
Sp2g /P is the compact dual of Hg.)

In order to push the analogy further we introduce a “flag space” Fg → Ag

whose fibers are isomorphic to the fibers of the quotient morphism Sp2g /B →
Sp2g /P , where B is a Borel subgroup of P . In positive characteristic we define
(and this definition makes sense only in positive characteristic) a stratifica-
tion of Fg, whose open strata Uw and their corresponding closures Uw are
parametrized by the elements of Wg. This stratification is very similar to
the stratification by Bruhat cells of Sp2g /B and their closures, the Schubert
strata, which are also parametrized by the elements of Wg. Our first main re-
sult is that this is more than a similarity when one works locally; we show (cf.,
Therorem 8.2) that for each point of Fg there is a stratum-preserving local
isomorphism (in the étale topology) taking the point to some point of Sp2g /B.
Since much is known about the local structure of the Schubert varieties we
immediately get a great deal of information about the local structure of our
strata. The first consequence is that Uw is equidimensional of dimension equal
to the length of w. A very important consequence is that the Uw are all normal;
this situation differs markedly from the case of the closed E-O strata, which
in general are not normal. Another consequence is that the inclusion relation
between the strata is given exactly by the Bruhat–Chevalley order on Wg .
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(A much more sophisticated consequence is that the local structure of the
#-adic intersection complex for a closed stratum is the same as for the Schu-
bert varieties and in particular that the dimensions of its fibers over the open
strata of the closed stratum are given by the Kazhdan–Lusztig polynomials.
We shall not, however, pursue that in this article.)

We give several applications of our results to the structure of the strata
Uw. The first, and most important, is that by construction the strata Uw

are defined as the loci where two symplectic flags on the same vector bundle
are in relative position given by w. After having shown that they have the
expected codimension and are reduced, we can use formulas of Fulton, as well
as those of Pragacz and Ratajski, as crystallized in the formulas of Kresch
and Tamvakis, to get formulas for the cycle classes of the strata. A result of
Fulton gives such formulas (cf., Theorem 12.1) for all strata but in terms of
a recursion formula that we have not been able to turn into a closed formula;
however, these formulas should have independent interest and we use them
to get formulas for the E-O strata as follows. If w ∈ Wg is minimal for the
Bruhat–Chevalley order in its coset wSg, then Uw maps by a finite étale map
to the open E-O stratum Vν corresponding to the coset ν := wSg . We can
compute the degree of this map in terms of the combinatorics of the element
w and we then can push down our formulas for Uw to obtain formulas for the
cycle classes of the E-O strata. Also the formulas of Kresch and Tamvakis can
be used to give the classes of E-O strata. One interesting general consequence
(cf., Theorem 13.1) is that each class is a polynomial in the Chern classes λi

of the Hodge bundle, the cotangent bundle of the zero-section of the universal
abelian variety, and the coefficients are polynomials in p. This is a phenomenon
already visible in the special cases of our formula that were known previously;
the oldest such example being Deuring’s mass formula for the number of
supersingular elliptic curves (weighted by one over the cardinalities of their
groups of automorphisms) that says that this mass is (p−1)/12. This appears
in our context as the combination of the formula (p− 1)λ1 for the class of the
supersingular locus and the formula deg λ1 = 1/12. We interpret these results
as giving rise to elements in the p-tautological ring; this is the ring obtained
from the usual tautological ring, the ring generated by the Chern classes of
the Hodge bundle, by extending the scalars to Z{p}, the localization of the
polynomial ring Z[p] at the polynomials with constant coefficient 1. Hence
we get elements parametrized by Wg/Sg in the p-tautological ring and we
show that they form a Z{p}-basis for the p-tautological ring. Putting p equal
to 0 maps these elements to elements of the ordinary tautological ring that
can be identified with the Chow ring of Sp2g /P , and these elements are the
usual classes of the Schubert varieties. It seems that these results call for a
p-Schubert calculus in the sense of a better understanding of these elements
of the p-tautological ring and their behavior under multiplication.

However, there seems to be a more intriguing problem. We have for each
w ∈ Wg a stratum in our flag space and these strata push down to elements
of the p-tautological ring under the projection map to Ãg (a suitable toroidal
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compactification of Ag). When setting p to 0 these elements specialize to the
classes of the images of the Schubert varieties of Sp2g /Bg in Sp2g /P , and for
them the situation is very simple: either w is minimal in its Sg coset and then
the Schubert variety maps birationally to the corresponding Schubert variety
of Sp2g /P or it is not and then it maps to 0. When it comes to the elements of
the p-tautological ring this allows us to conclude only – in the nonminimal case
– that the coefficients are divisible by p, and indeed in general, they are not
zero. We show that unless they map to 0 they will always map to a multiple
of a class of an E-O stratum. When the element w is minimal in its Sg-coset,
this stratum is indexed by the coset spanned by w. Our considerations give an
extension of this map from elements minimal in their cosets to a larger class
of elements. We give some examples of this extension, but in general it seems
a very mysterious construction.

Another application is to the irreducibility of our strata (and hence also
to the strata of the E-O stratification, since they are images of some of our
strata). Since the strata are normal, this is equivalent to the connectedness
of a stratum, and this connectedness can sometimes (cf. Theorem 11.5) be
proved via an arithmetic argument. It is natural to ask whether this method
produces all the irreducible strata, and for the characteristic large enough (the
size depending on g) we can show that indeed it does. This is done using a
Pieri-type formula for our strata obtained by applying a result of Pittie and
Ram. A Pieri-type formula for multiplying the class of a connected cycle by
an ample line bundle has as a consequence that a part of the boundary is
supported by an ample line bundle and hence that this part of the boundary
is connected. Applying this to λ1, which is an ample line bundle on Ag, allows
us to show that our results are optimal; cf. [Ha07]. We are forced to assume
that the characteristic is large (and are unable to specify how large), since we
do not know by which power of λ1 one needs to twist the exterior powers of
the dual of the Hodge bundle to make these generated by global sections.

There is a particular element of w∅ ∈Wg that is the largest of the elements
that are minimal in their right Sg-cosets and that has the property that Uw∅
maps generically of finite degree onto Ag. It is really the strata that are
contained in this stratum that seem geometrically related to Ag, and indeed
the elements w ∈ Wg lying below w∅ are the ones of most interest. (The rest of
Fg appears mostly as a technical device for relating our strata to the Schubert
varieties.) It should be of particular interest to understand the composite map
Uw∅ ⊂ Fg → Ag. It follows from a result of Oort on Dieudonné modules that
the inverse image of an open E-O stratum under this map is a locally constant
fibration. This focuses interest on its fibers, a fiber depending only on the
element of ν ∈ Wg/Sg that specifies the E-O stratum. We call these fibers
punctual flag spaces (see Section 9 for details). We determine their connected
components, showing in particular that two points in the same connected
component can be connected by a sequence of quite simple rational curves.
We also show that knowing which strata Uw have nonempty intersections with
a given punctual flag space would determine the inclusion relations between
the E-O strata.
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A geometric point x of the stratum Uw∅ corresponds to a symplectic flag
of subgroup schemes of the kernel of multiplication by p on the principally
polarized abelian variety that is the image of x in Ag under the map Fg →
Ag. This is reminiscent of de Jong’s moduli stack S(g, p) of Γ0(p)-structures;
cf. [Jo93]. The major difference (apart from the fact that Uw∅ makes sense
only in positive characteristic) is that the g-dimensional element of the flag
is determined by the abelian variety in our case. We shall indeed identify
Uw∅ with the component of the fiber at p of S(g, p) that is the closure of the
ordinary abelian varieties provided with a flag on the local part of the kernel
of multiplication by p. As a consequence we get that that component of S(g, p)
is normal and Cohen–Macaulay.

This paper is clearly heavily inspired by [Oo01]. The attentive reader will
notice that we re-prove some of the results of that paper, sometimes with
proofs that are very close to the proofs used by Oort. We justify such dupli-
cations by our desire to emphasize the relations with the combinatorics of Wg

and the flag spaces. Hence, we start with (a rather long) combinatorial section
in which the combinatorial aspects have been separated from the geometric
ones. We hope that this way of presenting the material will be as clarifying to
the reader as it has been to us. We intend to continue to exploit the approach
using the flag spaces in a future paper that will deal with K3 surfaces. Since
its announcement in [Ge99], our idea of connecting the E-O stratification on
Ag with the Weyl group and filtrations on the de Rham cohomology has been
taken up in other work. In this connection we want to draw attention to papers
by Moonen and Wedhorn; cf. [Mo01,MW04].

We would like to thank Piotr Pragacz for some useful comments.

Conventions. We shall exclusively work in positive characteristic p > 0 (note,
however, that in Section 13 the symbol p will also be a polynomial variable).
After having identified final types and final elements in Section 2 we shall often
use the same notation for the final type (which is a function on {1, . . . , 2g})
and the corresponding final element (which is an element of the Weyl group
Wg). In Sections 10 and 11 our strata will be considered in flag spaces over
not just Ag and Ãg but also over the corresponding moduli stacks with a level
structure. We shall define several natural objects, such as the Hodge bundle,
over several different spaces (such as the moduli space of abelian varieties as
well as toroidal compactifications of it). In order not to make the notation
overly heavy, the same notation (such as E) will normally be used for the
objects on different spaces. Since the objects in question will be compatible
with pullback, this should not cause confusion. Sometimes, when there might
still be such a risk we shall use subscripts (such as EAg and EÃg

) to distinguish
between them. Also, when there is no risk of confusion we shall use the same
name (like Uw and Uw) for a stratum and its extension to the compactified
moduli space.

Our moduli objects such as Ag are really Deligne–Mumford stacks. How-
ever, in order to avoid what we have found to be a sometimes awkward
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terminology (such as “flag stacks”), we shall usually speak of them as spaces
rather than stacks. In a similar vein, by for instance a “locally closed subset”
of an algebraic stack we shall mean a reduced locally closed substack.

2 Combinatorics

This section is of a preparatory nature and deals with the combinatorial as-
pects of the E-O stratification. The combinatorics is determined by the Weyl
group of the symplectic group of degree g. A general reference for the combi-
natorics of Weyl groups is [BL00]. We start by recalling some general notation
and facts about Wg and its Bruhat–Chevalley order. We then go on to give var-
ious descriptions of the minimal elements in the Sg cosets (which we presume
are well known). The short subsection on shuffles will be used to understand
the rôle that the multiplicative and étale parts of the Barsotti–Tate group
play in our stratification in the case of positive p-rank.

2.1 Final Elements in the Weyl Group

The Weyl group Wg of type Cg in Cartan’s terminology is isomorphic to the
semidirect product Sg � (Z/2Z)g, where the symmetric group Sg on g letters
acts on (Z/2Z)g by permuting the g factors. Another description of this group,
and the one we shall use here, is as the subgroup of the symmetric group S2g

formed by elements that map any symmetric 2-element subset of {1, . . . , 2g}
of the form {i, 2g + 1− i} to a subset of the same type:

Wg = {σ ∈ S2g : σ(i) + σ(2g + 1− i) = 2g + 1 for i = 1, . . . , g}.
The function i �→ 2g + 1 − i on the set {1, . . . , 2g} will occur frequently. We
shall sometimes use the notation ı for 2g + 1 − i. Using it we can say that
σ ∈ S2g is an element of Wg precisely when σ(ı) = σ(i) for all i. This makes
the connection with another standard description of Wg, namely as a group
of signed permutations. An element w in this Weyl group has a length and a
codimension defined by

#(w) = #{i < j ≤ g : w(i) > w(j)} + #{i ≤ j ≤ g : w(i) + w(j) > 2g + 1},
and

codim(w) = #{i < j ≤ g : w(i) < w(j)}+#{i ≤ j ≤ g : w(i)+w(j) < 2g+1}
and these satisfy the equality

#(w) + codim(w) = g2.

We shall use the following notation for elements in Wg. By [a1, a2, . . . , a2g] we
mean the permutation of {1, 2, . . . , 2g} with σ(i) = ai. Since σ(i) determines
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σ(2g +1− i) for 1 ≤ i ≤ g, sometimes we use the notation [a1, . . . , ag] instead
(when the ai are single digits we shall often dispense with the commas and
write [a1 . . . ag], which should cause no confusion). We shall also use cycle
notation for permutations. In particular, for 1 ≤ i < g we let si ∈ S2g be the
permutation (i, i+ 1)(2g− i, 2g + 1− i) in Wg, which interchanges i and i+ 1
(and then also 2g − i and 2g + 1 − i) and we let sg = (g, g + 1) ∈ S2g. Then
the pair (W = Wg, S = {s1, . . . , sg}) is a Coxeter system.

Let (W,S) be a Coxeter system and a ∈ W . If X is a subset of S we
denote by WX the subgroup of W generated by X . It is well known that for
any subset X of S there exists precisely one element w of minimal length in
aWX and it has the property that every element w′ ∈ aWX can be written in
the form w′ = wx with x ∈ WX and #(w′) = #(w) + #(x). Such an element w
is called an X-reduced element ; cf. [GrLie4-6, Chapter IV, Exercises §1].

Let W = Wg be the Weyl group and S the set of simple reflections. If we
take X = S\{sg}, then we obtain

WX = {σ ∈Wg : σ{1, 2, . . . , g} = {1, 2, . . . , g}} ∼= Sg.

There is a natural partial order on Wg with respect WX , the Bruhat–
Chevalley order. It is defined in terms of Schubert cells X(wi) by

w1 ≤ w2 ⇐⇒ X(w1) ⊆ X(w2).

Equivalently, if for w ∈Wg we define

rw(i, j) := #{a ≤ i : w(a) ≤ j}, (1)

then we have the combinatorial characterization

w1 ≤ w2 ⇐⇒ rw1(i, j) ≥ rw2(i, j) for all 1 ≤ i, j ≤ 2g.

(Indeed, it is easy to see that it is enough to check this for all 1 ≤ i ≤ g and
1 ≤ j ≤ 2g.) Chevalley has shown that w1 ≥ w2 if and only if any (hence
every) X-reduced expression for w1 contains a subexpression (obtained by just
deleting elements) that is a reduced expression for w2; here reduced means
that w2 is written as a product of #(w2) elements of S. Again, a reference for
these facts is [BL00].

We now restrict to the following case. Let V be a symplectic vector space
over Q and consider the associated algebraic group G = Sp(V ). If E ⊂ V is
a maximal isotropic subspace, then the stabilizer of the flag (0) ⊂ E ⊂ V
is a parabolic subgroup conjugate to the standard parabolic subgroup corre-
sponding to X . Since X is a heavily used letter we shall use H := S\{sg} ⊂ S
instead. Hence WH will denote the subgroup of Wg generated by the elements
of H and we will also use the notation PH for the parabolic subgroup cor-
responding to WH , i.e., the subgroup of the symplectic group stabilizing a
maximal totally isotropic subspace. Note that WH consists of the permuta-
tions of Wg that stabilize the subsets {1, . . . , g} and {g + 1, . . . , 2g} and that
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the restriction of the action of an element of WH to {1, . . . , g} determines
the full permutation. Therefore, we may identify WH with Sg, the group of
permutations of {1, . . . , g}, and we shall do so without further notice. (This is
of course compatible with the fact that H spans an Ag−1-subdiagram of the
Dynkin diagram of G.) There are 2g = |Wg|/|WH | elements in Wg that are
H-reduced elements. These 2g elements will be called final elements of Wg .
The Bruhat–Chevalley order between elements in Wg as well as the condition
for being H-reduced can be conveniently expressed in terms of the concrete
representation of elements of Wg as permutations in the following way.

Let A,B be to two finite subsets of {1, 2, . . . , g} of the same cardinality.
We shall write A ≺ B if for all 1 ≤ i ≤ |A| the ith-largest element of A is at
most equal to the ith-largest element of B.

Lemma 2.1. (i) If w = [a1a2 . . . ag] and w′ = [b1b2 . . . bg] are two elements
of Wg, then w ≤ w′ in the Bruhat–Chevalley order precisely when for all
1 ≤ d ≤ g we have {a1, a2, . . . , ad} ≺ {b1, b2, . . . , bd}.

(ii) Let w = [a1a2 . . . ag] ∈ Wg. Denote the final element of wWH by wf .
For w′ = [b1b2 . . . bg] ∈ Wg we have wf ≤ w′ in the Bruhat–Chevalley order
precisely when {a1, a2, . . . , ag} ≺ {b1, b2, . . . , bg}.

(iii) An element σ ∈Wg is H-reduced (or final) if and only if σ(i) < σ(j)
for all 1 ≤ i < j ≤ g. Also, σ is H-reduced if and only if σ sends the first
g − 1 simple roots into positive roots.

Proof. See for instance [BL00, p. 30]. ��

2.2 Final Types and Young Diagrams

There are other descriptions of final elements that are sometimes equally use-
ful. They involve maps of {1, 2, . . . , 2g} to {1, 2, . . . , g} and certain Young
diagrams. We begin with the maps.

Definition 2.2. A final type (of degree g) is a nondecreasing surjective map

ν : {0, 1, 2, . . . , 2g} → {0, 1, 2, . . . , g}

satisfying
ν(2g − i) = ν(i)− i + g for 0 ≤ i ≤ g.

We always have ν(0) = 0 and ν(2g) = g. Note that we have either ν(i + 1) =
ν(i) and then ν(2g − i) = ν(2g − i − 1) + 1 or ν(i + 1) = ν(i) + 1 and
then ν(2g − i) = ν(2g − i − 1). A final type is determined by its values on
{0, 1, . . . , g}. There are 2g final types of degree g corresponding to the vectors
(ν(i + 1) − ν(i))g−1

i=0 ∈ {0, 1}g. The notion of a final type was introduced by
Oort [Oo01].

To an element w ∈ Wg we can associate the final type νw defined by

νw(i) := i− rw(g, i).
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This is a final type because of the rule rw(g, 2g − i)− rw(g, i) = g − i, which
follows by induction on i ∈ {1, . . . , g} from the fact that w(2g + 1 − a) =
2g + 1 − w(a). It depends only on the coset wWH of w, since a permutation
of {a : 1 ≤ a ≤ g} does not change the definition of

rw(g, i) = #{a ≤ g : w(a) ≤ i}.
Conversely, to a final type ν we now associate an element wν of the Weyl

group, a permutation of {1, 2, . . . , 2g}, as follows. Let

β = {i1, i2, . . . , ik} = {1 ≤ i ≤ g : ν(i) = ν(i− 1)}
with i1 < i2 < · · · given in increasing order and let

βc = {j1, j2, . . . , jg−k}
be the elements of {1, 2, . . . , g} not in ξ, in decreasing order. We then define a
permutation wν by mapping 1 ≤ s ≤ k to is and k+1 ≤ s ≤ g to 2g+1−js−k.
The requirement that wν belong to Wg now completely specifies wν and by
construction wν(i) < wν(j) if 1 ≤ i < j ≤ g. Thus wν is a final element of
Wg. It is clear from Lemma 2.1 that we get in this way all final elements of
Wg. The Bruhat–Chevalley order for final elements can also be read off from
the final type ν. We have w ≥ w′ if and only if νw ≥ νw′ . This follows from
Lemma 2.1, (ii).

We summarize:

Lemma 2.3. By associating to a final type ν the element wν and to a final
element w ∈Wg the final type νw we get an order-preserving bijection between
the set of 2g final types and the set of final elements of Wg.

The final types are in bijection with certain Young diagrams. Our Young
diagrams will be put in a position that is opposite to the usual positioning, i.e.,
larger rows will be below smaller ones and the rows will be lined up to the right
(see next example). Furthermore, we shall make Young diagrams correspond
to partitions by associating to a diagram the parts that are the lengths of its
rows. Given g we shall say that a Young diagram is final of degree g if its parts
are ≤ g and no two parts are equal. They therefore correspond to subsets ξ
of {1, 2, . . . , g}. We write such a ξ as {ξ1, . . . , ξr} with g ≥ ξ1 > · · · > ξr.

To a final type ν we now associate the Young diagram Yν whose associated
subset ξ is defined by

ξj = #{i : 1 ≤ i ≤ g, ν(i) ≤ i− j}.
A pictorial way of describing the Young diagram is by putting a stack of
i− ν(i) squares in vertical position i for 1 ≤ i ≤ g.

Example 2.4. This example corresponds to

{ν(i) : i = 1, . . . , g} = {1, 2, . . . , g − 5, g − 5, g − 4, g − 4, g − 3, g − 3}
and hence ξ = {5, 3, 1} (see Figure 1).
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1 2 3 . . . g − 1 g

Fig. 1. Young diagram with ξ = {5, 3, 1}.

The final elements w in Wg are in one-to-one correspondence with the elements
of Wg/WH . The group Wg acts on Wg/WH by multiplication on the left, i.e.,
by the permutation representation. Therefore Wg also acts on the set of final
types and the set of final Young diagrams. To describe these actions we need
the notion of a break point.

By a break point of a final type ν we mean an integer i with 1 ≤ i ≤ g
such that either

1. ν(i− 1) = ν(i) �= ν(i + 1), or
2. ν(i− 1) �= ν(i) = ν(i + 1).

If i is not a break point of ν = νw then either ν(i+1) = ν(i− 1) or ν(i+1) =
ν(i− 1) + 2 and therefore νsiw = νw. In particular, g is always a break point.
The set of break points of ν is

{1 ≤ i ≤ g : νsiw �= νw}.

Since ν = νw determines a coset wWH , we have that i is not a break point of
ν if and only if w−1siw ∈ WH , i.e., if and only if wWH is a fixed point of si
acting on Wg/WH . The action of si on a final type ν is as follows: if i is not a
break point then ν is fixed; otherwise, replace the value of ν at i by ν(i) + 1
if ν(i− 1) = ν(i) and ν(i)− 1 otherwise.

If w is a final element given by the permutation [a1, a2, . . . , ag], then it
defines a second final element, called the complementary permutation, defined
by the permutation [b1, b2, . . . , bg], where b1 < b2 < · · · < bg are the elements
of the complement {1, 2, . . . , 2g}\{a1, . . . , ag}. If ξ is the partition defining the
Young diagram of w then ξc defines the Young diagram of the complementary
permutation. The set of break points of w (that is, of the corresponding ν)
and its complementary element are the same.

Lemma 2.5. Let w ∈ Wg be a final element with associated final type ν and
complementary element v.

(i) We have that v = σ1wσ0 = wσ1σ0, where σ0 (respectively σ1) is the
element of Sg (respectively Wg) that maps i with 1 ≤ i ≤ g to g + 1− i (resp.
to 2g + 1− i).

(ii) Let i ∈ {1, . . . , g}. If ν(i−1) �= ν(i) then v−1(i) = ν(i) and if ν(i−1) =
ν(i) then v−1(i) = 2g + 1− ν(2g + 1− i).
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Proof. Since w maps i to ai we have that 2g + 1 − ai is not among the aj

and hence bi = 2g + 1− ag+1−i (using that both the ai and bi are increasing
sequences). This gives σ1wσ0(i) = σ1(ag+1−i) = 2g + 1− ag+1−i = bi, but we
note that since w ∈ Wg, it commutes with σ1. Thus (i) holds.

If ν(i − 1) �= ν(i) and, say, ν(i) = i − k then we have k natural numbers
1 ≤ i1 < i2 < · · · < ik < i such that ν(ij − 1) = ν(ij). By the definition of v
we then have v(i − k) = (i − k) + k, since the k values ij (j = 1, . . . , k) are
values for v, hence not of w. The second part is checked similarly. ��
Remark 2.6. The elements σ1 and σ0 of course have clear root-theoretic
relevance: they are respectively the longest elements of Wg and Sg. Multi-
plication by σ1σ0 reverses the Bruhat–Chevalley order. Similarly it is clear
that going from a final element to its complementary element also reverses
the Bruhat–Chevalley order among the final elements and the first part of
our statement says that that operation is obtained by multiplying by σ1 and
σ0. Somewhat curiously, our use of the complementary permutation seems
unrelated to these facts.

In terms of Young diagrams the description is analogous and gives us a
way to write the element wν as a reduced product of simple reflections. To
each si we can associate an operator on final Young diagrams. If Y is a final
diagram, si is defined on Y by adding or deleting a box in the ith column
if this gives a final diagram (only one of the two can give a final diagram)
and then siY will be that new diagram; if neither adding nor deleting such a
box gives a final Young diagram we do nothing. In terms of the description as
subsets ξ, adding a box corresponds to g+1− i ∈ ξ and g+2− i /∈ ξ and then
siξ = (ξ \ {g + 1− i}) ∪ {g + 2− i}. It is then clear that for any final Young
diagram Y there is a word si1si2si3 · · · sik such that Y = si1si2si3 · · · sik∅,
where ∅ denotes the empty Young diagram. Comparison with the action of si
on final types and the correspondence between final types and Young diagrams
shows that the action of si on diagrams is indeed obtained from that on final
types. If we now have a word t = si1 · · · sik in the si we can make it act on
Young diagrams by letting each individual si act as specified. Note that this
action depends only on the image of t in Wg, but for the moment we want to
consider the action by words. We define the area of a Young diagram Y to be
the number of boxes it contains. We shall say that the word t is building if the
area of t∅ is equal to k, the length of the word (not the resulting element).
This is equivalent to the action of sir adding a box to sir+1 · · · sik∅ for all r.

Lemma 2.7. (i) If ν is a final type and t is a word in the si such that Y c
ν = t∅

then wν = w, where w is the image of t in Wg and #(wν) = g(g + 1)/2 −
area(Yν).

(ii) t is H-reduced if and only if t is building.

Proof. To prove (i) we begin by noting that t∅ depends only on the image of t
in Wg, so that (i) is independent of the choice of t. Hence we may prove it by
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choosing a particular t using induction on the area of Y c
ν . Note that g(g+1)/2−

area(Yν) = area(Y c
ν ), so that the last part of (i) says that #(wν) = area(Y c

ν ).
The final type ν with ν(i) = 0 for i ≤ g corresponds to a final diagram Yν with
an empty complementary diagram. We have wν = 1 ∈ Wg, the empty product,
and it has length 0. This proves the base case of the induction. Suppose we
have proved the statement for diagram Yν with area(Y c

ν ) ≤ a. Adding one
block to Y c

ν to obtain Y c
ν′ means that for some i we have g + 1 − i ∈ ξc and

g +2− i /∈ ξc, where ξc is the subset corresponding to Y c
ν , and the new subset

is (ξ′)c = (ξ\{g−i})∪{g−i+1}. This means that if i < g there are b < a ≤ g
such that wν(b) = i, wν(a) = 2g−i, wν′(b) = i+1, and wν′(a) = 2g+1−i, and
the rest of the integers between 1 and g remain unchanged. (The case i = g is
similar and left to the reader.) This makes it clear that we have wν′ = siwν , so
by the induction t maps to wν . It remains to establish the formula for #(wν). In
the definition of #(wν) only the second term contributes, since wν(i) < wν(j)
if i < j ≤ g. Now, the only difference in the collections of sums w(i) + w(j)
for i ≤ j and w equal to wν and wν′ appears for (i, j) = (b, a), and we have
wν(b) + wν(a) = 2g and wν′(b) + wν′(a) = 2g + 2, so that the length of wν′ is
indeed one larger than that of wν .

As for (ii), we have that t∅ = Y c
ν , where ν is the final type of w and then

(ii) is equivalent to t being H-reduced if and only if area(Y c
ν ) is equal to the

length of t. However, by (i) we know that area(Y c
ν ) is equal to #(wν), and t is

indeed H-reduced precisely when its length is equal to #(wν). ��
Example 2.8. Consider again the Young diagram of the previous example
but now for g = 5 (see Figure 2). We have ξ = {5, 3, 1} and thus ξc = {2, 4},
so wν = [13579] and wν can be written as s4s5s2s3s4s5 (we emphasize that
permutations act from the left on diagrams).

We now characterize final types. Besides the function ν = νw defined by

ν(i) = i−#{a ≤ g : w(a) ≤ i} = i− rw(g, i)

and extended by ν(2g− i) = ν(i)− i + g for i = 0, . . . , g, we define a function
μ = μw on the integers 1 ≤ i ≤ 2g by

μ(i) :=
(
max{w−1(a) : 1 ≤ a ≤ i} − g

)+
,

1 2 3 4 5
Fig. 2. Young diagram with g = 3 and ξ = {5, 3, 1}.
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where (x)+ := max(x, 0). Alternatively, we have

μ(i) = min {0 ≤ j ≤ g : rw(g + j, i) = i }.
Note that both μ and ν are nondecreasing functions taking values between 0
and g. Also for i = 1, . . . , 2g− 1 we have ν(i + 1) = ν(i) or ν(i + 1) = ν(i) + 1
and ν(2g) = μ(2g) = g. If w is a final element then νw is the final type
associated to w. For an arbitrary w the function ν is the final type of the final
element in the coset wSg .

Lemma 2.9. We have μw(i) ≥ νw(i) for 1 ≤ i ≤ 2g with equality precisely
when w is a final element and then νw is the final type of w.

Proof. We suppress the index w and first prove the inequality μ ≥ ν. Let
1 ≤ i ≤ g. Suppose that μ(i) = m, i.e., the maximal j with w(j) in [1, i] is
g + m. Then there are at most m elements from [g + 1, 2g] that map under
w into [1, i] and there are at least i−m elements from [1, g] with their image
under w in [1, i], so i− ν(i) ≥ i−m; in other words, ν(i) ≤ μ(i). For i in the
interval [g+1, 2g] we consider ν(2g−i) = #{a ≤ g : w(a) > i}. If μ(2g−i) = m
then there are at least g−m elements from [1, g] mapping into [1, 2g− i] and
thus ν(2g − i) is at most equal to m.

If w is final then w respects the order on [1, g], and this implies that if
#{a ≤ g : w(a) ≤ t} = n then t− n elements from [g + 1, 2g] map under w to
[1, t], so the maximum element from [g + 1, 2g] mapping into [1, t] is g + t−n.
Hence μ(t) = t− n = ν(t).

Conversely, if μ(i) = ν(i) then this guarantees that w(i) < w(j) for all
pairs 1 ≤ i < j ≤ g. Thus w is a final element. ��
Corollary 2.10. Let w ∈Wg. Then w is a final element if and only if
rw(g + νw(i), i) = i for all 1 ≤ i ≤ g.

Proof. Lemma 2.9 says that if w is final then we have

ν(i) = μ(i) = min {0 ≤ j ≤ g : rw(g + j, i) = i }
and in particular that ν(i) ∈ {0 ≤ j ≤ g : rw(g + j, i) = i }, which gives one
direction.

Conversely, if we have rw(g + νw(i), i) = i, then νw(i) ≥ μw(i), and then
Lemma 2.9 gives that w is final. ��

2.3 Canonical Types

We now deal with an iterative way of constructing the function ν starting
from its values on the endpoints and applying it repeatedly.

A final type ν is given by specifying ν(j) for j = 1, . . . , 2g. But it suffices
to specify the values of ν for the break points of ν. Under ν an interval [i1, i2]
between two consecutive break points of ν is mapped either to an interval of
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length i2− i1 or to one point. However, the image points ν(i1) and ν(i2) need
not be break points of ν. Therefore we enlarge the set of break points to a
larger set Cν , called the canonical domain. We define Cν to be the smallest
subset of {0, 1, . . . , 2g} containing 0 and 2g such that if j ∈ Cν then also
2g − j ∈ Cν and if j ∈ Cν then ν(j) ∈ Cν . It is obtained by starting from
R = {0, 2g} and adding the values ν(k) and ν(2g−k) for k ∈ R and continuing
till this stabilizes. The restriction of ν to Cν is called a canonical type. We
wish to see that the canonical domain Cν contains the break points of ν and
hence that we can retrieve ν from the canonical type of ν. To see this we need
a technical lemma (its formulation is somewhat obscured by the fact that we
also want to use it in another slightly different context).

Definition-Lemma 2.11. We shall say that a subset S ⊆ {0, 1, . . . , 2g} is
stable if it has the property that it contains 0 and is stable under i �→ i⊥ :=
2g− i. For a stable subset S a map f : S → S ∩ {0, 1, . . . , g} is adapted to S if
f(0) = 0 and f(2g) = g, if it is contracting, i.e., it is increasing and we have
f(j) − f(i) ≤ j − i for i < j and if it fulfills the following complementarity
condition: For any two consecutive i, j ∈ S (i.e., i < j and there are no k ∈ S
with i < k < j) we have f(j)− f(i) = j − i⇒ f(j⊥) = f(i⊥).

(i) If S is stable and f is a nonsurjective function adapted to S then there
is a proper subset T ⊂ S such that f|T is adapted to T .

(ii) If S is stable and f is a surjective function adapted to S then for any
two consecutive i, j ∈ S we have either f(i) = f(j) or f(j)− f(i) = j − i.

(iii) We say that (S, f) is minimally stable if S is stable and f is adapted
to S and furthermore there is no proper stable subset T ⊂ S for which f|T
is adapted to it, then the function ν : {1, 2, . . . , 2g} → {1, 2, . . . , g} obtained
from f by extending it linearly between any two consecutive i, j ∈ S is a final
type, S = Cν , and ν is the unique final extension of f . Conversely, if f is
the canonical type of a final type ν, then (Cν , f) is minimally stable and in
particular ν is the linear extension of its canonical type.

Proof. For (i) consider T = f(S) ∪ (f(S))⊥. It is clearly stable under f and
⊥ and contains 0. If f is not surjective, then T is a proper subset of S.

Assume now that we are in the situation of (ii). We show that if i < j ∈ S
are consecutive then either f(j) − f(i) = j − i or f(i) = f(j) by descending
induction on j − i.

By induction we are going to construct a sequence ik < jk ∈ S,
k = 1, 2, . . . , of consecutive elements such that either (ik−1, jk−1) = (j⊥k , i⊥k )
or (f(ik), f(jk)) = (ik−1, jk−1) but not both (ik−1, jk−1) = (j⊥k , i⊥k ) and
(ik−2, jk−2) = (j⊥k−1, i

⊥
k−1) and in any case jk − ik = j − i. We start by

putting i1 := i, j1 := j. Assume now that ik < jk have been constructed.
If we do not have ik, jk ≤ g, then since g ∈ S, we must have j⊥k , i⊥k ≤ g
and then we put (ik+1, jk+1) = (j⊥k , i⊥k ). If we do have ik, jk ≤ g then
by the surjectivity of f there are ik+1, jk+1 ∈ S such that f(ik+1) = ik
and f(jk+1) = jk. Since f is increasing, ik+1 < jk+1, and by choosing
ik+1 to be maximal and jk+1 to be minimal we may assume that they
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are neighbors. We must have that jk+1 − ik+1 = j1 − i1. Indeed, we have
f(jk+1)− f(ik+1) ≤ jk− ik, since f is contracting. If we have strict inequality
we have j− i = jk− ik < jk+1− ik+1, and hence by the induction assumption
we have either that jk− ik = f(jk+1)− f(ik+1) = jk+1− ik+1, which is a con-
tradiction, or that jk = f(jk+1) = f(ik+1) = ik, which is also a contradiction.
Hence we have jk+1− ik+1 = jk− ik = j− i and we have verified the required
properties of (ik+1, jk+1).

There must now exist 1 ≤ k < # such that (ik, jk) = (i�, j�), and we pick
k minimal for this property. If k = 1 we have either j − i = j�−1 − i�−1 =
f(j�) − f(i�) = f(j) − f(i) or j − i = j�−2 − i�−2 = f(j�−1) − f(i�−1) =
f(i⊥)− f(j⊥), which implies that f(i) = f(j) by assumptions on f . We may
hence assume that k > 1. We cannot have both (ik−1, jk−1) = (j⊥k , i⊥k ) and
(i�−1, j�−1) = (j⊥� , i⊥� ), since that would contradict the minimality of k. If
(ik−1, jk−1) = (j⊥k , i⊥k ) and (i�−1, j�−1) = (f(i�), f(j�)) then we get jk−1 −
ik−1 = j − i = j�−1 − i�−1 = f(i⊥k−1) − f(j⊥k−1), which implies f(jk−1) =
f(ik−1), which is either what we want in case k = 2 or a contradiction.
Similarly, the case (i�−1, j�−1) = (j⊥� , i⊥� ) and (ik−1, jk−1) = (f(ik), f(jk))
leads to a contradiction, as does the case (i�−1, j�−1) = (f(i�), f(j�)) and
(ik−1, jk−1) = (f(ik), f(jk)).

Finally, to prove the first part of (iii) we note that by (ii), for i < j ∈ S
consecutive we have either f(i) = f(j) or f(j) − f(i) = j − i. This means
that the linear extension ν of f has the property that for 1 ≤ i ≤ 2g we have
either ν(i) = ν(i− 1) or ν(i) = ν(i− 1) + 1, and if ν(i) = ν(i− 1) + 1 we get
by the conditions on f that ν(2g − i + 1) = ν(2g − i). If for some i we have
ν(i) = ν(i−1) and ν(2g−i+1) = ν(2g−i), we get that g = f(2g) = ν(2g) < g,
which is impossible by assumption, and hence ν is indeed a final type. It is
clear that S fulfills the defining property of Cν , so that S = Cν . The conditions
on a final element imply that ν(j)− ν(i) ≤ j− i for j < i and thus that f has
a unique final extension.

Conversely, if ν is a final type then Cν clearly fulfills the required conditions
and we have just noted that ν(j) − ν(i) ≤ j − i for j < i. The complemen-
tarity condition for f |Cν follows from the equivalence ν(i) = ν(i − 1)⇐⇒
ν(2g − i + 1) = ν(2g − i) + 1. ��

We now give an interpretation of the canonical domain in terms of the
Weyl group. Let v ∈ Wg be a final element. A canonical fragment of v is an
interval ]i, j] := [i + 1, . . . , j] ⊆ {1, 2, . . . , 2g} that is maximal with respect to
the requirement that for all k ≥ 1 the set vk(]i, j]) be an interval.

Proposition 2.12. Let v ∈ Wg be a final element, w its complementary ele-
ment, and ν the final type of w.

(i) The set {1, 2, . . . , 2g} is the disjoint union of the canonical fragments of
v. Moreover, the canonical fragments of v are permuted by v.

(ii) If ]i, j] is a canonical fragment of v, and if ν(j) �= ν(j − 1), then ν maps
]i, j] bijectively to ]ν(i), ν(j)].
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(iii) If ]i, j] is a canonical fragment of v, then so is ]j, ı].
(iv) The upper endpoints of the canonical fragments of v together with 0 form

exactly the canonical domain for w.

Proof. If two canonical fragments I and J meet, their union K will be an
interval, and since vk(K) = vk(I) ∪ vk(J), we see that vk(K) will be an
interval for all k. By the maximality we get that I = J . On the other hand,
]i − 1, i] fulfills the stability condition, so that i lies in a fragment. Hence
{1, 2, . . . , 2g} is the disjoint union of fragments.

Now let R be the set of upper endpoints of fragments together with 0. Since
{1, 2, . . . , 2g} is the disjoint union of the fragments of v, it follows that if ]i, j]
is a fragment, then i is also the upper endpoint of a fragment. Thus it follows
from (iii) that R is stable under i �→ ı. Let now i be an upper endpoint of a
fragment. We want to show that ν(i) ∈ R, and we may certainly assume that
ν(i) �= 0, and we may also, by way of contradiction, assume that i is a minimal
upper endpoint for which ν(i) is not an upper endpoint. If ν(i) �= ν(i − 1),
then v−1(i) = ν(i) and hence ν(i) is an upper endpoint of a fragment. Hence
we may pick j < i such that ν(i) = ν(i − 1) = · · · = ν(j) �= ν(j − 1). Then
j cannot belong to the same fragment as i, and thus there must be an upper
endpoint j ≤ k < i. Then ν(k) = ν(i) and by minimality of i we see that ν(k)
is an upper endpoint, which is a contradiction.

We therefore have shown that R contains 0 and is stable under i �→ ı and ν.
Hence it contains the canonical domain. Let now j ∈ Cν \ {0} and let i be the
largest j ∈ Cν such that i < j. We now want to show by induction on k that
v−k(I), I :=]i, j], remains an interval for all k and that also v−k(j) is one of its
endpoints. Now, it follows from Lemma 2.5 that Cν \{0} is stable under v and
hence v−k(j) will be the only element of Cν in v−k(I). Under the induction
assumption, v−k(I) is an interval with v−k(j) as one of its endpoints, and
hence ν is constant on v−k(I) by Lemma 2.11. By Lemma 2.5, an interval v−1

maps v−k(I) to the interval with v−k−1(j) as one of its endpoints. This means
that I is contained in a fragment and R∩ I = {j}. This means that there are
no elements of R between consecutive elements of Cν and hence R ⊆ Cν . ��
Corollary 2.13. By associating to a final type ν its canonical type, its Young
diagram, and the element wν we obtain a bijection between the following sets
of cardinality 2g: the set of final types, the set of canonical types, the set of
final Young diagrams, and the set of final elements of Wg.

2.4 Admissible Elements

The longest final element of Wg is the element

w∅ := sgsg−1sgsg−2sg−1sg . . . sgs1s2s3 . . . sg,

which as a permutation equals [g+1, g+2, . . . , 2g]. Elements of Wg that satisfy
w ≤ w∅ are called admissible. We now characterize these.
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Lemma 2.14. (i) An element w ∈ Wg fulfills w ≤ w∅ if and only if we have
w(i) ≤ g + i for all 1 ≤ i ≤ g.

(ii) The condition that w ≤ w∅ is equivalent to rw(i, g + i) = i for all
1 ≤ i ≤ g.

Proof. The first part follows immediately from the description of the Bruhat–
Chevalley order (Lemma 2.1) and the presentation of w∅.

For the second part one easily shows that w(i) ≤ w∅(i) = g + i for all
1 ≤ i ≤ g is equivalent to rw(i, g + i) = i for all 1 ≤ i ≤ g, which gives the
first equivalence. ��
Remark 2.15. The number of elements w ∈ Wg with w ≤ w∅ and of given
length has recently been determined by J. Sjöstrand [Sj07]. This implies in
particular that the number of elements w ∈Wg with w ≤ w∅ equals

(
x

d

dx

)g ( 1
1− x

)
∣∣x=1/2

,

a fact that we originally guessed from a computation for small g and a search
in [S] leading to the sequence A000629.

We give an illustration of the various notions for the case g = 2.

Example 2.16. g = 2. The Weyl group W2 consists of eight elements. We
list (see Figure 3) the element, a reduced expression as a word (i.e., a decom-
position w = si1 · · · sik with k = #(w)), its length, the functions ν and μ, and
for final elements we also give the partition defining the Young diagram.

The orbits of the complementary element will play an important role in our
discussion of the canonical flag. Here we introduce some definitions pertaining
to them.

w s � ν μ Y

[4321] s1s2s1s2 4 {1, 2} {2, 2}
[4231] s1s2s1 3 {1, 1} {2, 2}
[3412] s2s1s2 3 {1, 2} {1, 2} ∅
[2413] s1s2 2 {1, 1} {1, 1} {1}
[3142] s2s1 2 {0, 1} {0, 2}
[2143] s1 1 {0, 0} {0, 0}
[1324] s2 1 {0, 1} {0, 1} {2}
[1234] 1 0 {0, 0} {0, 0} {1, 2}

Fig. 3. The g = 2 case.
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Definition 2.17. Let w ∈Wg be a final element and let v be its complemen-
tary element. Assume that S is an orbit of the action of v on its fragments.
Since v commutes with i �→ ı, we have either that S is invariant under i �→ ı,
in which case we say that it is an odd orbit, or that S is another orbit, in
which case we say {S, S} is an even orbit pair.

2.5 Shuffles

Recall that a (p, q)-shuffle is a permutation σ of {1, 2, . . . , p + q} for which
we have σ(i) < σ(j) whenever i < j ≤ p or p < i < j. It is clear that for
each subset I of {1, 2, . . . , g} there is a unique (|I|, g − |I|)-shuffle σI such
that I = {σI(1), σI(2), . . . , σI(|I|)}, and we will call it the shuffle associated
to I. We will use the same notation for the corresponding element in Wg

(i.e., fulfilling σI(2g + 1 − i) = 2g + 1 − σI(i) for 1 ≤ i ≤ g). By doing the
shuffling from above instead of from below we get another shuffle σI given by
σI(i) = g + 1− σI(g + 1− i). We will use the same notation for its extension
to Wg. Note that σI will shuffle the elements {g + 1, g + 2, . . . , 2g} in the
same way that σI shuffles {1, 2, . . . , g}, i.e., σI(g + i) = g +σI(i), which is the
relation with σI that motivates the definition. Note that if I = {i1 < · · · < ir}
and if we assume that ir > r (if this does not hold then σI and σI are the
identity elements) and we let k be the smallest index such that ik > k, then
σI = sik−1σ

I′
and σI = sg+1−(ik−1)σI′ , where I ′ = {i1, . . . , ik−1, . . . , ir}. We

call the element si−1wsg+1−(i−1) for w ∈Wg the ith elementary shuffle of w,
and say that I ′ is the elementary reduction of I whose reduction index is ik.

We define the height of a shuffle associated to a subset {i1, i2, . . . , ik} ⊆
{1, 2, . . . , g} to be

∑
s(is − s). Using w′ = siwsg+1−t ⇐⇒ siw

′sg+1−t = w,
we see that starting with an element w obtained by applying a shuffle to a
final element we arrive at a final element after ht(w) elementary shuffles.

Definition 2.18. Let Y be a final Young diagram of degree g. The shuffles of
Y are the elements of Wg of the form σIwY σ−1

I for I ⊆ {1, 2, . . . , g}.
If w ≤ w∅ we say that i with 1 ≤ i ≤ g is a semi-simple index for w if
w(i) = g+ i (note that since w ≤ w∅, we always have w(i) ≤ g+ i). The set of
semi-simple indices will be called the semi-simple index set and its cardinality
the semi-simple rank . We say that w is semi-simply final if the semi-simple
index set has the form [g−f+1, g] (where then f is the semi-simple rank). This
is equivalent to w having the form [. . . , 2g−f+1, 2g−f+2, . . . , 2g]. If w = wY ,
Y a final Young diagram, then w is semi-simply final and the semi-simple rank
is equal to g minus the length of the largest row of Y (defined to be zero if Y
is empty).

Proposition 2.19. Let w ≤ w∅ be a semi-simply final element of semi-
simple rank f and let I ⊆ {1, 2, . . . , 2g} be a subset with #I = f . Put
Ĩ := {g + 1− i : i ∈ I }. Then w′ := σIwσ−1

I is an element with w′ ≤ w∅
of semi-simple rank f and semi-simple index set Ĩ. Conversely, all w′ ≤ w∅
whose semi-simple index set is equal to I are of this form.
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Proof. Put j := σ−1
I (i). Note that j > g− f ⇐⇒ i ∈ Ĩ. If j > g− f we have

w(j) = g + j and hence σIwY σ−1
I (i) = σI(g + j) = g +σI(j) = g + i. If on the

other hand, j ≤ g − f , then if wY (j) ≤ g holds there is nothing to prove, and
if it does not hold we may write wY (j) = g+k, and since the semi-simple rank
of Y is f , we have k < j. Then σIwY σ−1

I (i) = σI(g + j) = g+σI(k) and since
k < j ≤ g − f , we have σI(k) < σI(j) = i, which gives σIwY σ−1

I (i) < g + i.
The converse is easy and left to the reader. ��

Finally, we define the a-number of an element w ∈ Wg by the rule

a(w) := rw(g, g).

If w is final with associated Young diagram Y then its a-number, also denoted
by aY , is the largest integer a with 0 ≤ a ≤ g such that Y contains the diagram
that corresponds to the set ξ = {a, a− 1, a− 2, . . . , 1}.

3 The Flag Space

3.1 The Flag space of the Hodge bundle

In this section we introduce the flag space of a principally polarized abelian
scheme over a base scheme of characteristic p. We use the Frobenius morphism
to produce from a chosen flag on the de Rham cohomology a second flag, whose
position with respect to the first flag will be the object of study.

We let S be a scheme (or Deligne–Mumford stack) in characteristic p and
let X → S be an abelian scheme over S with principal polarization (everything
would go through using a polarization of degree prime to p but we shall stick
to the principally polarized case). We consider the de Rham cohomology sheaf
H1

dR(X/S). It is defined as the hyper-direct image R1π∗(OX → Ω1
X/S) and

is a locally free sheaf of rank 2g on S. The polarization (locally in the étale
topology given by a relatively ample line bundle on X/S) provides us with
a symmetric homomorphism ρ : X → X̂ , and the Poincaré bundle defines
a perfect pairing between H1

dR(X/S) and H1
dR(X̂ /S), and thus HdR(X/S)

comes equipped with a nondegenerate alternating form (cf. [Oo95])

〈, 〉 : H1
dR(X/S)×H1

dR(X/S)→ OS .

Moreover, we have an exact sequence of locally free sheaves on S:

0 → π∗(Ω1
X/S)→ H1

dR(X/S) → R1π∗OX → 0.

We shall write H for the sheaf H1
dR(X/S) and E for the Hodge bundle

π∗(Ω1
X/S). We thus have an exact sequence

0 → E → H → E
∨ → 0
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of locally free sheaves on S. The relative Frobenius F : X → X (p) and the
Verschiebung V : X (p) → X satisfy F · V = p · idX (p) and V · F = p · idX and
they induce maps, also denoted by F , respectively V , in cohomology:

F : H
(p) → H and V : H → H

(p).

Of course, we have FV = 0 and V F = 0 and F and V are adjoints (with
respect to the alternating form). This implies that Im(F ) = ker(V ) and
Im(V ) = ker(F ) are maximally isotropic subbundles of H and H

(p) respec-
tively. Moreover, since dF = 0 on Lie(X ), it follows that F = 0 on E

(p) and
thus Im(V ) = ker(F ) = E

(p). Verschiebung thus provides us with a bundle
map (again denoted by V ) V : H → E

(p).
Consider the space F = Flag(H) of symplectic flags on the bundle H

consisting of flags of subbundles {Ei}2gi=1 satisfying rk(Ei) = i, Eg+i = E
⊥
g−i,

and Eg = E. This space is a scheme over S and it is fibered by the spaces F (i)

of partial flags
Ei � Ei+1 � · · · � Eg.

So F = F (1) = Flag(H) and F (g) = S and there are natural maps

πi,i+1 : F (i) → F (i+1),

the fibers of which are Grassmann varieties of dimension i. So the relative
dimension of F is g(g − 1)/2. The space F (i) is equipped with a universal
partial flag. On F the Chern classes of the bundle E decompose into their
roots:

λi = σi(#1, . . . , #g) with #i = c1(Ei/Ei−1),

where σi is the ith elementary symmetric function.
On F (i) we have the Chern classes #i+1, . . . , #g and

λj(i) := cj(Ei), j = 0, 1, . . . , i.

Its Chow ring is generated over that of Ag by the monomials #m1
1 · · · #mg

g with
0 ≤ mj ≤ j − 1. For later use we record the following Gysin formula.

Formula 3.1. We have (πi,i+1)∗#ki+1 = sk−i(i + 1), where sj(i + 1) denotes
the jth Segre class of Ei+1 (jth complete symmetric function in the Chern
roots #1, . . . , #i+1).

Given an arbitrary flag of subbundles

0 = E0 � E1 � · · · � Eg = E

with rank(Ei) = i we can extend this uniquely to a symplectic filtration on H

by putting
Eg+i = (Eg−i)⊥.
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By base change we can transport this filtration to H
(p).

We introduce a second filtration by starting with the isotropic subbundle

Dg := ker(V ) = V −1(0) ⊂ H

and continuing with
Dg+i = V −1(E(p)

i ).

We extend it to a symplectic filtration by setting Dg−i = (Dg+i)⊥. We thus
have two filtrations E• and D• on the pullback of H to F .

We shall use the following notation:

Li = Ei/Ei−1 and Mi = Di/Di−1 for 1 ≤ i ≤ 2g.

For ease of reference we formulate a lemma that follows immediately from
definitions.

Lemma 3.2. We have Mg+i
∼= Lp

i , L2g+1−i
∼= L∨i , and M2g+1−i

∼= M∨
i .

More generally, for a family X → S of principally polarized abelian varieties
we shall say that a Hodge flag for the family is a complete symplectic flag
{Ei} of H for which Eg is equal to the Hodge bundle. By construction this is
the same thing as a section of Fg → S. We shall also call the associated flag
{Di} the conjugate flag of the Hodge flag.

3.2 The canonical flag of an abelian variety

In this section we shall confirm that the canonical filtration of X [p], (kernel
of multiplication by p) by subgroup schemes of a principally polarized abelian
variety X as defined by Ekedahl and Oort [Oo01] has an analogue for de Rham
cohomology. Just as in [Oo01] we do this in a family X → S. It is the coarsest
flag that is isotropic (i.e., if D is a member of the flag then so is D

⊥) and stable
under F (i.e., if D is a member of the flag then so is F (D(p))). The existence
of such a minimal flag is proven by adding elements F⊥ and F (D(p)) for D

already in the flag in a controlled fashion. We start by adding 0 to the flag.
We then insist on three rules:

1. If we added D ⊆ Dg, then we immediately add D
⊥ (unless it is already in

the flag constructed so far).
2. If we added Dg ⊆ D, then we immediately add F (D(p)) (unless it is already

in the flag constructed so far).
3. If neither rule (1) nor rule (2) applies, then we add F (D(p)) for the largest

element D of the flag for which F (D(p)) is not already in the flag.

We should not, however, do this construction on S; we want to ensure that
we get a filtration by vector bundles: at each stage when we want to add
the image F (D(p)), we have maps F : D

(p) → H of vector bundles, and we
then have a unique minimal decomposition of the base as a disjoint union of
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locally closed subschemes such that on each subscheme this map has constant
rank; these are subschemes because they are given by degeneracy conditions.
At the same time as we add F (D(p)) to the flag we replace the base by this
disjoint union. Over this disjoint union, F (D(p)) then becomes a subbundle
of H and whether it is equal to one of the previously defined subbundles is
a locally constant condition. A simple induction then shows that we get a
flag, i.e., for any two elements constructed, one is included in the other, on
a disjoint union of subschemes of S. Since each element added is either the
image under F of an element previously constructed or the orthogonal of such
an element, it is clear that this flag is the coarsening of any isotropic flag
stable under F , and it is equally clear that the decomposition of S is the
coarsest possible decomposition. We shall call the (partial) flag obtained in
this way the canonical flag of X/S and the decomposition of S the canonical
decomposition of the base.

To each stratum S′ of the canonical decomposition of S we associate a
canonical type as follows: let T ⊆ {1, 2, . . . , 2g} be the set of ranks of the
elements of the canonical flag and let f : T → T ∩ {1, . . . , g} be the func-
tion that to t associates rk(F (D(p))), where D is the element of the canon-
ical flag of rank t. We now claim that T and f fulfill the conditions of
Lemma 2.11. Clearly T contains 0, and by construction it is invariant un-
der i �→ 2g − i. Again by construction f is increasing and has f(0) = 0
and f(2g) = g. Furthermore, if i, j ∈ T with i < j then F induces a sur-
jective map (D/D

′)(p) → F (D)/F (D′), where D respectively D
′ are the ele-

ments of the canonical flag for which the rank is j respectively i and hence
f(j) − f(i) = rk(F (D)/F (D′)) ≤ rk(D/D

′) = j − i. Finally, assume that
f(j) − f(i) = j − i and let D and D

′ be as before. Putting D1 := F (D(p))
and D

′
1 := F (D′(p)) these are also elements of the canonical filtration, and by

assumption F induces an isomorphism F : (D/D
′)(p) → D1/D

′
1. The fact that

it is injective means that D∩kerF = D
′ ∩kerF , which by taking annihilators

and using that kerF is its own annihilator, gives D
⊥+kerF = D

′⊥+kerF . In
turn, this implies F (D⊥) = (D′⊥) and hence that f(2g−i) = f(2g−j). Now, if
f is not surjective then by Lemma 2.11 there is a proper subset of T fulfilling
the conditions of Lemma 2.11. This is not possible since T by construction is
a minimal subset with these conditions. Hence T and f fulfill the conditions
of Lemma 2.11, and hence by them we get that (f, T ) is a canonical type. Let
ν be its associated final type. If 0 = D0 ⊂ D1 ⊂ · · · ⊂ D2g = H is the canon-
ical flag with rk Di = i, we have also proved that F induces an isomorphism
(Dj/Di)(p) → Dν(j)/Dν(i), which can be rephrased as an isomorphism

F : D
(p)
v(I) −̃→ DI ,

where we have used the notation DJ := Di/Dj for an interval J =]j, i] and v ∈
Wg is the complementary element of (the final element of) ν. We shall say that
ν (or more properly f) is the canonical type of the principally polarized abelian
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variety XS′ → S′. (We could consider the canonical type as a locally constant
function on the canonical decomposition to the set of canonical (final) types.)

Remark 3.3. Note that the canonical flag is a flag containing Dg and is not
defined in terms of Eg. This will later mean that the canonical flag will be
a coarsening of a conjugate flag that is derived from a Hodge flag. On the
one hand, this is to be expected. Since the canonical flag is just that, it will
be constructed in a canonical fashion from the family of principally polarized
abelian varieties. Hence it is to be expected, and it is clearly true, that the
canonical flag is horizontal with respect to the Gauss–Manin connection. On
the other hand, we do not want to consider just conjugate flags (or make
constructions starting only with conjugate flags). The reason is essentially
the same; since Dg (or more generally the elements of the canonical flag) is
horizontal, it will not reflect first-order deformations, whereas Eg isn’t and
does. This will turn out to be of crucial importance to us and is the reason
why the Hodge flags will be the primary objects, while the conjugate flags are
secondary. On the other hand, when working pointwise, over an algebraically
closed field, say, we may recover the Hodge flag from the conjugate flag and
then it is usually more convenient to work with the conjugate flag.

Example 3.4. Let X be an abelian variety with p-rank f and a(X) = 1
(equivalently, on Eg the operator V has rank g − 1 and semi-simple rank
g − f). Then the canonical type is given by the numbers {rk(Di)}, i.e.,

{0, f, f + 1, . . . , 2g − f − 1, 2g − f, 2g},
and ν is given by ν(f) = f , ν(f+1) = f , ν(f+2) = f+1, . . . , ν(g) = g−1, . . . ,
ν(2g−f−1) = g−1, ν(2g−f) = g, and ν(2g) = g. The corresponding element
w ∈Wg is [f + 1, g + 1, . . . , 2g − f − 1, 2g − f + 1, . . . , 2g].

4 Strata on the Flag Space

4.1 The Stratification

The respective positions of two symplectic flags are encoded by a combinato-
rial datum, an element of a Weyl group. We shall now define strata on the
flag space F over the base S of a principally polarized abelian scheme X → S
that mark the respective positions of the two filtrations E• and D• that we
have on the de Rham bundle over F .

Intuitively, the stratum Uw is defined as the locus of points x such that at
x we have

dim(Ei ∩Dj) ≥ rw(i, j) = #{a ≤ i : w(a) ≤ j} for all 1 ≤ i, j ≤ 2g.

A more precise definition would be as degeneracy loci for some appropriate
bundle maps. While this definition would work fine in our situation, where we
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are dealing with flag spaces for the symplectic group, it would not quite work
when the symplectic group is replaced by the orthogonal group on an even-
dimensional space (cf. [FP98]). With a view toward future extensions of the
ideas of this paper to other situations we therefore adopt the definition that
would work in general. Hence assume that we have a semi-simple group G, a
Borel group B of it, a G/B-bundle T → Y (with G as structure group) over
some scheme Y , and two sections s, t : Y → T of it. Then for any element w of
the Weyl group of G we define a (locally) closed subscheme Uw respectively Uw

of Y in the following way. We choose locally (possibly in the étale topology)
a trivialization of T for which t is a constant section. Then s corresponds to
a map Y → G/B and we let Uw (respectively Uw) be the inverse image of the
B-orbit BwB (respectively of its closure in G/B). Another trivialization will
differ by a map Y → B, and since BwB and its closure are B-invariant, these
definitions are independent of the chosen trivializations and hence give global
subschemes on Y . If s and t have the property that Y = Uw, then we shall
say that s and t are in relative position w and if Y = Uw, we shall say that s
and t are in relative position ≤ w.

Remark 4.1. The notation is somewhat misleading, since it suggests that Uw

is the closure of Uw, which may not be the case in general. In the situation
that we shall meet it will, however, be the case (cf. Corollary 8.4).

The situation to which we will apply this construction is that in which the
base scheme is the space F of symplectic flags E• as above, s is the tautological
section of the flag space of H over F , and t is the section given by the conjugate
flag D•. From now on we shall, unless otherwise mentioned, let Uw and Uw

denote the subschemes of F coming from the given s and t and w ∈ Wg. In this
case it is actually often more convenient to use the language of flags rather
than sections of G/B-bundles and we shall do so without further mention.
We shall also say that a Hodge flag E• is of stamp w respectively stamp less
than or equal to w if E• and its conjugate flag D• are in relative position w
respectively ≤ w.

Lemma 4.2. Over Uw we have an isomorphism Li
∼= Mw(i) for all

1 ≤ i ≤ 2g.

Proof. By the definition of the strata we have that the image of Ei ∩ Dw(i)

has rank one greater than the ranks of Ei−1 ∩ Dw(i), Ei ∩ Dw(i)−1, and
Ei−1 ∩ Dw(i)−1. So the maps Ei/Ei−1 ← (Ei ∩ Dw(i))/(Ei−1 ∩ Dw(i)−1) →
Dw(i)/Dw(i)−1 give the isomorphism. ��
When the base of the principally polarized abelian scheme is Ag, we shall
use the notation Fg for the space of Hodge flags. Note that a Hodge flag with
respect to X → S is the same thing as a lifting over Fg → Ag of the classifying
map S → Ag. The conjugate flag as well as the strata Ug and Ug on S are
then the pullbacks of the conjugate flag, respectively the strata on Fg.
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4.2 Some Important Strata

We now give an interpretation for some of the most important strata. To begin
with, if one thinks instead in terms of filtrations of X [p] by subgroup schemes
it becomes clear that the condition F (D(p)

i ) ⊆ Di should be of interest. It can
almost be characterized in terms of the strata Uw.

Proposition 4.3. Let X → S be a family of principally polarized abelian
varieties and E• a Hodge flag such that the flag is of stamp ≤ w and w is the
smallest element with that property.

(i) For j ≤ g and for all i ∈ [1, . . . , g] we have rw(i, g + j) = i if and only
if V (Ei) ⊆ E

(p)
j .

(ii) For j ≤ g we have that rw(g + j, i) = i implies that F (D(p)
i ) ⊆ Dj and

the converse is true if S is reduced.
(iii) We have that V (Ei) ⊆ E

(p)
i for all i precisely when w ≤ w∅. If S is

reduced, F (D(p)
i ) ⊆ Di for all i precisely when w ≤ w∅.

Proof. We have that V (Ei) ⊆ E
(p)
j if and only if Ei ⊆ V −1(E(p)

j ) = Dg+j . On
the other hand, by definition rk Ei ∩ Dg+j ≤ rw(i, g + j) with equality for at
least one point of S. Since rk Ei ∩ Dg+j = i ⇐⇒ Ei ⊆ Dg+j , we get the
first part.

For the second part we start by claiming that E
(p)
i ⊆ Dj is implied by

F (D(p)
i ) ⊆ Dj . Indeed, F (D(p)

i ) ⊆ Dj is equivalent to F (D(p)
i ) being orthogonal

to D2g−j , i.e., to the condition that for u ∈ D
(p)
i ) and v ∈ D2g−j we have

〈Fu, v〉 = 0. This implies that 0 = 〈Fu, v〉 = 〈u, V v〉p and hence 〈u, V v〉 = 0,
since S is reduced, which means that D

(p)
i ⊆ (V (D2g−j))⊥ = (E(p)

g−j)
⊥ = E

(p)
g+j .

Since S is reduced, this implies that Di ⊆ Eg+j , and this in turn is equivalent
to rw(g+j, i) = i. The argument can be reversed (and then it does not require
S to be reduced).

Finally, we have from the first part that V (Ei) ⊆ E
(p)
i for all i ≤ g precisely

when rw(i, g + i) = i for all i ≤ g, but by induction on i that is easily seen
to be equivalent to w(i) ≤ g + i for all i ≤ g, which by definition means that
w ≤ w∅. Since E

(p)
g = V (H), the condition V (Ei) ⊆ E

(p)
i for i > g is trivially

fulfilled.
The proof of the second equivalence is analogous in that using (ii), the

condition that F (D(p)
i ) ⊆ Di is equivalent to rw(g + i, i) = i. In general,

ru(i, j) = ru−1(j, i), so that this condition is equivalent to rw−1(i, g + i) = i,
and hence by the same argument as before, this condition for all i is equivalent
to w−1 ≤ w∅. Chevalley’s characterization of the Bruhat–Chevalley order
makes it clear that u ≤ v ⇐⇒ u−1 ≤ v−1, and hence we get w−1 ≤ w∅ ⇐⇒
w ≤ w−1

∅ . However, w∅ is an involution. ��
Remark 4.4. (i) As we shall see (cf. Corollary 8.4) the strata Uw in the
universal case of Fg are reduced.

(ii) Flags of stamp w ≤ w∅ are called admissible.
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We can also show that the relations between final and canonical types are
reflected in relations for flags. We say that a Hodge flag is a final flag if it is of
stamp w for a final element w. Also if I =]i, j] ⊆ {1, 2, . . . , 2g} is an interval
and F• is a complete flag of a vector bundle of rank 2g then we define FI to
be Fj/Fi.

Proposition 4.5. Let X → S be a principally polarized abelian scheme over
S and let E• be a final flag for it of stamp w.

(i) The conjugate flag D• is a refinement of the canonical flag. In partic-
ular, w is determined by X → S. More directly, we have that the final type ν
associated to w is given by

rk(Eg ∩ Di) = i− ν(i)

for all i. In particular, the canonical decomposition of S with respect to X → S
consists of a single stratum, and its canonical type is the canonical type asso-
ciated to w.

(ii) Conversely, assume that S is reduced and that the canonical decompo-
sition of S consists of a single stratum, and let ν be the final type associated
to the canonical type of the canonical flag. Then any Hodge flag E• whose
conjugate flag D• is a refinement of the canonical flag and for which we have
F (D(p)

i ) ⊆ Dν(i) for all i, is a final flag.
(iii) If I is a canonical fragment for v, the complementary element to w,

then F induces a bijection (Dv(I))(p) −̃→ DI .

Proof. We start by showing that F (Di) = Dν(i) for all i. Indeed, this is
equivalent to F (Di) ⊆ Dν(i) and rk

(
(ker(F ) = E

(p)
g ) ∩ D

(p)
i

)
= i − ν(i) since

the second condition says that F (Di) has rank ν(i). Now, the condition
F (Di) ⊆ Dν(i) is by Proposition 4.3 implied by rw(g + ν(i), i) = ν(i), which is
true for a final element by Corollary 2.10. On the other hand, the condition
rk(E(p)

g ∩D
(p)
i ) = i− ν(i) is implied by rw(g, i) = rk(Eg ∩Di) = i− ν(i), which

is true by the very definition of ν. Now, the fact that F (Di) = Dj for all i and
some j (depending on i) implies by induction on the steps of the construction
of the canonical flag that D is a refinement of the canonical flag. The rest of
the first part then follows from what we have proved.

As for (ii), assume first that E• has a fixed stamp w′ and let ν′ be its final
type. Since D• is an extension of the Hodge flag, we get that when i is in the
canonical domain of ν then i− ν′(i) = rk(Eg ∩Di) = i− ν(i), so that ν and ν′

coincide on the canonical domain of ν and hence they coincide by Lemma 2.11.
The assumption that F (D(p)

i ) ⊆ Dν(i) = Dν′(i) for all i is by Proposition 4.3
equivalent to rw(g + ν′(i), i) = i for all i, and hence Corollary 2.10 gives that
w is final of type ν′ = ν.

Finally, assume that I =]i, j]. The induced map D
(p)
j /D

(p)
i → Dν(j)/Dν(i)

is always surjective, but it follows from Lemma 2.11 that either the right-hand
side of this map has rank 0 or it has the same rank as the right-hand side.
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If they have the same rank it induces an isomorphism D
(p)
I −̃→ Dv−1(I). If

the right-hand side has rank zero, then again from Lemma 2.11 the two sides
of D

(p)
j /D

(p)
ı → Dν(j)/Dν(ı) have the same rank, and hence this map is an

isomorphism and again gives an isomorphism D
(p)
I −̃→ Dv−1(I). Since I is an

arbitrary fragment, we conclude the proof of (ii). ��
The number of final extensions of a canonical flag will now be expressed in the
familiar terms of the number of flags (respectively self-dual flags) in a vector
space over a finite field (respectively a vector space with a unitary form).
Hence we let γe

n(m) be the number of complete Fpm -flags in F
n
pm and let

γo
n(m) be the number of complete Fp2m-flags self-dual under the unitary form
〈(u1, . . . , un), (v1, . . . , vn)〉 := u1v

pm

1 + · · ·+ unv
pm

n . Recall now the definition
of even and odd orbits of fragments given in Definition 2.17.

Lemma 4.6. Let X be a principally polarized abelian variety over an alge-
braically closed field and w ∈ Wg the element whose canonical type is the
canonical type of X. Put

γ(w) = γg(w) :=
∏
S=S

γo
#I(#S/2)

∏
{S,S}

γe
#I(#S),

where the first product runs over the odd orbits and the second over the even
orbit pairs and in both cases I indicates a member of S.

The number of final flags for X is then equal to γ(w).

Proof. Since we are over a perfect field, any symplectic flag extending Dg is
the conjugate flag of a unique Hodge flag. Hence we get from Proposition
4.5 that a final flag is the same thing as a flag D• extending the canonical
flag and for which we have F (D(p)

i ) ⊆ Dν(i) for all i. The condition that
dim(Eg ∩ Di) = i − v(i) then gives that we actually have F (D(p)

i ) = Dν(i).
However, since D• refines the canonical flag, it is determined by the induced
flags of the DI for fragments I of v, and the stability condition F (D(p)

i ) = Dν(i)

transfers into a stability condition under the isomorphisms F : D
(p)
v(I) −̃→ DI

of Section 3.2.
Hence the problem splits up into separate problems for each orbit under

v and i �→ ı (the map i �→ ı transfers into the isomorphism DI
∼= D

∨
I induced

by the symplectic form). Given any fragment I ∈ S, S a v-orbit of fragments
of v, the flag of Dvk(I) for any k is then determined by the flag corresponding
to I by the condition that F k-stability takes the kth Frobenius pullback of
the flag on Dvk(I) to the one of DI . Furthermore, the flag on DI then has to
satisfy the consistency condition of being stable under FS := F#S .

For an even orbit pair {S, S} the self-duality requirement for the flag means
that the flags for the elements of S are determined by those for the elements
of S. Moreover, given I ∈ S there is no other constraint on the flag on DI than
that it be stable under FS . Hence we have the situation of a vector bundle D
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over our base field k and an isomorphism FS : D(pm) −̃→ D, where m = #S,
and we want to count the number of flags stable under FS . Now, since k is
algebraically closed, Dp := {v ∈ D : FS(v) = v } is an Fpm-vector space for
which the inclusion map induces an isomorphism k

⊗
Fpm

Dp −̃→ D. It then
follows that FS-stable flags correspond to Fpm-flags of Dp.

If instead S is an odd orbit, we will together with I also have I in S. If
we denote the cardinality of S by 2m, the flag on DI must be mapped to the
dual flag on DI by FS := Fm. The situation is similar to the even orbit pair
situation but with a “unitary twist” as in Proposition 7.2, and we get instead
a correspondence with self-dual flags. We leave the details to the reader. ��
Example 4.7. For the canonical type associated to the final type of an ele-
ment w of Example 3.4 we have

γg(w) = (p + 1)(p2 + p + 1) · · · (pf−1 + pf−2 + · · ·+ 1).

Definition 4.8. For 1 ≤ f < g we let w = uf be the final element

uf = sgsg−1sg · · · sg−f+1 · · · sgsg−f−1 · · · sg · · · s1 · · · sg,
i.e., if we introduce τj = sjsj+1 · · · sg then we have uf = τgτg−1 · · · τ̂f · · · τ1.
It corresponds to the Young diagram consisting of one row with g − f blocks
and equals the element w given in Example 3.4.

Recall the notion of the a-number a(X) for a g-dimensional abelian variety X
of an (algebraically closed) field k of characteristic p. It equals the dimension
over k of the vector space Hom(αp, X) of maps of the group scheme αp to X .
Equivalently, a(X) equals the dimension of the kernel of V on H0(X,Ω1

X).
In our terms H0(X,Ω1

X) = Eg and kerV = Dg, so that a(X) = dim Eg ∩ Dg.
The p-rank or semi-simple rank f , on the other hand, can be characterized
by the condition that dimk ∩i≤g(V i

H)(p
g−i) is equal to f .

Lemma 4.9. (i) Let Y be a final Young diagram and w ∈Wg its final element
and assume that x = (X,E•,D•) ∈ Uw(k), k a field. Then the p-rank of X
equals the p-rank of Y .

(ii) Let w = uf (so that f < g) and x = (X,E•,D•) ∈ Fg(k). Then we
have x ∈ Uw (respectively Uw) if and only if the filtration E• is V -stable and
the p-rank of X is f and the a-number of X is 1 (respectively the p-rank of
X is ≤ f). The image of Uw in Ag is the locus of abelian varieties of p-rank
f and a-number 1.

Proof. By definition we have rw(i, g + i) = i for all 1 ≤ i ≤ g. Moreover,
rw(i, g + i − 1) = i precisely when i ≤ g − f . Hence by Proposition 4.3 we
see that V (Ei) ⊆ E

(p)
i for all 1 ≤ i ≤ g, V (Ei) ⊆ E

(p)
i−1 for i ≤ g − f , and

V (Ei) � E
(p)
i−1 for i > g−f . The first and last conditions mean that V induces

an isomorphism V : E{i} −̃→ E{i}. On the other hand, the second condition
gives V g−f (Eg−f ) = 0. Together this gives that the semi-simple rank of X
is f .
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For the second part, since we have w ≤ w∅ we must check the condition on
the p-rank and the a-number. By the definition on Uw we have x ∈ Uw if and
only if rk(Eg ∩ Dj) = 1 for f + 1 ≤ j ≤ g and rk(Eg ∩ Dj) = 0 for 1 ≤ j ≤ f .
This implies that the kernel of V (which equals Dg ∩ Eg) has rank 1 and the
semi-simple rank of V on Eg is f . For x ∈ Uw we get instead rk(Eg ∩Dj) ≤ 1
for f + 1 ≤ j ≤ g and rk(Eg ∩Dj) = 0 for 1 ≤ j ≤ f . ��
Also, the strata Uw with w ∈ Sg admit a relatively simple interpretation.
Recall that an abelian variety is called superspecial if its a-number is equal
to its dimension. This happens if and only if the abelian variety (without
polarization) is geometrically isomorphic to a product of supersingular elliptic
curves.

Lemma 4.10. Let x be a geometric point of Fg lying over [X ] ∈ Ag. The
following four statements are equivalent:

1. x ∈ ∪w∈SgUw.
2. dim(Eg ∩ Dg) ≥ g.
3. ker(V ) = Eg.
4. The underlying abelian variety X is superspecial.

Proof. An abelian variety X is superspecial if and only if X is a
product of supersingular elliptic curves, and this condition is equivalent
to dim(Eg ∩ Dg) ≥ g. This explains the equivalences of (2), (3), and (4). If
x ∈ Uw with w ∈ Sg then rw(g, g) = g; hence (2) holds. Conversely, if X is
superspecial then any filtration E• on Eg is V -stable and can be extended to
a symplectic filtration. The lemma now follows from the observation that the
degeneracy strata for w ∈ Sg, the Weyl group of GLg, cover the flag space of
flags on Eg. ��
Lemma 4.11. Let x be a point of Uw with underlying abelian variety X. Then
the a-number of X equals a(w). Moreover, if Y = {1, 2, . . . , a} with corre-
sponding final element wY ∈ Wg then the image of UwY in Ag is the locus Ta

of abelian varieties with a-number a.

Proof. The a-number of an abelian variety is by definition the dimension of
the kernel of V on H0(X,Ω1

X). But this is equal to rw(g, g) = a(w). The
condition that a(X) = a implies that rw(g, g) = a; hence ν(g) = g − a. This
implies that ν(g − a + i) ≥ i for i = 1, . . . , a. Therefore the “smallest” ν
satisfying these conditions is νwY . ��

4.3 Shuffling flags

Our first result on the stratification will concern the case in which the p-rank
is positive. All in all, the étale and multiplicative parts of the kernel of mul-
tiplication by p on the abelian variety have very little effect on the space of
flags on its de Rham cohomology. There is, however, one exception to this.
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The most natural thing to do is to put the multiplicative part at the bottom
(i.e., the first steps of the flag, and thus, by self-duality, the étale part at the
top), which is what automatically happens for a final filtration (on the con-
jugate filtration, that is). We may, however, start with a final filtration and
then “move” the μp-factors upward. Note that over a perfect field the kernel
of multiplication by p is the direct sum of its multiplicative, local-local, and
étale parts, so that this is always possible. In general, however, it is possible
only after a purely inseparable extension. This means that we get an insepa-
rable map from a stratum where not all the μp-factors are at the bottom to a
stratum where they all are. We intend first to give a combinatorial description
of the strata that can be obtained in this way from a final stratum and then
to compute the degrees of the inseparable maps involved. However, since we
have to compute an inseparable degree, we should work with Hodge filtrations
instead of conjugate filtrations, since conjugate filtrations kill some infinitesi-
mal information. This causes a slight conceptual problem, since the V -simple
parts in a final filtration are to be found “in the middle” rather than at the
top and bottom (recall that V maps the top part of the conjugate filtration
to the bottom of the Hodge filtration). This will not be a technical problem,
but the reader will probably be helped by keeping it in mind.

It turns out that the arguments used do not change if instead of considering
shuffles of final elements we consider shuffles of semi-simply final elements. We
shall treat the more general case, since we shall need it later.

Hence we pick a subset Ĩ ⊆ {1, 2, . . . , g} and let Uss

Ĩ be the closed sub-
scheme of Fg defined by the conditions that V map E

(p)
i to E

(p)
i for all

1 ≤ i ≤ g and to E
(p)
i−1 for i /∈ Ĩ. Hence Uw ⊆ Uss

Ĩ precisely when w ≤ w∅ and
the semi-simple index set of w is a subset of Ĩ. We also put

Uss
Ĩ

:= Uss

Ĩ \ ∪Ĩ′⊂ĨU
ss

Ĩ′ ,

so that Uw ⊆ Uss
Ĩ

precisely when w ≤ w∅ and its semi-simple index set is
equal to Ĩ. If I := {g + 1− i : i ∈ Ĩ } we get from Proposition 2.19 that these
w are precisely those of the form σIw′σ−1

I for the semi-simply final w′.
We are now going to construct, for every I ⊆ {1, 2, . . . , g}, a morphism

SI : Uss
Ĩ
→ Uss

{g−f+1,...,g}, where Ĩ := {g + 1− i : i ∈ I } and #Ĩ = f .
Let ı̃ be the reduction index of the elementary reduction I ′ of I and put

i := g + 1 − ı̃. By Proposition 2.19 we have that rw(i + 1, g + i) = i + 1 and
w(i) = g + i. This means that if E• is the (tautological) Hodge flag on Uss

Ĩ
,

then V (Ei+1) ⊆ E
(p)
i and V (Ei) � E

(p)
i−1 everywhere on Uss

Ĩ
. This means that

V induces a bijection on E{i} and is zero on E{i+1}. Let Id denote the map
s �→ 1⊗ s from T to T (p) for the sheaves involved. Then the map induced by
the quotient map

Ker(Id−V )E{i+1,i} → Ker(Id−V )E{i} ,

where the kernel is computed in the étale topology on Uw, is an isomorphism.
Also for a sheaf T equipped with a linear isomorphism V : T → T (p), we have
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an isomorphism Ker(V − I)
⊗O → T with O the structure sheaf. It follows

that the short exact sequence

0 → E{i} −→ E{i+1,i} −→ E{i+1} → 0

splits uniquely in a way compatible with V . This means that we may define a
new flag where E

′
j = Ej for j �= i and E

′
i/E

′
i−1 = Ei+1/Ei. Then the classifying

map Uss
Ĩ
→ Fg for this new flag will have its image in Uss

Ĩ′ . Repeating this
process, we end up with a flag whose classifying map will have its image in
U{g−f+1,...,g}, which by definition is our map SI .

Proposition 4.12. If I ⊆ {1, . . . , g} then the map SI : Uss
Ĩ
→ Uss

{g−f+1,...,g}
is finite, radicial, and surjective.

Proof. To get from a point of Uss
{g−f+1,...,g} to one of Uss

Ĩ
one has to find a

V -invariant complement to some Ei/Ei−1 in Ei+1/Ei−1. Since V will be zero
on Ei+1/Ei and bijective on Ei/Ei−1, a complement over the fraction field of a
discrete valuation ring will extend to a complement over the discrete valuation
ring (since the complement cannot meet Ei/Ei−1 over the special fiber), so
that the map is proper. It then remains to show that the map is a bijection
over an algebraically closed field. In that case Eg splits canonically as a sum
of a V -nilpotent part and a V -semisimple part, and the bijectivity is clear. ��
In order to determine the degree (necessarily of inseparability) we shall do
the same factorization as in the definition of SI , so that we may consider the
situation of Ĩ with ĩ and I ′ being the reduction index respectively elementary
reduction of I. For the tautological flag E• on Uss

Ĩ
we have that V is an

isomorphism on E{i} and zero on E{i+1}, while the opposite is true on Uss
Ĩ′ .

Lemma 4.13. The map Uss
Ĩ
→ Uss

Ĩ′ is flat of degree p.

Proof. We consider the partial symplectic flag space Fg(i) consisting of the
flags of Fg by removing the ith member Di and its annihilator. This means
that we have a P

1-bundle Fg → Fg(i). Now, under this map Uss
Ĩ

and Uss
Ĩ′ map

to the same subscheme U ⊆ Fg(i), and the map Uss
Ĩ
→ Uss

Ĩ′ is compatible with
these projections. Over U put E := E{i,i+1},M := ker(V : E → E(p)), and L :=
Im(V : E → E(p)). Then on the P

1-bundle π : Fg → Fg(i), the subscheme Uss
Ĩ′

is defined by the vanishing of the composite map O(−1)→ π∗E → π∗(E/M)
and in fact gives a section of Fg over U given by the line subbundle M⊂ E .
Hence it is enough to show that the projection map Uss

Ĩ
→ Fg(i) is flat of

degree p. We have that Uss
Ĩ′ ⊆ Fg is defined by the vanishing of the composite

O(−1)(p) → π∗E(p) → π∗(E(p)/M). It is then enough to show that Uss
Ĩ′ ⊆ Fg

is a relative Cartier divisor, and for that it is enough to show that it is a
proper subset in each fiber of Fg → Fg(i). This, however, is clear, since for a
geometric point of Fg(i) there are just two points that lie in U∅, given by M
and Lp−1

. ��
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Composing these maps, we get the following proposition.

Proposition 4.14. Let I ⊆ {1, . . . , g} and Ĩ := {g + 1− i : i ∈ I }. Then the
map SI : Uss

I → Uss
{1,...,g} is a finite purely inseparable map of degree pht(I).

Proof. The flatness and the degree of SI follow by factoring it by maps as
in Lemma 4.13 and noting that the number of maps is ht(I). The rest then
follows from Proposition 4.12. ��
Remark 4.15. The result implies in particular that if w′ is a shuffle of w
by I, then SI : Uw′ → Uw is flat and purely inseparable of degree pht(I). We
shall later (see Corollary 8.4) show that Uw′ and Uw are reduced. This shows
that over a generic point of Uw each simple shuffle toward w′ really requires
a finite inseparable extension of degree p. This is a kind of nondegeneracy
statement that is the inseparable analogue of maximal monodromy (of which
we shall see some examples later on). It can also be seen as saying that a
certain Kodaira–Spencer map is injective.

4.4 The E-O strata on Ag ⊗ Fp

Definition 4.16. Let w ∈ Wg be a final type. Then the E-O stratum Vw

associated to w is the locally closed subset of Ag of points x for which the
canonical type of the underlying abelian variety is equal to the canonical type
of w. We let Vw be the closure of Vw.

It is known that the dimension of Vw is equal to dim(w) [Oo01]. This and
the fact that the E-O strata form a stratification will also follow from our
results in Sections 8 and 9.3.

5 Extension to the boundary

The moduli space Ag admits several compactifications. The Satake or Baily–
Borel compactification A∗g is in some sense minimal, cf. [FC90, Chapter V]. It
is a stratified space

A∗g =
g⊔

i=0

Ai.

Chai and Faltings define in [FC90] a class of smooth toroidal compactifications
of Ag. If Ãg is such a toroidal compactification then there is a natural map
q : Ãg → A∗g extending the identity on Ag. This induces a stratification of Ãg:

Ãg =
g⊔

i=0

q−1(Ag−i) =
g⊔

i=0

A〈i〉g .

The stratum A〈i〉g parametrizes the semi-abelian varieties of torus rank i.
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The Hodge bundle E on Ag can be extended to a rank g vector bundle,
again denoted by E, on Ãg. On A〈i〉g the Hodge bundle fits into a short exact
sequence

0→ E
′ → E → E

′′ → 0,

where E
′ is a rank g − i bundle and E

′′ can be identified with the cotangent
bundle to the toric part of the universal semi-abelian variety along the identity
section over A〈i〉g . The bundle E

′ is the pullback under q : A〈i〉g → A∗g of the
Hodge bundle on Ag−i.

The Verschiebung V acts in a natural way on the above short exact se-
quence and it preserves E

′. It induces an action on E
′′ with trivial kernel

because E
′′ comes from the toric part and is generated by logarithmic forms.

The de Rham bundle H on Ag also admits an extension (denoted again
by H). This is the logarithmic de Rham sheaf R1π∗(Ω•X̃g/Ãg

(log)), where the
log refers to allowing logarithmic singularities along the divisor at infinity; cf.
[FC90, Theorem VI, 1.1]. We have a short exact sequence

0 → E → H → E
∨ → 0

extending the earlier mentioned sequence on Ag. The symplectic form on H

extends as well.
We now want to compare strata on Ag and Ãg, and for this we in-

troduce some notation. For a given integer 1 ≤ i ≤ g we can consider
the Weyl group Wg−i as a subgroup of Wg by letting it act on the set
{i + 1, i + 2, . . . , g, . . . , 2g − i} via the bijection j ←→ i + j for 1 ≤ j ≤ g − i.
More precisely, define ρi : Wg−i →Wg via

ρi(w)(l) =

{
i + w(l) for 1 ≤ l ≤ g − i,

g + l for g − i + 1 ≤ l ≤ g.

This map respects the Bruhat–Chevalley order, and final elements are mapped
to final elements.

Since symplectic flags on H are determined by their restriction to E and
since we can extend E to Ãg, we can extend Fg to a flag space bundle F̃g

over Ãg. Then we can also consider the degeneracy loci Uw and Uw for F̃g.
We shall use the same notation for these extensions.

Similarly, we can define the notion of a canonical filtration for a semi-
abelian variety. If 1 → T → A → A′ → 0 is a semi-abelian variety
with abelian part A′ and toric part T of rank t and if the function ν′ on
{0, c1, . . . , cr, cr+1, . . . , c2r = 2 dim(A′)} is the canonical type of A′, then we
define the canonical type of A to be the function ν on

{0, t, t + c1, . . . , t + cr, t + cr+1, . . . , t + c2r, 2g − t, 2g}
defined by ν(t + ci) = t + ν′(ci). Using this definition we can extend the E-O
stratification to Ãg.
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The stratification of Ãg by the strata A〈i〉g induces a stratification of F̃g by
flag spaces F̃ 〈i〉g . Recall that the stratum A〈i〉g admits a map q : A〈i〉g → Ag−i

induced by the natural map Ãg → A∗g. Similarly, we have a natural map
πi = π : F 〈i〉g → Fg−i given by restricting the filtration on E to E

′.
We now describe the interplay between the two stratifications (F 〈i〉g )gi=1

and (Uw)w∈Wg .

Lemma 5.1. Let w ∈Wg be an element with w ≤ w∅.
(i) We have Uw ∩ F 〈i〉g �= ∅ if and only if w is a shuffle of an element in

ρi(Wg−i).
(ii) If w = ρi(w′) with associated degeneracy loci Uw ⊂ Fg and Uw′ ⊂ Fg−i

then we have Uw ∩ F 〈i〉g = π−1
i (Uw′).

(iii) At a point x of Ãg for which the torus part of the “universal” semi-
abelian scheme has rank r, there is a formally smooth map from the formal
completion of Ãg at x to the formal multiplicative group Ĝ

r
m with the follow-

ing properties. The locus where the torus rank of the universal semi-abelian
scheme is s ≤ r is the inverse image of the locus of points of Ĝ

r
m where r − s

coordinates are 1. The restriction of this map to the formal completion of any
Uw containing x is formally smooth.

(iv) In particular, Uw is the closure of its intersection with Fg.

Proof. A V -stable filtration on E restricts to a V -stable filtration on E
′. If

Uw ∩F 〈i〉g is not empty, then it determines a w′ ∈ Wg−i such that Uw ∩F 〈i〉g ⊆
π−1
i (Uw′). Since V is invertible on E

′′, one sees that w is a shuffle of ρi(w′)
and that Uw ∩ F 〈i〉g = π−1

i (Uw′).
The third part is a direct consequence of the local construction of Ãg us-

ing toroidal compactifications and of the universal semi-abelian variety using
Mumford’s construction, where it is defined by taking the quotient of a semi-
abelian variety by a subgroup of the torus part, the subgroup being generated
by the coordinate functions of Ĝ

r
m (see [FC90, Section III.4] for details). Since

H and E depend only on that universal semi-abelian scheme, it is clear that
the restriction of the map to a Uw is smooth.

The last part follows directly from the third. ��
Note also that Lemma 5.1 is compatible with shuffling. It also results from this
lemma that we can define the E-O stratification on the Satake compactification
by considering either the closure of the stratum Vw on Ag or the images of
the final strata Vw on Ãg.

6 Existence of boundary components

Our intent in this section is to show the existence in irreducible components of
our strata of points in the smallest possible stratum U1, the stratum associated
to the identity element of Wg.
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Proposition 6.1. Let X be an irreducible component of any Uw in Fg. Then
X contains a point of U1.

Proof. We prove this by induction on g and on the Bruhat–Chevalley order of
w. The statement is clear for g = 1. We start off by choosing a Chai–Faltings
compactification Ãg ofAg with a semi-abelian family over it (and a “principal”
cubical structure so that we get a principal polarization on the semi-abelian
variety modulo its toroidal part).

What we now actually want to prove is the same statement as in the
proposition but for F̃g instead. Since U1 is contained in Fg, the result will
follow. We start off by considering Y := X ∩ (F̃g\Fg). Assume that Y is
nonempty and irreducible. If it is not, then we replace it by an irreducible
component of Y . Then Y is contained in π−1

1 (Uw′) with ρ1(w′) = w for some
w′ ∈ Wg−1. We claim that Y is an irreducible component of π−1

1 (Uw′). This
follows from the fact that “we can freely move the toroidal part into an abelian
variety,” which is Lemma 5.1, part (iv).

By induction on g we can assume that Uw′ in Fg−1 contains U1′ , where 1′

is the identity element of Wg−1. Any component Z of Uρ1(1′) that lies in X

and meets Y does not lie completely in the boundary F̃g −Fg. By induction
on the Bruhat–Chevalley order we can assume that w = ρ1(1′) and X = Z.
Note also that for any w′′ < w we have that Uw′′ does not meet the boundary,
and by induction on the Bruhat–Chevalley order we get that X = Uw ∩ X .
On the other hand, if X does not meet the boundary we immediately get the
same conclusion.

Hence we may and shall assume that Y has the property that it lies com-
pletely inside Uw and that it is proper. Lemma 6.2 now shows that it has an
ample line bundle of finite order, which together with properness forces Y to
be zero-dimensional. Now observe that dimY ≥ #(w) (the proof is analogous
to [Ful, Theorem 14.3]). This gives #(w) = 0, and so w = 1 and we are reduced
to a trivial case. ��
The following is a version of the so-called Raynaud trick.

Lemma 6.2. Suppose that X is a proper irreducible component of Uw inside
Fg such that X ∩ Uw = X. Then X is 0-dimensional.

Proof. We have the variety X and two symplectic flags E• and D• that at all
points of X are in the same relative position w. It follows from Lemma 4.2 that
we have an isomorphism between Li := Ei/Ei−1 and Mw(i) := Dw(i)/Dw(i)−1

over X , and then since we also have isomorphisms between Lp
i and Mg+i and

Li and L−1
2g+1−i, we conclude that all the Li have finite order. On the other

hand, we know from the theory of flag spaces that L2g

⊗L2g−1

⊗ · · ·⊗Lg+1

is relatively ample, and since Lg

⊗Lg−1

⊗ · · ·⊗L1 is the pullback of an
ample line bundle over the base Ag, we conclude. ��
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7 Superspecial fibers

We shall now discuss the fiber of Fg → Ag over superspecial points. The
superspecial abelian varieties are characterized by the condition that Eg = Dg,
i.e., the strata Uw for which w ∈ Sg. Furthermore, V induces an isomorphism
E/Eg −̃→ E

(p)
g . On the other hand, the polarization gives an isomorphism

(Eg)∗ −̃→ E/Eg. This leads to the following definition.

Definition 7.1. (i) Let S be an Fp-scheme. A p-unitary vector bundle is a
vector bundle E over S together with an isomorphism F ∗E −̃→ E∗, where
F : S → S is the (absolute) Frobenius map.

(ii) Let E be a p-unitary vector bundle over S and let P → S be the
bundle of complete flags on E. The p-unitary Schubert stratification of P is
the stratification given by letting Uw, w ∈ Sg, consist of the points for which
the universal flag F and the dual of the Frobenius pullback (F ∗F)∗ are in
position corresponding to w.

A map F ∗E → E∗ of vector bundles is the same thing as a map F ∗E⊗OS
E →

OS , which in turn corresponds to a biadditive map 〈−,−〉 : E × E → OS

fulfilling 〈fa, b〉 = fp〈a, b〉 and 〈a, fb〉 = f〈a, b〉. We shall normally use this
latter description.

All p-unitary vector bundles are trivial in the étale topology, as the fol-
lowing proposition shows.

Proposition 7.2. If 〈−,−〉 is a p-unitary structure on the vector bundle E
then

E := {a ∈ E : ∀b ∈ E : 〈b, a〉 = 〈a, b〉p }
is a local (in the étale topology) system of Fp2-vector spaces. Furthermore,
〈−,−〉 induces a unitary (with respect to the involution (−)p on Fp2) structure
on E. Conversely, if E is a local system of Fp2-vector spaces with a unitary
structure, then E := E

⊗
Fp2
OS is a p-unitary vector bundle.

These two constructions establish an equivalence between the categories
of p-unitary vector bundles and that of local systems of unitary Fp2-vector
spaces. In particular, all p-unitary vector bundles (of the same rank) are locally
isomorphic in the étale topology.

Proof. The pairing 〈−,−〉 gives rise to an isomorphism ψ′ : E −̃→ (F ∗E)∗ by
a �→ b �→ 〈b, a〉 and an isomorphism ψ : (F 2)∗ : E −̃→ (F ∗E)∗ by a �→ b �→
〈a, b〉p. The composite ρ := ψ−1 ◦ψ′ thus gives an isomorphism E −̃→ (F 2)∗E .
Then E is simply the kernel of ρ− 1 ⊗ id, and the fact that E = E

⊗
Fp2
OS

follows from [HW61]. The pairing 〈−,−〉 then induces a unitary pairing on E,
which is perfect, since 〈−,−〉 is. Conversely, it is clear that a unitary pairing
on E translates to one on E .

Finally, since all (perfect) unitary pairings on Fp2 -vector spaces of fixed
dimension are isomorphic, we get the local isomorphism. ��
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Proposition 7.2 has the following immediate corollary.

Corollary 7.3. The flag variety fibrations of two p-unitary vector bundles of
the same rank on the same base are locally isomorphic by an isomorphism
preserving the p-unitary Schubert strata.

Let us now consider the situation in which the base scheme is Spec(Fp2) and E
is an Fp2 -vector space given a unitary perfect pairing. The smallest p-unitary
Schubert stratum consists of flags that coincide with their unitary dual. Taking
duals once more, we see that they are taken to themselves after pullback by
the square of the Frobenius, hence are defined over Fp2 . Furthermore, they
are self-dual with respect to the unitary pairing. This should come as no
surprise, since that stratum corresponds to final filtrations on superspecial
abelian varieties. The next-to-lowest strata are somewhat more interesting.

Lemma 7.4. Let V be a g-dimensional Fp2 unitary vector space and let P be
projective space based on V . If s = (i, i + 1) ∈ Sg for some 1 ≤ i < g then the
closed Schubert stratum Us ⊆ P consists of the flags 0 = E0 ⊂ E1 ⊂ · · · ⊂ Eg,
where the Ej for j �= i, g− i are Fp2-rational with E

⊥
j = Eg−j , Eg−i = (E(p)

i )⊥

unless i = 2g, and Ei �= (E(p)
g−i)

⊥.

Proof. If E• and D• are two flags in V
⊗

R (R some Fp2-algebra) and they
are in position s, then dim(Ej ∩Dj) = rs(j, j) = j for i �= j, i.e., Ej = Dj and
for i the conditions give us Ei ∩Di = Ei−1. In our case, where Dj = F ∗E⊥g−j ,
this means Ej = F ∗E⊥g−j for j �= i and Ei �= (E(p)

g−i)
⊥. If also j �= g − i we can

use this twice and get that Ej = E
(p2)
j , i.e., Ej is Fp2 -rational. ��

As a result we get the following connectedness result, analogous to [Oo01,
Proposition 7.3].

Theorem 7.5. Let V be a g-dimensional Fp2 unitary vector space and let P

be projective space based on V . Let S ⊆ {1, . . . , g − 1}. Let U be the union
of the Usi for i ∈ S. Then two flags 0 = A0 ⊂ A1 ⊂ · · · ⊂ Ag−1 ⊂ Ag

and 0 = B0 ⊂ B1 ⊂ · · · ⊂ Bg−1 ⊂ Bg in U1 lie in the same component of U
precisely when Bi = Ai for all i /∈ S. Furthermore, every connected component
of U contains an element of U1.

Proof. The last statement is clear, since every irreducible component of any
Usi contains a point of U1. This follows from Proposition 6.1 but can also
easily be seen directly.

We start by looking at the locus U i

F of a Usi with 1 ≤ i < g of flags for
which all the components of the flag except the dimension i and dimension
g − i parts are equal to a fixed (partial) Fp2-rational self-dual flag F•. The
following claims are easily proved using Lemma 7.4.

(i) For any 1 ≤ i ≤ (g − 2)/2 or (g + 2)/2 ≤ i < g we get an element
in U i

F by picking any Ei−1 ⊂ Ei ⊂ Ei+1 and then letting Eg−i be
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determined by Lemma 7.4. Hence the locus is isomorphic to P
1 and

the intersection with U1 consists of the points for which Ei and Eg−i

are Fp2 -rational.
(ii) When g is even we get an element in U i

F by picking Eg/2−1 ⊂ Eg/2 ⊂
Eg/2+1. Hence the locus is isomorphic to P

1 and the intersection with
U1 consists of the points for which Eg/2 is Fp2 -rational.

(iii) When g is odd we get an element in U i

F by picking E(g−3)/2 ⊂
E(g−1)/2 ⊂ E(g+3)/2 for which E(g−1)/2 ⊂ F ∗E

⊥
(g−1)/2, where

E(g−1)/2 = E(g−1)/2/E(g−3)/2 and F ∗ comes from the Fp2-rational
structure on E(g+3)/2/E(g−3)/2 and the scalar product is induced
from that on Eg, and then define E(g+1)/2 by the condition that

E(g+1)/2/E(g−3)/2 = F ∗E
⊥
(g−1)/2. Since all nondegenerate uni-

tary forms are equivalent, choosing a basis of E(g+3)/2/E(g−3)/2

for which the form has the standard form 〈(x, y, z), (x, y, z)〉 =
xp+1 + yp+1 + zp+1 yields that U i

F is isomorphic to the Fermat curve
of degree p + 1 and hence is irreducible. The intersection with U1

consists of the points for which E(g−1)/2 is Fp2 -rational and then
E(g+1)/2 = E

⊥
(g−1)/2.

(iv) When g is odd we get an element in U i

F by picking E(g+3)/2 fulfilling
conditions dual to those of (iii). Hence again U i

F is irreducible and
the intersection with U1 consists of the points for which E(g+1)/2 is
Fp2-rational and then E(g−1)/2 = E

⊥
(g+1)/2.

It follows from this description that two flags in U1 lie in the same component
of U if and only if they are equivalent under the equivalence relation generated
by the relations that for any unitary Fp2-flag 0 = A0 ⊂ A1 ⊂ · · · ⊂ Ag−1 ⊂ Ag

we may replace it by any flag that is the same except for Ai and Ag−i for
i ∈ S. The theorem then follows from the following lemma. ��
Lemma 7.6. (i) Let k be a field and let F#n be the set of complete flags of
vector spaces in a finite-dimensional vector space. The equivalence relation
generated by the operations of modifying a flag E• by, for any i, replacing
Ei by any i-dimensional subspace of Ei+1 containing Ei−1 contains just one
equivalence class.

(ii) Let F#n the set of complete flags of vector spaces in an n-dimensional
Fp2-vector space, self-dual with respect to a perfect unitary pairing. An el-
ementary modification of such a flag E• is obtained by either, for any
1 ≤ i ≤ (n − 1)/2, replacing Ei by any isotropic i-dimensional subspace of
Ei+1 containing Ei−1 and En−i by its annihilator or, when n is even, replac-
ing En/2 by any maximal totally isotropic subspace contained in En/2+1 and
containing En/2−1. Then the equivalence relation generated by all elementary
modifications contains just one equivalence class.
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Proof. Starting with (i), we prove it by induction on n, the dimension of the
vector space V . Given two flags E• and F•, if E1 and F1 are equal we may
use induction applied to E•/E1 and F•/E1. We now use induction on the
smallest j such that E1 ⊆ Fj . The case j = 1 has already been taken care
of. We now get a new flag F ′• by replacing Fj−1 by Fj−2

⊕
E1, which works

because E1 � Fj−1, and we then have E1 ⊆ F ′j−1.
Continuing with (ii) we again use induction on n and start with two self-

dual flags E• and F•. Let us first assume that n is even, n = 2k. Then
Ek and Fk are isotropic subspaces. If they have nontrivial intersection, then
we may pick a 1-dimensional subspace contained in it and then use (i) to
replace E• and F• by flags for which Ek and Fk are the same and E1 = F1.
This implies that also En−1 = Fn−1 and we may consider En−1/E1 with its
two flags induced from E• and F• and use induction to conclude. Assuming
Fk ∩ Ek = {0} we may again use (i) to modify F•, keeping Fk fixed, so that
E1 ⊆ Fk+1. This means that E1

⊕
Fk−1 is totally isotropic and we may replace

Fk by it to obtain a new flag F ′• for which F ′k and Ek intersect nontrivially.
When n is odd, n = 2k + 1, we may again use induction on n to finish if

Ek and Fk intersect nontrivially. If not, we may again use (i) to reduce to the
case E1 ⊆ Fk+2 and then we may replace Fk by E1

⊕
Fk−1 and Fk+1 by its

annihilator. ��

8 Local structure of strata

8.1 Stratified Spaces

We now want to show that Fg looks locally like the space of complete symplec-
tic flags (in 2g-dimensional space). More precisely, we shall get an isomorphism
between étale neighborhoods of points that preserves the degeneration strata.
This is proved by establishing a result on suitable infinitesimal neighborhoods
that involves not just the complete flag spaces but also partial ones. In or-
der to have a convenient way of formulating such a result we introduce the
following two notions:

By a stratified space we shall mean a scheme together with a collection of
closed subschemes, called strata. A map between stratified spaces is said to
be stratified if it maps strata into strata.

If P is a partially ordered set then a diagram X• of spaces over P associates
to each element q of P a scheme Xq and to each relation q > q′ a map
Xq → Xq′ fulfilling the condition that the composite Xq → Xq′ → Xq′′ equal
the map Xq → Xq′′ for any q > q′ > q′′. We shall also similarly speak about a
diagram of stratified spaces where both the schemes and the maps are assumed
to be stratified. Given a field k and a k-point x of a diagram X• we may speak
of its (strict) Henselization at x, which at each q ∈ P is the Henselization at
x of Xq.
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For a positive integer g we now consider the partially ordered set Pg whose
elements are the subsets of {1, 2, . . . , g−1} and with ordering that of inclusion.
We have two diagrams of stratified spaces over this set: The first, F#•g, asso-
ciates to the subset S the flag space of a maximal totally isotropic subspace E
of a symplectic 2g-dimensional vector space and partial flags of subspaces of E
whose dimensions form the set S. The map associated to an inclusion S ⊂ S′

is simply the map forgetting some of the elements of the flag. Similarly, we
let F•g be the diagram that to a subset S associates the space of flags over the
moduli space Ag of principally polarized abelian varieties that associates to
a principally polarized abelian variety the space of flags on its Hodge bundle
whose dimensions form the subset S.

The diagram F#•g becomes a stratified diagram by considering the strati-
fications given by the (closed) Schubert cells with respect to some fixed com-
plete flag. In positive characteristic p the diagram F•g becomes a stratified
diagram by considering the degeneracy loci given by the relative positions of
the Hodge flag E• and the conjugate flag D.

8.2 Height 1-Maps

For schemes in a fixed positive characteristic p we shall say that a closed
immersion S ↪→ S′ defined by the ideal sheaf I on S′ is a height 1-map if
I(p)
S = 0, where for an ideal I, we let I(p) be the ideal generated by the pth

powers of elements of I. If R is a local ring in characteristic p with maximal
ideal mR, the height 1-hull of R is the quotient R/m

(p)
R . It has the property

that its spectrum is the largest closed subscheme of SpecR for which the map
from SpecR/mR to SpecR/m

(p)
R is a height 1-map. If k is a field of character-

istic p and x : Spec k → S a k-map to a k-scheme S of characteristic p, then
by the height 1-neighborhood of x we will mean the spectrum of the height
1-hull of the local ring of S at x. It is clear that taking height 1-neighborhoods
of k-points is functorial under maps between pointed k-schemes. Finally, we
shall say that two local rings are height 1-isomorphic if their respective height
1-hulls are isomorphic and that the height 1-hull of a k-point is height 1-smooth
if it is isomorphic to the height 1-hull of a smooth k-point (i.e., is of the form
k
[
[t1, . . . , tn]

]
/m(p) with m = (t1, . . . , tn)).

Theorem 8.1. For each perfect field k of positive characteristic p and each
k-point x of F•g there is a k-point y of F#•g such that the height 1-neighborhood
of x is isomorphic to the height 1-neighborhood of y by a stratified isomorphism
of diagrams.

Proof. Denote also by x the point of Fg, the space of complete flags of the
Hodge bundle, associated to x as a point of the diagram F•g . Let X• be the
height 1-neighborhood of x in F•g and X the height 1-neighborhood of x in
Fg. Now the ideal of the closed point of x in X has a divided power structure
for which all the divided powers of order ≥ p are zero. This allows us to get
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a trivialization of the restriction of the de Rham cohomology HX −̃→ X ×W
that is horizontal (i.e., compatible with the Gauss–Manin connection on the
left and the trivial connection on the right). Now, since the absolute Frobenius
map on X factors through the closed point, we get that the pullback E

(p)
• is

a horizontal flag, and then so is D•, its elements being either inverse images
of horizontal subbundles by the horizontal map V or duals of horizontal sub-
bundles. We now get a map from X to the space F#g of complete symplectic
flags on W such that the pullback of the universal flag equals E•. We may,
furthermore, choose a symplectic isomorphism of W and the standard sym-
plectic space such that D• is taken to the fixed complete flag. We can extend
this map in a compatible fashion for all partial flag spaces giving a map from
the diagram X• to F#•g, and we will denote by y the k-point that is the com-
posite of x and this map. This map is clearly a stratified map, and by the
infinitesimal Torelli theorem (cf. [FC90, pp. 14–15]) it induces an isomorphism
from X• to Y •, the first height 1-neighborhood of y in F#•g. ��
Theorem 8.2. For each perfect field k of positive characteristic p and each
k-point x of Fg there is a k-point y of F#g such that the Henselization of x is
isomorphic to the Henselization of y by a stratified isomorphism.

Proof. The theorem provides such an isomorphism over the height 1-hull X of
x. Now, over OFg,x we may extend the trivialization of HX to a trivialization
of HFg,x that also extends the trivialization of D (making, of course, no re-
quirements of horizontality). This gives a map from the localization, X̃ , of Fg

at x to F#g that extends the map from X to F#g. It thus induces a map from
X̃ to Ỹ , the localization F#•g at y. Now, this map induces an isomorphism
on tangent spaces and Fg is smooth. This implies that we get an induced
isomorphism on Henselization and proves the theorem. ��
Lemma 8.3. Let A be a principally polarized abelian variety over an alge-
braically closed field. If a flag D• for it has type w′ that is less than or equal to
its canonical type, then w′ is the final element corresponding to the canonical
type of A.

Proof. The flag D• has the property, since it is of a type ≤ to the canonical
type, that F maps D

(p)
i into Dνw(i). Consider now the set I of i’s for which

Di is a member of the canonical flag. It clearly contains 0 and is closed under
i �→ ı. Furthermore, if i ∈ I, then F (D(p)

i ) has dimension νw(i) but is then
equal to Dνw(i), since it is contained in it. Hence I fulfills the conditions of
Corollary 2.10 and hence contains the canonical domain, which means that
D• is a refinement of the canonical flag and thus ν, the final type of A, and
νw′ coincide on the canonical domain of ν and are equal by Corollary 2.10,
which means that w′ is the final element of the canonical type. ��
Corollary 8.4. (i) Each stratum Uw of Fg is smooth of dimension #(w)
(over Fp).
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(ii) The closed stratum Uw (again of Fg) is Cohen–Macaulay, reduced, and
normal of dimension #(w), and Uw is the closure of Uw in Fg for all w ∈Wg.

(iii) If w is final then the restriction of the projection Fg → Ag to Uw is
a finite surjective étale covering from Uw to Vw of degree γg(w).

Proof. We know that each open Schubert cell of F#g is smooth, and each
closed one is Cohen–Macaulay by a proof that runs completely along the lines
of [Ful, Theorem 14.3.]. By a theorem of Chevalley (cf. [Ch94, Corollary of
Proposition 3]) they are smooth in codimension 1, so by Serre’s criterion (cf.
[Gr65, Theorem 5.8.6]) they are normal and reduced. The same statement for
the stratification of Fg then follows from the theorem. To finish (ii), the fact
that Uw = Uw follows more or less formally from the rest: if x ∈ Uw, then
we know that the dimensions of all Uw′ with w′ < w that pass through in x
are #(w′) < #(w), but the dimension of Uw at that point is #(w), and hence x
must lie in the closure of Uw.

As for (iii), that Uw maps into Vw follows from the fact that the restriction
of a final filtration to its canonical domain is a canonical filtration (Proposition
4.5). That the map Uw → Ag is unramified follows from the same statement
for Schubert cells, which is [BGG73, Proposition 5.1]. We next prove that
Uw → Vw is proper. Note that by Proposition 4.5 and by the fact that by
definition, Vw is the image of Uw, we get that the geometric points of Vw

consist of the principally polarized abelian varieties with a canonical filtration
whose canonical type corresponds to the final type of w. Hence for properness
we may assume that we have a principally polarized abelian variety over a
discrete valuation ring R such that both its generic and special points are of
type w and we suppose that we are given a final flag over the generic point.
Hence the canonical decomposition of SpecR for the abelian variety is equal
to SpecR, and we have a canonical flag over SpecR. Since Uw is proper, the
map to it from the generic point of SpecR extends to a map from SpecR to
Uw, hence giving a flag over its special point. This flag is then of a type ≤ w,
and hence by Lemma 8.3, its type is equal to w and the image of SpecR lies
in Uw, which proves properness.

Now, Vw being by definition the schematic image of Uw, it is reduced
because Uw is. Since Uw → Vw is unramified, it has reduced geometric fibers,
and since it is finite and Vw is reduced, to show that it is flat it is enough
to show that the cardinalities of the geometric fibers are the same for all
geometric points of Vw. This, however, is Lemma 4.6. Being finite, flat, and
unramified, it is étale. That its degree is γ(w) follows from Lemma 4.6. ��
Remark 8.5. (i) The corollary is true also for the strata of F̃g.

(ii) Note that the degree of the map Uw → Vw is γg(w). By looking at
the proof of Lemma 4.6 it is not difficult to show that it is a covering with
structure group a product of linear and unitary groups over finite fields of
characteristic p.
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9 Punctual flag spaces

Let M be the (contravariant) Dieudonné module of a truncated Barsotti–Tate
group of level 1 over an algebraically closed field of characteristic p provided
with an alternating perfect pairing (of Dieudonné modules). We let FM , the
punctual flag space for M , be the scheme of self-dual admissible complete flags
in M for which the middle element equals Im(V ). It is well known that every
such M occurs as the Dieudonné module of the kernel of multiplication by p
on a principally polarized abelian variety. Then FM is the intersection of U∅
and the fiber over a point of Ag giving rise to M . Also, by a result of Oort
[Oo01], the canonical type of M determines it (over an algebraically closed
field), and hence we shall also use the notation Fν where ν is a final type. For
Γ = (I,S) where I ⊆ {1, . . . , g} with #I equal to the semi-simple rank of M
and S a complete V -stable flag of the V -semi-simple part of M , we define FΓ

M

as follows: we let FΓ
M be the part of FM ∩ Uss

I (Uss
I may clearly be defined

directly in terms of M) for which the flag induces S on the V -semi-simple
part. The p-rank of M is denoted by f , and we easily see that FM is the
disjoint union of the FΓ

M , and putting FSM := F ({1,...,g−f+1},Γ )
M , we have maps

SI : FI
M → FSM . These maps are homeomorphisms by Proposition 4.14. This

can be seen directly by decomposing M as Mmul
⊕

M ��
⊕

M et, where V is
bijective on Mmul, F on M et, and F and V nilpotent on M ��. Any element of
an admissible flag over a perfect field will decompose in the same way (since
that element is stable under F by definition and under V by duality) and is
hence determined by its intersection with Mmul, M ��, and M et. By self-duality
the intersection of all the elements of the flag with Met is determined by that
with Mmul, and that part is given by an arbitrary full flag of submodules
of Mmul, which is our S. That means that we may indeed reconstitute the
whole flag from Γ and the induced flag on M �� and that any choice of flag on
M �� gives rise to a flag in FΓ

M . This means that the map FΓ
M → FM�� is a

homeomorphism, and we may for all practical purposes focus our attention on
the case that F and V are nilpotent on M (i.e., M is local–local). Hence in this
section, unless otherwise mentioned, the Dieudonné modules considered will
be local–local. Note that the principal interest in this section will be focused
on the question of which Uw have nonempty intersection with FM and that
this problem is indeed by the above considerations immediately reduced to
the local–local case.

We shall make extensive use of one way to move in each FM :
Consider w∅ ≥ w ∈ Wg. Assume that we have an index 1 ≤ i ≤ g − 1

for which rw(g + i − 1, i + 1) ≥ i + 1. This means that for a flag D• in Uw

we have that F (Di+1) ⊆ Di−1 or equivalently that F is zero on Di+1/Di−1.
Hence if we replace Di by any Di−1 ⊂ D ⊂ Di+1 (replacing also D2g−i to make
the flag self-dual), we shall still have an admissible flag, since V (D) ⊆ Di−1.
In order to construct the E-flag, we apply V to the D-flag, which gives us
half of the E-flag, and we complement by taking orthogonal spaces. In the
E-flag now Eg−i and Eg+i move. This construction gives a mapping from
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the projective line P(Eg−i+1/Eg−i−1) to FM , and we shall therefore call this
family the simple family of index i (with, of course, respect to M), and we
shall write Pw,i for this simple family. The condition rw(g+ i−1, i+1)≥ i+1
is equivalent to rw(g− i+1, i− 1) = g− i− 1, and when it is fulfilled we shall
say that g − i is movable for w.

Proposition 9.1. Any two points of the local flag space FΓ
M can be connected

by a sequence of simple families.

Proof. We immediately reduce to the case that M is local (in which case
the statement is about FM ). We are going to identify FM with the scheme
of V -stable flags in Im(V ), and we prove the statement for any Dieudonné
module N with F = 0 and V nilpotent. Let E• and F• be two V -stable
flags in N . If E1 = F1 then we may consider N/E1 and use induction on the
length of N to conclude. If not, we use induction on the smallest i such that
F1 ⊆ Ei which we thus may assume to be > 1. We now have F1 � Ei−1

and hence that F1 is a complement to Ei−1 in Ei, so that in particular,
Ei/Ei−2 = (Ei−1/Ei−2)

⊕
(F1 + Ei−2)/Ei−2. This has a consequence that V

is zero on Ei/Ei−2, which means that every subspace of it is stable under
V , so that we get a P

1-family of flags in Ei/Ei−2 in which both Ei−1/Ei−2

and (F1 + Ei−2)/Ei−2 are members, so that we may move Ei−1 so that it
contains F1. ��
Recall (cf. [Oo01, 14.3]) that one defines the partial order relation on final
types ν1 ⊆ ν2 (respectively ν1 ⊂ ν2) by the condition that Vν1 ⊆ Vν2 (re-
spectively Vν1 � Vν2). We shall now see that this relation can be expressed
in terms of local flag spaces. For this we let Mν be a Dieudonné module of a
principally polarized truncated Barsotti–Tate group of level 1 with final type
ν (there is up to isomorphism only one such Mν , [Oo01, Theorem 9.4]).

Theorem 9.2. (i) We have that ν′ ⊂ ν precisely when there is a w ∈Wg such
that w ≤ ν and there is a flag of type w in FMν′ .

(ii) If there is a flag of type w in FMν′ , then there is a w′ ≤ w such that
the intersection Uw′ ∩ FMν′ is finite.

Proof. Consider the image in Ag of Uν . It is a closed subset containing Vν and
hence contains Vν , and in particular it meets each fiber over a point of Vν .
Consequently there is a point s in the intersection of Uν and the fiber over
a point t of Vν′ . Now, s lies in some Uw ⊆ Uν and hence fulfills w ≤ ν, and
since ν ≤ w∅, s also lies in the local flag space of t, and as has been noted,
this is the “same” as FMν′ . The converse is clear.

As for the second part, the proof of Lemma 6.2 shows that a w′ ≤ w that
is minimal for the condition that Uw′ ∩ FMν′ is nonempty has Uw′ ∩ FMν′
finite. ��
The theorem allows us to re-prove a result of Oort [Oo01]; the E-O strata are
defined in Section 4.4.
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Corollary 9.3. The E-O stratification on Ag is a stratification.

Proof. The condition in 9.2, (i) says that ν′ ⊂ ν if and only if the closure Uν
of Uν has a nonempty intersection with the punctual flag space Fν′ . The proof
there gives more precisely that a given point s of Vν′ lies in Vν precisely when
Uν intersects the fiber over s of the map Fg → Ag. This condition does not
depend on the point s by a result of Oort on Dieudonné modules [Oo01]. ��
From Theorem 9.2 it is clear that the condition that Uw∩FM �= ∅ is important.
We shall say that an admissible w ∈ Wg occurs in ν, with ν a final type, if
Uw ∩ FM �= ∅, and we shall write it symbolically as w → ν.

Remark 9.4. It is important to realize that a priori this relation w → ν
depends on the characteristic, which is implicit in all of this article. Hence the
notation w

p→ ν would be more appropriate. It is our hope that the relation
will a posteriori turn out to be independent of p. If not and if one is working
with several primes p, the more precise notation will have to be used.

Hence we can formulate the theorem as saying that ν′ ⊂ ν precisely when
there exists an admissible w with w → ν′ and w ≤ ν. Suppose final types ν
and ν′ are given. For an element w of minimal length in the set of minimal
elements of {w ∈ Wg : ν > w, w → ν′} in the Bruhat–Chevalley order, we
then have the following property. The space Uw∩FMν′ has dimension 0 for the
generic point of Vν′ . Clearly, then �(w) ≥ �(ν′) for every w as in Theorem 9.2.

Example 9.5. Since E-O strata on Ag are defined using the projection from
the flag space, the closure of an E-O stratum on Ag need not be given by the
Bruhat–Chevalley order on the set of final elements, and indeed it isn’t. Oort
gave the first counterexample for g = 7 based on products of abelian varieties.
We reproduce his example and give two others, one for g = 5 and one for
g = 6 that do not come from products.

(i) Let g = 7 and let w1 = [1, 2, 4, 6, 7, 10, 12] and w2 = [1, 2, 3, 7, 9, 10, 11].
Then w1 and w2 are final elements of W7 and have lengths �(w1) = 8 and
�(w2) = 9. In the Bruhat–Chevalley order neither w1 ≤ w2 nor w2 ≤ w1

holds. Despite this, we have Vw1 ⊂ Vw2 . The explanation for this lies in the
fact that the simple family Pw1,4 hits the stratum Uw3 with w3 the element
[1, 2, 3, 7, 6, 10, 11] = s3w1s4, with w2 > w3 and w3 → w1, so by Theorem 9.2
it follows that Vw1 ⊂ Vw2 . (That there is such a simple family can be proved
directly, but for now we leave it as an unsupported claim, since a proof “by
hand” would be somewhat messy. A more systematic study of these phe-
nomena will appear in a subsequent paper.) This explains the phenomenon
observed in [Oo01, p. 406], (but note the misprints there). Also the element
w2 > w4 = [1, 2, 3, 7, 9, 5, 11] → w1 will work for w1. The element w1 is the fi-
nal element corresponding to taking the product of a Dieudonné module with
final element [135] and a Dieudonné module with final element [1246], whereas
similarly, w2 appears as the “product” of the final elements [135] and [1256].
Since [1246] < [1256], there is a degeneration of a Dieudonné module of type
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[1256] to one of type [1246]. This shows that this example simply expresses
the fact that ⊂ must be stable under products, whereas the Bruhat–Chevalley
order isn’t. (We’d like to thank Ben Moonen for pointing this out to us.)

(ii) For g = 5 we consider the final elements w1 = [1, 3, 4, 6, 9] and w2 =
[1, 2, 6, 7, 8] of lengths 5 and 6 and the nonfinal element w3 = [1, 2, 6, 4, 8] in
W5. Then w3 < w2 and w3 → w1, so that Vw1 lies in the closure of Vw2 . But
in the Bruhat–Chevalley order neither w1 < w2 nor w2 < w1 holds.

(iii) Let g = 6 and consider the final elements w1 = [1, 3, 5, 6, 9, 11]
and w2 := [1, 2, 6, 8, 9, 10] of lengths �(w1) = 8 and �(w2) = 9. In the
Bruhat–Chevalley order we do not have w1 ≤ w2. Nevertheless, Vw1 oc-
curs in the closure of the E-O stratum Vw2 . Indeed, the admissible element
w3 = [1, 2, 6, 8, 4, 10] satisfies w2 ≥ w3 → w1: Uw3 has a nonempty intersec-
tion with the punctual flag space Fw1 . This time, neither of the elements w1

and w2 is a product in the sense of (i). Furthermore, since Vw1 is of codimen-
sion 1 in Vw2 , this example cannot be derived by taking the transitive closure
of the closure under products of the Bruhat–Chevalley relation. The claim
that we have w3 → w1 and the two preceding ones will be substantiated in a
subsequent paper.

There is an approach to the study of the relation of the E-O strata and the
strata on Fg that is in some sense “dual” to the study of punctual flag spaces:
that of considering the image in Ag of the Uw. The following result gives a
compatibility result on these images and the E-O stratification.

Proposition 9.6. (i) The image of any Uw, w ∈ Wg, is a union of strata Vν .
In particular, the image of a Uw is equal to some Vν .

(ii) For any final ν and w ∈ Wg, the maps Uw ∩ π−1Vν → Vν and Uw ∩
π−1Vν → Vν , where π is the projection Fg → Ag, have the property that
there is a surjective flat map X → Vν such that the pullback of them to X is
isomorphic to the product X × (Fν ∩ Uw) respectively X × (Fν ∩ Uw).

(iii) A generic point of a component of Uw maps to the generic point of
some Vν , and that ν is independent of the chosen component of Uw.

Proof. The first part follows directly from Oort’s theorem (in [Oo01]) on the
uniqueness of the Dieudonné module in a stratum Vν , since it implies that if
one fiber of π−1(Vν) → Vν meets Uw, then they all do. As for the second part,
it would follow if we could prove that there is a surjective flat map X → Vν
such that the pullback of (H,E, F, V, 〈−,−〉) is isomorphic to the constant data
(provided by the Dieudonné module of type ν). For this we first pass to the
space Xν of bases of H for which the first g elements form a basis of E, which
is flat surjective over Vν . Over Xν , the data is the pullback from a universal
situation, where F , V , and 〈−,−〉 are given by matrices. In this universal
situation we have an action of the group G of base changes, and two points
over an algebraically closed field give rise to isomorphic (H,E, F, V, 〈−,−〉)
precisely when they are in the same orbit. By assumption (and Oort’s theo-
rem) the image of Xν lies in an orbit, so it is enough to show that the data
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over an orbit can be made constant by a flat surjective map. However, the
map from G to the orbit obtained by letting g act on a fixed point of the orbit
has this property.

The third part follows directly from the second. ��
The proposition gives us a map τp : Wg → Wg/Sg that to w associates the
final type of the open stratum into which each generic point of Uw maps. We
shall return to this map in Section 13.

Example 9.7. Note that the punctual flag space is in general rather easy to
understand, since it depends only on the image of V and we are almost talking
about the space of flags stable under a nilpotent endomorphism (remember
that we have reduced to the local–local case). Almost, but not quite, since
the endomorphism is semilinear rather than linear. What is complicated is
the induced stratification. Already the case of ν = s3 ∈ W3 is an illustrative
example. We have then that kerV ∩ ImV is of dimension 2; in fact, we have
one Jordan block for V on ImV of size 2 and one of size 1. The first element,
E1, of the flag must lie in kerV ∩ ImV , so we get a P

1 of possibilities for
it. If E1 = ImV 2, then V is zero on E3/E1 and we can choose E2/E1 as an
arbitrary subspace of E3 giving us a P

1 of choices for E2. On the other hand, if
E1 �= ImV 2, then E3/E1 has a Jordan block of size 2, and hence there is only
one V -stable 1-dimensional subspace, and thus the flag is determined by E1.
The conclusion is that the punctual flag space is the union of two P

1’s meeting
at a single point. The intersection point is the canonical filtration (which is a
full flag), and one can show that the rest of the points on one component are
flags of type [241] and the rest of the points on the other component are flags
of type [315].

10 Pieri formulas

In this section we are going to apply a theorem of Pittie and Ram [PR99]
to obtain a Pieri-type formula for our strata. (It seems to be historically
more correct to speak of Pieri–Chevalley-type formulas, cf. [Ch94].) The main
application of it will not be to obtain cycle class formulas, since Pieri formulas
usually do not give formulas for individual strata but only for certain linear
combinations. For us the principal use of these formulas will be that they show
that a certain strictly positive linear combination of the boundary components
will be a section of an ample line bundle (or close to ample, since one of
the contributors to ampleness will be λ1, which is ample only on the Satake
compactification). This will have as consequence affineness for the open strata
as well as a connectivity result for the boundary of the closed strata. We shall
see in Section 13 that there is also a Pieri formula for the classes of the E-O
strata, though we know very little about it.

In this section we are going to work with level structures. There are two
reasons for this. The first one is that we are going to exploit the ampleness λ1,
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and even formulating the notion of ampleness for a Deligne–Mumford stack
is somewhat awkward. The second is that one of the consequences of our
considerations will be an irreducibility criterion for strata. Irreducibility for a
stratum on Ag does not imply irreducibility for the same stratum on the space
Ag,n of principally polarized abelian varieties with level n-structure, where
always p � |n. In fact, irreducibility for the level-n case means irreducibility on
Ag together with the fact that the monodromy group of the level-n cover is
the maximum possible. Hence in this section we shall use Ag,n but also some
toroidal compactification Ãg,n (cf. [FC90]). Everything we have said so far
applies to this situation giving us in particular Fg,n and F̃g,n, but we have
the extra property that for n ≥ 3, then Ãg,n and hence F̃g,n are smooth
projective varieties.

We now introduce the classes #i := c1(E{i}) for 1 ≤ i ≤ 2g in the Chow
ring CH∗(Fg). By self-duality of the flag E• we have that #2g+1−i = −#i, and
by construction c1(D{i}) = p#i−g = −p#3g+1−i for g + 1 ≤ i ≤ 2g. (For the
notation DJ see Section 3.2.) Furthermore, #1 + · · ·+ #g is the pullback from
Ãg of λ1, the first Chern class of the Hodge bundle.

Now we let Mi := c1(D]2g−i,2g]), 1 ≤ i ≤ g, and start by noting that if
n = (n1, . . . , ng) then n · M :=

∑
i niMi is relatively ample for F̃g → Ãg

if ni > 0 for 1 ≤ i < g. Indeed, by construction Li := #2g + · · · + #2g−i+1,
1 ≤ i ≤ g, is the pullback from the partial flag space F̃g[i] of flags with
elements of rank i, 2g − i, and g (and with the rank g-component equal to
Eg) and on F̃g[i] we have that #2g + · · · + #2g−i+1 is ample. It is well known
that any strictly positive linear combination of these elements is relatively
ample. From the formulas above we get that Mi = p(Lg−i + λ1) (where we
put L0 = 0). On the other hand, λ1 is almost ample; it is the pullback from
A∗g of an ample line bundle.

Now we identify the Li with the fundamental weights of the root system
of Cg. Note that Wg acts on the #i considered as parts of the weight lattice by
σ(#i) = #σ(i) (keeping in mind that #2g+1−i = −#i) and then acts accordingly
on the Li. Let us also note that (by Chevalley’s characterization of the Bruhat–
Chevalley order) if w′ < w with #(w′) = #(w) − 1 and if w = si1 · · · sik ,
then w′ is of the form si1 · · · ŝir · · · sik , which can be rewritten as wsα, where
sα = (sir+1 · · · sik)−1sir (sir+1 · · · sik), which thus is the reflection with respect
to a unique positive root.

Theorem 10.1. For each 1 ≤ i ≤ g and w ∈Wg we have that

(pλ1 + pLg−i − wLi)[Uw] =
∑
w′≺w

ciw,w′[Uw′ ] ∈ CH1
Q
(Uw

⊗
Fp),

where ciw,w′ ≥ 0 and w′ ≺ w means w′ ≤ w and #(w) = #(w′)+1. Furthermore,
ciw,w′ > 0 precisely when w′ = wsα for α a positive root for which the simple
root αi appears with a strictly positive coefficient when α is written as a linear
combination of the simple roots.
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Proof. We shall use [PR99], which has the following setup: We fix a semi-
simple algebraic group G (which in our case is the symplectic group Sp2g,
but using this in the notation will only confuse) with Borel group B and fix a
principal B-bundle E → X over an algebraic variety X . Letting E(G/B)→ X
be the associated G/B-bundle, we have, because its structure group is B and
not just G, Schubert varieties Ωw → X (which fiber by fiber are the usual
Schubert varieties). For every weight λ ∈ P , P being the group of weights for
G, we have two line bundles on E(G/B); on the one hand, yλ, obtained by
regarding λ as a character of B, which gives a G-equivariant line bundle on
G/B and hence a line bundle on E(G/B), on the other hand, the character λ
can also be used to construct, with the aid of the principal B-bundle E, a line
bundle xλ on X and then by pullback to E(G/B) a line bundle also denoted
by xλ. A result of [PR99, Corollary] then says that if λ is a dominant weight
then

yλ[OΩw ] =
∑

η∈T λ
w

xη(1)[OΩv(η,w) ] ∈ K0(E(G/B)). (1)

Here T λ
w is a certain set of piecewise linear paths η : [0, 1]→ P

⊗
R in the real

vector space spanned by P ; moreover, v(η, w) is a certain element in the Weyl
group of G that is always ≤ w, and T λ

w has the property that η(1) ∈ P for all
its elements η. An important property of T λ

w is that it depends only on w and
λ and not on E. It follows immediately from the description of [PR99] that
v(η, w) = w in only one case, namely when η is the straight line η(t) = twλ.
Hence we can rewrite the formula as

(yλ − xwλ)[OΩw ] =
∑

η∈T λ
w

′
xη(1)[OΩv(η,w) ],

where the sum now runs over all elements of T λ
w for which v(η, w) < w. Taking

Chern characters and looking at the top term that appears in codimension
codim(w) + 1, we get

(c1(yλ)− c1(xwλ))[Ωw] =
∑

η∈T λ
w

′′
[Ωv(η,w)], (2)

where the sum is now over the elements of T λ
w for which #(v(η, w)) = #(w)−1.

To determine the multiplicity with which a given [Ωw′ ] appears in the right-
hand side we could no doubt use the definition of T λ

w . However, it seems easier
to note that the multiplicity is independent of E, and hence we may assume
that X is a point and by additivity in λ that λ is a fundamental weight λi.
In that case one can use a result of Chevalley [Ch94, Proposition 10] to get
the description of the theorem. However, we want this formula to be true not
in the Chow group of E(G/B) but instead in the Chow group of the relative
Schubert subvariety of index w of E(G/B). This, however, is no problem, since
the (relative) cell decomposition shows that this Chow group injects into the
Chow group of E(G/B).
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We now would like to claim Formula 2 in the case X = Fg and the principal
B-bundle is the tautological bundle E•. The deduction of (2) from (1) is
purely formal; however, [PR99] claims (1) only for X a smooth variety over
C. This at least allows us to conclude (2) for X = Fg,n

⊗
C, the flag space

associated to a smooth toroidal compactification of Ag,n, the moduli space
of principally polarized abelian varieties with a principal level n-structure for
n ≥ 3 (see [FC90, Theorem 6.7, Corollary 6.9]). Using the specialization map
for the Chow group, we conclude that (2) is valid for X = Fg,n

⊗
Fp. Finally,

pushing down under the map Fg,n → Fg induced from the map Ag,n → Ag

we get (2) for X = Fg.
The final step is to pull back (2) along the section of E(G/B) given by

D•. To make the pullback possible (note that the relative Schubert variety
will in general not be smooth over the base), we remove the relative Schubert
varieties of codimension 2 in the relative Schubert variety in question. This
forces us to remove the part of Uw where the section encounters the removed
locus. This is, however, a codimension-2 subset by Corollary 8.4, so its removal
will not affect CH1

Q
(Uw). Unraveling the pullback of (c1(yλ)− c1(xwλ)) gives

the theorem. ��
To apply the theorem we start with some preliminary results that will be used
to exploit the positivity of the involved line bundles.

Lemma 10.2. Let X be a proper (irreducible) variety of dimension > 1 and L
a line bundle on X that is ample on some open subset U ⊆ X. Let D := X \U
and let H ⊂ U be the zero set of a section of L|U . If D is connected then so
is D ∪H.

Proof. By replacing the section by a power of it, we may assume that L is
very ample, giving an embedding U ↪→ P

n. Let Z be the closure of the graph
of this map in X×P

n; moreover, let Y be the image of Z under the projection
on the second factor giving us two surjective maps X ← Z → Y and let D′ be
the inverse image in Z of D. Assume that D ∪H is the disjoint union of the
nonempty closed subsets A and B and let A′ and B′ be their inverse images in
Z. Now, Y is irreducible of dimension > 1 and hence H ′′ is connected, where
H ′′ is the hyperplane section of Y corresponding to H , so that the images
of A′ and B′ in Y must meet. However, outside of D′ the map Z → Y is a
bijection, and hence the meeting point must lie below a point of D′ and hence
A′ and B′ both meet D′. This implies that A and B both meet D, which is a
contradiction, since D is assumed to be connected. ��
Proposition 10.3. Let L be the determinant det E of the Hodge bundle over
Ag,n, n ≥ 3 (and prime to p).

(i) There is, for each 1 ≤ i < g, an integer mi such that the global sections
of Λg−i(H/E)

⊗L⊗m generate this bundle over Ag,n whenever m ≥ mi. These
mi can be chosen independently of p (but depending on g and n).

(ii) Putting Ni := Li + niλ1 for 1 ≤ i < g and Ng := λ1, then
∑

i miNi is
ample on Fg if mi > 0 for all 1 ≤ i ≤ g.
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(iii) Fix w ∈ Wg and put L :=
∑

i<g Li, N :=
∑

i<g Ni, and m =
∑

i mi.
Choose r, s, t, and u such that rN + tλ1−wL respectively sN +uλ−wLg can
be written as a positive linear combination of the Ni (using that Lg = −λ1).
Then if p > r + sm and (g − 1)p > t + um we have that p(L + (g − 1)λ1) +
pmλ1 − wL − mwLg is ample on Fg,n. The constants r, s, t, and u can be
chosen independently of p.

Proof. Statement (i) follows directly from the fact that λ1 is ample on Ag,n.
The independence of p follows from the existence of a model of Ag,n that
exists over Spec Z[1/n, ζn].

As for (ii), we have that π∗O(Li) = Λg−i(H/E), 1 ≤ i < g, since
π : Fg,n → Ag,n can be identified with the space of flags on H/E, and O(Li) is
det(H/E2g−i). By definition we then have that π∗O(Ni) is generated by global
sections on Ag,n. We know that on the flag space SLg /B we have that the
canonical ring

⊕
λ H0(SLg /B,Lλ), where λ runs over the dominant weights

and Lλ is the corresponding line bundle, is generated by the H0(SLg /B,Lλi),
1 ≤ i < g, where λi is the ith fundamental weight (see for instance [RR85]).
Also O(

∑
i<g miNi) is relatively very ample, and we have just shown that

π∗O(
∑

i<g miNi) is generated by global sections. Since λ1 is ample on Ag,n,
we get that π∗O(

∑
i≤g miNi) is ample.

Continuing with (iii), we have that N = L + nλ1, which gives p(L + (g −
1)λ1) + pmλ1 − wL −mwLg = (p − (r + sm))N + (p(g − 1) − (t + um)) +
(rN + tλ1 −wL) + m(sN + uλ1 −wLg). We then conclude by the definitions
of r, s, t, and u and (ii). ��
Remark 10.4. (i) The constants r, s, t, and u are quite small and easy to
compute. We know nothing about the mi but imagine that they would not be
too large.

(ii) It would seem that the last part would not be applicable for g = 1, but
it can be easily modified to do so. On the other hand, for g = 1 everything is
trivial anyway.

We are now ready for the first application of the Pieri formula.

Proposition 10.5. (i) There is a bound depending only on g and n such
that if p is larger than that bound, then for an irreducible component Z of
some Uw ⊆ F̃g,n, w ∈ Wg, the union of the complement of Z in Z, the
closure of Z in F̃g,n, and the intersection of Z and F̃g,n \Fg,n is connected if
the intersection of Z with the boundary F̃g,n \ Fg,n is connected or empty.

(ii) There is a bound depending only on g and n such that if p is larger
than that bound, then for w ∈ Wg of semi-simple rank 0 we have that Uw is
affine.

Proof. By Proposition 10.3 there is a bound depending only on g and n such
that if p is larger than it, then M := p(L+(g−1)λ1)+pmλ1−wL−mwLg is
ample on Fg,n. Summing up Pieri’s formula (Theorem 10.1) for 1 ≤ i < g and
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m times the formula for i = g we get that M [Z] is supported on Z intersected
with smaller strata. (Note that the Pieri formula is a priori—and quite likely
in reality—true only modulo torsion. We may, however, simply multiply it
by a highly divisible integer, and that doesn’t change the support.) We then
conclude by Lemma 10.2.

As for the second part, we argue as in the first part and conclude that
Uw \ Uw is the support of an ample divisor in Uw (as in the theorem, each
component must appear, since we are summing up for 1 ≤ i ≤ g, and some
αi must appear in the expansion of α) and hence Uw is affine. ��
Remark 10.6. (i) The first part of the proposition is somewhat difficult to
use because of the condition on the intersection with the boundary. In the
applications of the next section it turns out that we need to apply it only
when the intersection is empty.

(ii) For the second part we would like to say more generally that the image
of Uw is affine in F∗g,n for some appropriate definition of F∗g,n analogous to the
Satake compactification. The problem is that it doesn’t seem as if some power
of M would be generated by its global sections, so that we cannot define F∗g,n
as the image of F̃g,n.

11 Irreducibility properties

In this section we shall prove irreducibility of a large class of strata and also
that if the characteristic is large enough and our irreducibility criterion is
not fulfilled, then (with some extra conditions on the stratum) the stratum
is reducible. Our proofs show two advantages of working on the flag spaces.
The major one is that our strata are normal, so that irreducibility follows
from connectedness. The connectedness of the closed E-O strata except V1 is
proven in [Oo01], but the Vw are most definitely not locally connected and
hence that does not say very much about the irreducibility. In the converse
direction we also make use of the Pieri formula.

Definition-Lemma 11.1. Let {Zα} be a stratification of a Deligne–Mumford
stack X of finite type over a field, by which we mean that the strata Zα are
locally closed reduced substacks of X such that the closure Zα of a stratum is
the union of strata. By the k-skeleton of the stratification we mean the union
of the strata of dimension ≤ k (which is a closed substack). The boundary of
a stratum Zα is the complement of Zα in its closure. Assume furthermore that
each Zα is irreducible and that for Zα of dimension strictly greater than some
fixed N we have that its boundary is connected (and in particular nonempty).
Then the intersection of a connected union Z of closed strata Zα with the
N -skeleton is connected.

Proof. It is enough by induction to prove that if we remove a stratum Z ′ from
Z, whose dimension is maximal and > N , then the result remains connected.
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Assume that Z \ Z ′ is the disjoint union of two closed subschemes Z1 and
Z2. By assumption, the boundary of Z ′ is connected and hence lies in Z1,
say. This means that Z ′ ∪ Z1 is closed and disjoint from Z2, which by the
connectedness of Z implies that Z2 is empty. ��
Proposition 11.2. There is a bound depending only on g and n such that the
following is true if p is larger than that bound:

Let X ⊆ F̃g,n be a connected union of irreducible components of closed
strata Uw (for possibly different w) that lie inside of Fg,n. Then the intersec-
tion of X with the 1-skeleton of the stratification is connected.

Proof. This follows directly from Proposition 10.5 and Lemma 11.1. (Note
that for level 1 or 2 we may pass to a higher level in order to apply the
proposition.) ��
We now want to interpret this proposition (and its converse, which will be true
for any p) in arithmetical terms. Hence we define the 1-skeleton graph of level n
as the following edge-colored graph: Its vertices are the points of U1 ⊂ Fg,n,
i.e., isomorphism classes of principally polarized superspecial g-dimensional
abelian varieties A together with a level-n structure and a complete flag 0 =
D0 ⊂ D1 ⊂ · · · ⊂ Dg = H0(A,Ω1

A) on H0(A,Ω1
A) for which D

⊥
g−i = V −1

D
(p)
i .

For each 1 ≤ i ≤ g we connect two vertices by an edge of color i if there is an
irreducible component of Usi that contains them.

Lemma 11.3. If S ⊆ {1, . . . , g} has the property that it contains g and for
every 1 ≤ i < g we have that either i or g − i belongs to S, then the subgraph
of the 1-skeleton graph consisting of all vertices and all edges of colors i ∈ S
is connected.

Proof. This follows from [Oo01, Proposition 7.3] and Theorem 7.5. ��
For a subset S ⊆ {1, . . . , g} the S-subgraph of the 1-skeleton graph is the
subgraph with the same vertices and with only the edges whose color is in S.
This definition allows us to formulate our irreducibility conditions.

Theorem 11.4. (i) Let w ∈ Wg and let S := {1 ≤ i ≤ g : si ≤ w }. If the
S-subgraph of the 1-skeleton graph is connected, then Uw ⊆ Ag is irreducible.

(ii) There is a bound depending only on g such that if p is larger than that
bound the following is true: if w ∈ Wg is admissible and either final or of
semi-simple rank 0 and if S := {1 ≤ i ≤ g : si ≤ w }, then there is a bijection
between the irreducible components of Uw ⊆ Ag and the connected components
of the 1-skeleton graph.

Proof. The first part is clear, since Proposition 6.1 says that each connected
component meets U1, and then by the assumption on connectedness of the
S-subgraph Uw is connected; but by Corollary 8.4 it is normal and hence is
irreducible.
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As for the second part, assume first that w is final but of positive
semi-simple rank. This means that its Young diagram does not contain a row
of length g, and hence by Lemma 2.7 and the Chevalley characterization of the
Bruhat–Chevalley order we have that si ≤ w for all 1 ≤ i ≤ g and hence the
S-subgraph is connected by Lemma 11.3, which makes the statement trivially
true. We may therefore assume that the semi-simple rank is 0 and hence that
Uw lies entirely in Fg,n. In that case the result follows from Proposition 11.2
and the fact that two irreducible components of two Usi meet only at U1. ��
Projecting down to Ag we get the following corollary, which shows irreducibil-
ity for many E-O strata.

Theorem 11.5. Let w ∈ Wg be a final element whose Young diagram Y has
the property that there is a �(g + 1)/2� ≤ i ≤ g such that Y does not contain
a row of length i. Then Vw is irreducible and the total space of the étale cover
Uw → Vw is connected.

Proof. This follows from Theorem 11.4 and Lemmas 2.7 and 11.3. ��
Example 11.6. For g = 2 the locus of abelian surfaces of p-rank ≤ 1 is
irreducible. For g = 3 all E-O strata except the superspecial locus (Y =
{1, 2, 3}) and the Moret–Bailly locus (Y = {2, 3}) are irreducible.

In [Ha07], S. Harashita has proved that the number of irreducible components
of an E-O stratum that is contained in the supersingular locus is given as a
class number and as a consequence that, except possibly for small p, these
strata are reducible. As has been proved by Oort (cf. [Ha07, Proposition 5.2])
these strata are exactly the ones to which Theorem 11.5 does not apply.

We shall finish this section by showing that the 1-skeleton graph can be
described in purely arithmetic terms very strongly reminiscent of the results
of Harashita. Note that even for final elements our results are not formally
equivalent to Harashita’s, since we are dealing with the set of components of
the final strata in Fg, whereas Harashita is dealing with their images in Ag.
In any case, our counting of the number of components uses Theorem 11.4
and hence is valid only for sufficiently large p, whereas Harashita’s are true
unconditionally.

We start by giving a well known description of the vertices of the 1-skeleton
graph (see for instance [Ek87]) valid when g > 1. We fix a supersingular el-
liptic curve E and its endomorphism ring D that is provided with the Rosati
involution ∗. To simplify life we assume, as we may, that E is defined over
Fp and hence D contains the Frobenius map F . It has the property that
DF = FD = DFD, the unique maximal ideal containing p. Furthermore,
we have that D/DF ∼= Fp2 . There is then a bijection between isomorphism
classes of D-lattices M (i.e., right modules torsion-free and finitely gener-
ated as abelian groups) of rank g (i.e., of rank 4g as abelian groups) and
isomorphism classes of g-dimensional abelian varieties A. The correspondence
associates to the abelian variety A the D-module Hom(E,A). Polarizations



Cycle Classes on the Moduli of Abelian Varieties 621

on A then correspond to positive definite unitary forms, i.e., a biadditive map
〈−,−〉 : M ×M → D such that 〈md, n〉 = 〈m,n〉dn, 〈n,m〉 = (〈m,n〉)∗, and
m �= 0⇒ 〈m,m〉 > 0. The polarization is principal precisely when the form is
perfect , i.e., the induced map of right D-modules M → HomD(M,D) given
n �→ (m �→ 〈m,n〉) is an isomorphism. In general we put M∗ := HomD(M,D),
and then the form induces an embedding M → M∗, which makes the
image of finite index. More precisely, on M

⊗
Q we get a nondegenerate

pairing with values in D
⊗

Q and then we may identify M∗ with the set
{n ∈ M

⊗
Q : ∀m ∈ M : 〈m,n〉 ∈ D }. Using this we get a D

⊗
Q/Z-valued

unitary perfect form on M∗/M given by 〈m,n〉 := 〈m,n〉 mod D. As usual,
superlattices M ⊆ N over D correspond to totally isotropic submodules of
M∗/M .

If now S ⊆ {0, . . . , g} is stable under i �→ g − i then an arithmetic S-flag
consists of the choice of unitary forms on D-modules Mi of rank g for i ∈ S
and compatible isometric embeddings Mi ↪→ Mj whenever i < j fulfills the
following conditions:

• For all i ∈ S with i ≥ g/2 we have that M∗
i /Mi is killed by F of D and can

hence be considered as a D/m = Fp2-vector space with a perfect unitary
form.

• We have that FM∗
i = Mg−i for all i ∈ S.

• The length of Mj/Mi for i < j is equal to j − i.

Remark 11.7. (i) Note that we allow S to be empty, in which case there is
exactly one S-flag.

(ii) As follows (implicitly) from the proof of the next proposition, the
isomorphism class of an element of an arithmetic S-flag tensored with Q is
independent of the flag. Hence we may consider only lattices in a fixed unitary
form over D

⊗
Q and then think of Mi as a sublattice of Mj .

Proposition 11.8. Let S ⊆ {1, . . . , g} and let S ⊆ {0, . . . , g} be the set of
integers of the form i or g − i for i ∈ S. Then the set of isomorphism classes
of S-flags is in bijection with the set of connected components of the S-subgraph
of the 1-skeleton graph.

Proof. This follows from the discussion above and Theorem 7.5 once we have
proven that an S-flag can be extended to a {0, . . . , g}-flag. Assume first that
g /∈ S and let i ∈ S be the largest element in S. By assumption we have
FM∗

i = Mg−i ⊆ Mi ⊂ M∗
i and we have that the length of M∗

i /FM∗
i is g,

whereas again by assumption, that of Mi/Mg−i is 2i− g. Together this gives
that the length of M∗

i /Mi is g− (2i− g) = 2(g− i). Since the form on M∗
i /Mi

is a nondegenerate unitary Fp2-form and since all such forms are equivalent,
we get that there is a (g− i)-dimensional totally isotropic (and hence its own
orthogonal) subspace of M∗

i /Mi; this then gives an Mi ⊂Mg ⊂M∗
i and since

Mg/Mi is its own orthogonal, we get that the pairing on Mg is perfect. We
then put M0 := FMg, and the rest of the flag extension is immediate. ��
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12 The Cycle Classes

If one wishes to exploit our stratification on Fg and the E-O stratification on
Ag fully, one needs to know the cohomology classes (or Chow classes) of the
(closed) strata. In this section we show how to calculate these classes.

The original idea for the determination of the cycle classes can be illus-
trated well by the p-rank strata. If X is a principally polarized abelian variety
of dimension g that is general in the sense that its p-rank is g, then its kernel of
multiplication by p contains a direct sum of g copies of μp, the multiplicative
group scheme of order p. The unit tangent vector of μp gives a tangent vector
to X at the origin. By doing this in the universal family we thus see that on
a suitable level cover of the moduli we have g sections of the Hodge bundle
over the open part of ordinary abelian varieties. If the abelian variety loses
p-rank under specialization, the g sections thus obtained become dependent
and the loci where this happens have classes represented by a multiple of the
Chern classes of the Hodge bundle.

To calculate the cycle classes of the E-O strata on Ag⊗Fp we shall use the
theory of degeneration cycles of maps between vector bundles. To this end we
shall apply formulas of Fulton for degeneracy loci of symplectic bundle maps
to calculate the classes of the Uw and formulas of Pragacz and Ratajski and
of Kresch and Tamvakis for calculating those of Vν .

12.1 Fulton’s formulas

Over the flag space Fg we have the pullback of the de Rham bundle and the
two flags E• and D• on it. We denote by #i the roots of the Chern classes of E

so that c1(Ei) = #1 + #2 + · · ·+ #i. We then have c1(Dg+i)− c1(Dg+i−1) = p#i.
Recall (cf. Section 4.1 and Section 5) that for each element w ∈ Wg we

have degeneracy loci Uw in Fg respectively F̃g. Their codimensions equal the
length #(w), and it thus makes sense to consider the cycle class uw = [Uw] in
CHcodim(w)

Q
(F̃g), where we write Fg instead of Fg ⊗ Fp.

Fulton’s setup in [Fu96] is the following (or more precisely the part that
interests us): We have a symplectic vector bundle H over some scheme X
and two full symplectic flags 0 ⊂ · · · ⊂ E2 ⊂ E1 = H and 0 ⊂ · · · ⊂
D2 ⊂ D1 = H . For each w ∈ Wg one defines the degeneracy locus Uw by
{x ∈ X : ∀i, j : dim(Ei,x ∩ Dj,x) ≤ rw(i, j) } (of course this closed subset is
given a scheme structure by considering these conditions as rank conditions
for maps of vector bundles). Fulton then defines a polynomial in two sets of
variables xi and yj , i, j = 1, . . . , g, such that if this polynomial is evaluated
as xi = c1(Ei/Ei+1) and yj = c1(Dj/Dj+1), then it gives the class of Uw

provided that Uw has the expected codimension codim(w) (and X is Cohen–
Macaulay). The precise definition of these polynomials is as follows: For a
partition μ = {μ1 > μ2 > · · · > μr > 0} with r ≤ g and μ1 ≤ g one defines a
Schur function

Δμ(x) := det(xμi+j−i)1≤i,j≤r



Cycle Classes on the Moduli of Abelian Varieties 623

in the variables xi and puts

Δ(x, y) := Δ(g,g−1,...,1)(σi(x1, . . . , xg) + σi(y1, . . . , yg)),

where σi is the ith elementary symmetric function. One then considers the
“divided difference operators” ∂i on the polynomial ring Z[x1, . . . , xg] by

∂i(F (x)) =

{F (x)−F (six)
xi−xi+1

if i < g,
F (x)−F (s′gx)

2xg
if i = g,

where si interchanges xi and xi+1 for i = 1, . . . , g− 1, but s′g sends xg to −xg

and leaves the other xi unchanged. We write an element w ∈Wg as a product
w = si�si�−1 · · · si1 with # = #(w) and set

Pw := ∂i� · · · ∂i1(
∏

i+j≤g

(xi − yj) ·Δ). (4)

An application of Fulton’s formulas gives the following.

Theorem 12.1. Let w = si�si�−1 · · · si1 with # = #(w) be an element of the
Weyl group Wg. Then the cycle class uw := [Uw] in CHcodim(w)

Q
(F̃g) is given

by

uw = ∂i1 · · · ∂i�

⎛
⎝ ∏

i+j≤g

(xi − yj) ·Δ(x, y)

⎞
⎠
|xi=−�i,yj=p�j

.

Proof. By construction Uw is the degeneracy locus of the flags E• and D•.
By Corollary 8.4 they are Cohen–Macaulay and have the expected dimension,
and hence the degeneracy cycle class is equal to the class of Uw. ��
For a final element w ∈ Wg the map Uw → Vw is generically finite of degree
γg(w). By applying the Gysin map to the formula of Theorem 12.1 using
Formula 3.1 we can in principle calculate the cohomology classes of all the
pushdowns of final strata, hence of the E-O strata.

Example 12.2. g = 2.
The Weyl group W2 consists of eight elements; we give the cycle classes in

F̃2 and the pushdowns on Ã2:

w s # [Uw] π∗([Uw])

[4, 3] s1s2s1s2 4 1 0
[4, 2] s1s2s1 3 (p− 1)λ1 0
[3, 4] s2s1s2 3 −#1 + p#2 1 + p
[2, 4] s1s2 2 (1− p)#21 + (p2 − p)λ2 (p− 1)λ1

[3, 1] s2s1 2 (1− p2)#21 + (1− p)#1#2 + (1− p)#22 p(p− 1)λ1

[2, 1] s1 1 (p− 1)(p2 + 1)λ1λ2 0
[1, 3] s2 1 (p2 − 1)#21(#1 − p#2) (p− 1)(p2 − 1)λ2

[1, 2] 1 0 −(p4 − 1)λ1λ2#1 (p4 − 1)λ1λ2
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In the flag space F2 the stratum corresponding to the empty diagram is Us2s1s2

and the strata contained in its closure are the four final ones Us2s1s2 , Us1s2 ,
Us2 , and U1 and the two nonfinal ones Us1 and Us2s1 . The Bruhat–Chevalley
order on these is given by the following diagram:

s2s1s2

����
���

�����
��

s2s1

���
���

����
���

��
��

s1s2

�����
���

���
���

�

��
s1

����
���

� s2

�����
���

1

The four final strata Us2s1s2 , Us1s2 , Us2 , and U1 lie étale of degree 1 over the
p-rank 2 locus, the p-rank 1 locus, the locus of abelian surfaces with p-rank 0
and a-number 1, and the locus of superspecial abelian surfaces (a = 2). The
locus Us1 is an open part of the fibers over the superspecial points. The locus
Us2s1 is of dimension 2 and lies finite but inseparably of degree p over the
p-rank 1 locus. Then E1 corresponds to an αp and E2/E1 to a μp. In the final
type locus Us1s2 the filtration is μp ⊂ μp ⊕ αp. Note that this description is
compatible with the calculated classes of the loci.

We have implemented the calculation of the Gysin map in Macaulay2 (cf.
[M2]) and calculated all cycle classes for g ≤ 5. For g = 3, 4 the reader will
find the classes in the appendix. (The Macaulay2 code for performing the cal-
culations can be found at http://www.math.su.se/ teke/strata.m2.) We
shall return to the qualitative consequences one can draw from Theorem 12.1
in the next section.

12.2 The p-rank strata

It is very useful to have closed formulas for the cycle classes of important
strata. We give the formulas for the strata defined by the p-rank and by the
a-number. The formulas for the p-rank strata can be derived immediately
from the definition of the strata.

Let Vf be the closed E-O stratum of Ãg of semi-abelian varieties of p-rank
≤ f . It has codimension g − f . To calculate its class we consider the element
w∅, the longest final element. The corresponding locus U∅ is a generically finite
cover of Ag of degree γg(w∅) =

∏g−1
i=1 (pi + pi−1 + · · ·+ 1). The map of U∅ to

the p-rank g locus is finite. The space U∅ contains the degeneracy loci Uw for
all final elements w ∈ Wg. The condition that a point x of Fg lie in U∅ is that
the filtration Ei for i = 1, . . . , g be stable under V . By forgetting part of the
flag and considering flags Ej with j = i, . . . , g we find that U∅ → Ag is fibered
by generically finite morphisms

U∅ = U (1) π1−→U (2) π2−→· · · πg−1−→U (g)
= Ag.
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We shall write πi,j for the composition πjπj−1 · · ·πi : U (i) → U (j)
and π∅ =

π1,g.
Since Vg−1 is given by the vanishing of the map det(V ) : det(Eg) →

det(E(p)), the class of Vg−1 is (p − 1)λ1. The pullback of Vg−1 to U∅ de-
composes in g irreducible components

π−1
∅ (Vg−1) = ∪g

i=1Zi,

where Zi is the degeneracy locus of the induced map φi = V|Li
: Li → L(p)

i .
Note that the Zi are the Uw for the w that are shuffles of the final element
ug−1 (see Section 4.2) defining the (open) E-O stratum of p-rank f , and Zg is
the stratum corresponding to the element ug−1 ∈ Wg. An abelian variety of
p-rank g − 1 (and thus with a-number 1) has a unique subgroup scheme αp.
The index i of Zi indicates where this subgroup scheme can be found (i.e., its
Dieudonné module lies in Ei but not in Ei−1).

It follows from the definition of Zi as degeneracy set that the class of Zi on
U∅ equals (p− 1)#i, since φi can be interpreted as a section of L(p)

i ⊗L−1
i . We

also know by Section 4.3 that the map Zi → Zi+1 is inseparable. Therefore
π∅([Zi]) = pn(i)π∅([Zg]) for some integer n(i) ≥ g − i. Using the fact that
(π∅)∗([Zg]) = γg(ug−1)[Vg−1] = deg(π1,g−1)[Vg−1], we see that

(π∅)∗(π∗∅([Vg−1]) =
g∑

i=1

(π∅)∗([Zi]) =
g∑

i=1

pn(i) deg(π1,g−1)[Vg−1],

while on the other hand,

(π∅)∗(π∗∅([Vg−1]) = deg(π∅)[Vg−1] = (1 + p + · · ·+ pg−1) deg(π1,g−1)[Vg−1].

Comparison yields that n(i) = g − i and so we obtain

(π∅)∗(#i) = pg−i deg(π1,g−1)λ1

and
(π∅)∗([Zi]) = (p− 1)pg−i deg(π1,g−1)λ1.

Lemma 12.3. In the Chow groups with rational coefficients of U (i)
and

U (i+1)
we have for the pushdown of the jth Chern class λj(i) of Ei the relations

πi
∗λj(i) = pj(pi−j + pi−j−1 + · · ·+ p + 1)λj(i + 1)

and
pf(g−f) (π1,g)∗(#g#g−1 · · · #f+1) = (π1,g)∗(#1#2 · · · #g−f ).

Proof. The relation (π1)∗([Z1]) = p [Z2] translates into the case j = 1 and i =
1. Using the push–pull formula and the relations π∗i (λj(i+1) = #i+1λj−1(i)+
λj(i), the formulas for the pushdowns of the λj(i) follow by induction on j
and i. ��
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We now calculate the class of all p-rank strata Vf .

Theorem 12.4. The class of the locus Vf of semi-abelian varieties of
p-rank ≤ f in the Chow ring CHQ(Ãg) equals

[Vf ] = (p− 1)(p2 − 1) · · · (pg−f − 1)λg−f ,

where λi denotes the ith Chern class of the Hodge bundle.

Proof. The class of the final stratum Uuf
on U∅ is given by the formula

(p− 1)g−f #g#g−1 · · · #f+1,

since it is the simultaneous degeneracy class of the maps φj for j = f+1, . . . , g.
By pushing down this class under π∅ = π1,g we find using Lemma 12.3 and
the notation λj(i) = cj(Ei) that

(π1,g)∗(#g#g−1 · · · #f+1) = p−f(g−f)(π1,g)∗(#1#2 · · · #g−f )

= p−f(g−f) (π1,g)∗(π∗1,g−f (λg−f (g − f)))

= p−f(g−f) deg(π1,g−f ) (πg−f,g)∗(λg−f (g − f)).

Applying Lemma 12.3 repeatedly we obtain

(πg−f,g)∗(λg−f (g − f)) = pf(g−f)(1 + p)(1 + p + p2) · · · (1 + · · ·+ pf−1)λg

= pf(g−f) γg(uf)λg ,

with γg(uf ) the number of final filtrations refining the canonical filtration of
uf . Hence we get (π∅)∗(Uuf

) = (p− 1)g−f deg(π1,g−f )γg(uf )λg. On the other
hand, we have that (π∅)∗(Uuf

) = γg(uf ) [Vf ]. All together these formulas
prove the result. ��

12.3 The a-number Strata

Another case in which we can find attractive explicit formulas is that of the
E-O strata Vw with w the element of Wg associated to Y = {1, 2, . . . , a}.
We denote these by Ta. Here we can work directly on Ag. The locus Ta on
Ag may be defined as the locus {x ∈ Ag : rank(V )|Eg ≤ g − a}. We have
Ta+1 ⊂ Ta and dim(Tg) = 0. We apply now formulas of Pragacz and Ratajski
[PR97] for the degeneracy locus for the rank of a self-adjoint bundle map of
symplectic bundles globalizing the results in isotropic Schubert calculus from
[Pr91]. Before we apply their result to our case we have to introduce some
notation.

Define for a vector bundle A with Chern classes ai the expression

Qij(A) := aiaj + 2
j∑

k=1

(−1)kai+kaj−k for i > j.
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A subset β = {g ≥ β1 > · · · > βr ≥ 0} of {1, 2, . . . , g} (with r even, note that
βr may be zero) is called admissible, and for such subsets we set

Qβ = Pfaffian(xij),

where the matrix (xij) is antisymmetric with entries xij = Qβi,βj . Applying
the formula of Pragacz–Ratajski to our situation gives the following result:

Theorem 12.5. The cycle class [Ta] of the reduced locus Ta of abelian vari-
eties with a-number ≥ a is given by

[Ta] =
∑
β

Qβ(E(p)) ·Qρ(a)−β(E∗),

where the sum is over the admissible subsets β contained in the subset ρ(a) =
{a, a− 1, a− 2, . . . , 1}.

Example 12.6.

[T1] = (p− 1)λ1

[T2] = (p− 1)(p2 + 1)λ1λ2 − (p3 − 1)2λ3

. . .

[Tg] = (p− 1)(p2 + 1) · · · (pg + (−1)g)λ1λ2 · · ·λg.

As a corollary we obtain a result of one of us [Ek87] on the number of princi-
pally polarized abelian varieties with a = g.

Corollary 12.7. We have

∑
X

1
#Aut(X)

= (−1)g(g+1)/22−g

⎡
⎣ g∏
j=1

(pj + (−1)j)

⎤
⎦· ζ(−1)ζ(−3) · · · ζ(1− 2g),

where the sum is over the isomorphism classes (over F̄p) of principally polar-
ized abelian varieties of dimension g with a = g, and ζ(s) is the Riemann zeta
function.

Proof. Combine the formula for Tg with the Hirzebruch–Mumford proportion-
ality theorem (see [Ge99]), which says that

deg(λ1λ2 · · ·λg) = (−1)
g(g+1)

2

g∏
j=1

ζ(1 − 2j)
2

,

when interpreted for the stack Ag. ��
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The formulas for the cycles classes of the p-rank strata and the a-number
strata can be seen as generalizations of the classical formula of Deuring (known
as Deuring’s mass formula), which states that

∑
E

1
#Aut(E)

=
p− 1
24

,

where the sum is over the isomorphism classes over F̄p of supersingular elliptic
curves. It is obtained from the formula for Vg−1 or T1 for g = 1, i.e., [V1] =
(p − 1)λ1, by observing that the degree of λ1 is 1/12 the degree of a generic
point of the stack Ã1.

One can obtain formulas for all the E-O strata by applying the formulas of
Pragacz–Ratajski or those of Kresch–Tamvakis [KT02, Corollary 4]. If Y is a
Young diagram given by a subset {ξ1, . . . , ξr} we call |ξ| =∑r

i=1 ξi the weight
and r the length of ξ. Moreover, we need the excess e(ξ) = |ξ| − r(r + 1)/2
and the intertwining number e(ξ, η) of two strict partitions with ξ ∩ η = ∅ by

e(ξ, η) =
∑
i≥1

i#{j : ξi > ηj > ξi+1}

(where we use ξk = 0 if k > r). We put ρg = {g, g− 1, . . . , 1} and ξ′ = ρg − ξ
and have then e(ξ, ξ′) = e(ξ). The formula obtained by applying the result of
Kresch and Tamvakis interpolates between the formulas for the two special
cases, the p-rank strata and a-number strata, as follows:

Theorem 12.8. For a Young diagram given by a partition ξ we have

[VY ]=(−1)e(ξ)+|ξ
′|
∑
α

Qα(E(p))
∑
β

(−1)e(α,β)Q(α∪β)′(E∗) det(cβi−ξ′j (E
∗
g−ξ′j

)),

where the sum is over all admissible α and all admissible β that contain ξ′

with length #(β) = #(ξ′) and α ∩ β = ∅.

12.4 Positivity of tautological classes

The Hodge bundle possesses certain positivity properties. It is well known that
the determinant of the Hodge bundle (represented by the class λ1) is ample
on Ag. Over C this is a classical result, while in positive characteristic this
was proven by Moret–Bailly [MB85]. On the other hand, the Hodge bundle
itself is not positive in positive characteristic. For example, for g = 2 the
restriction of E to a line from the p-rank 0 locus is O(−1) ⊕ O(p), [MB81].
But our Theorem 12.4 implies the following nonnegativity result.

Theorem 12.9. The Chern classes λi ∈ CHQ(Ag ⊗ Fp) (i = 1, . . . , g) of the
Hodge bundle E are represented by effective classes with Q–coefficients.
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13 Tautological rings

We shall now interpret the results of previous sections in terms of tautological
rings. Recall that the tautological ring of Ãg is the subring of CHQ(Ãg) gen-
erated by the Chern classes λi. To obtain maximal precision we shall use
the subring and not the Q-subalgebra (but note that this is still a sub-
ring of CHQ(Ãg) not of the integral Chow ring CH∗(Ãg)). As a graded
ring it is isomorphic to the Chow ring CH∗(Sp2g /PH) and as an abstract
graded ring it is generated by the λi with relations coming from the identity
1 = (1+λ1+· · ·+λg)(1−λ1+· · ·+(−1)gλg). This implies that it has a Z-basis
consisting of the square-free monomials in the λi. (Note, however, that the
degree maps from the degree g(g + 1)/2 part are not the same; on Sp2g /PH

the degree of λ1 · · ·λg is ±1, whereas for Ãg it is given by the Hirzebruch–
Mumford proportionality theorem as in the previous section.) Since F̃g → Ãg

is an SLg /B-bundle, we can express CHQ(F̃g) as an algebra over CHQ(Ãg); it
is the algebra generated by the #i, and the relations are that the elementary
symmetric functions in them are equal to the λi. This makes it natural to
define the tautological ring of F̃g to be the subring of CHQ(F̃g) generated by
the #i. It will then be the algebra over the tautological ring of Ãg generated by
the #i and with the relations that say that the elementary symmetric functions
in the #i are equal to the λi. Again this means that the tautological ring for
F̃g is isomorphic to the integral Chow ring of Sp2g /Bg, the space of full sym-
plectic flags in a 2g-dimensional symplectic vector space. Note furthermore
that the Gysin maps for Sp2g /Bg → Sp2g /PH and F̃g → Ã are both given
by Formula 3.1.

Theorem 12.1 shows in particular that the classes of the Uw and Vν lie
in the respective tautological rings. However, we want both to compare the
formulas for these classes with the classical formulas for the Schubert varieties
and to take into account the variation of the coefficients of the classes when
expressed in a fixed basis for the tautological ring. Hence since the rest of
this section is purely algebraic, we shall allow ourselves the luxury of letting p
temporarily be also a polynomial variable. We then introduce the ring Z{p},
which is the localization of the polynomial ring Z[p] at the multiplicative
subset of polynomials with constant coefficient equal to 1. Hence evaluation at
0 extends to a ring homomorphism Z{p} → Z, which we shall call the classical
specialization. An element of Z{p} is thus invertible precisely when its classical
specialization is invertible. By a modulo n consideration we see that an integer
polynomial with 1 as constant coefficient can have no integer zero n �= ±1. This
means in particular that evaluation at a prime p induces a ring homomorphism
Z{p} → Q taking the variable p to the integer p, which we shall call the
characteristic p specialization (since p will be an integer only when this phrase
is used, there should be no confusion because of our dual use of p). We now
extend scalars of the two tautological rings from Z to Z{p} and we shall call
them the p-tautological rings . We shall also need to express the condition that
an element is in the subring obtained by extension to a subring of Z{p} and
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we shall then say that the element has coefficients in the subring. We may
consider the Fulton polynomial Pw of (4) as a polynomial with coefficients in
Z{p}, and when we evaluate them on elements of the tautological ring as in
Theorem 12.1 we get elements [Uw] of the p-tautological ring of F̃g. If ν is a
final element we can push down the formula for [Uν ] using Formula 3.1 and
then we get an element in the p-tautological ring of Ãg. We then note that
γ(w) is a polynomial in p with constant coefficient equal to 1, and hence we
can define [Vν ] := γ(w)−1π∗[Uν ], where π : F̃g → Ãg is the projection map. By
construction these elements map to the classes of Uw, respectively Vν , under
specialization to characteristic p. We shall need to compare them with the
classes of the Schubert varieties. To be specific we shall define the Schubert
varieties of Sp2g /Bg by the condition dimEi ∩ Dj ≥ rw(i, j), where D• is
a fixed reference flag (and then the Schubert varieties of Sp2g /PH are the
images of the Schubert varieties of Sp2g /Bg for final elements of Wg).

Theorem 13.1. (i) The classes [Uw] and [Vν ] in the p-tautological ring of
F̃g map to the classes of the corresponding Schubert varieties under classical
specialization.

(ii) The classes [Uw] and [Vν ] form a Z{p}-basis for the respective
p-tautological rings.

(iii) The coefficients of [Uw] and [Vν ] when expressed in terms of the poly-
nomials in the λi are in Z[p].

(iv) For w ∈ Wg we have that #(w) = #(τp(w)) (see Section 9 for the
definition of τp) precisely when the specialization to characteristic p of π∗[Uw]
is nonzero. In particular, there is a unique map τ : Wg → (Wg/Sg)

⊔{0} such
that τ(w) = 0 precisely when π∗[Uw] = 0, which implies that #(w) �= #(τp(w))
and is implied by #(w) �= #(τp(w)) for all sufficiently large p. Furthermore, if
τ(w) �= 0 then #(w) = #(τ(w)) and π∗[Uw] is a nonzero multiple of [Vτ(w)].

Proof. The first part is clear, since putting p = 0 in our formulas gives the
Fulton formulas for xi = −#i and yi = 0, which are the Fulton formulas
for the Schubert varieties in Sp2g /Bg. One then obtains the formulas for
the Schubert varieties of Sp2g /PH by pushing down by Gysin formulas. The
remaining compatibility needed is that the classical specialization of γ(w) is
the degree of the map from the Schubert variety of Sp2g /Bg for a final element
to the corresponding Schubert variety of Sp2g /PH . However, the classical
specialization of γ(w) is 1, and the map between Schubert varieties is an
isomorphism between Bruhat cells.

As for the second part, we need to prove that the determinant of the matrix
expressing the classes of the strata in terms of a basis of the tautological ring
(say given by monomials in the #i respectively the λi) is invertible. Given that
an element of Z{p} is invertible precisely when its classical specialization is,
we are reduced to proving the corresponding statement in the classical case.
However, there it follows from the cell decomposition given by the Bruhat
cells, which give that the classes of the Schubert cells form a basis for the
integral Chow groups.
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To prove (iii) it is enough to verify the conditions of Proposition 13.2.
Hence consider w ∈ Wg (respectively a final element ν) and consider an el-
ement m in the tautological ring of degree complementary to that of [Uw]
(respectively [Vν ]). By the projection formula the degree of m[Uw] (respec-
tively m[Vν ]) is the degree of the restriction of m to Uw (respectively Vν), and
it is enough to show that the denominators of these degrees are divisible only
by a finite number of primes (independently of the characteristic p). However,
if the characteristic is different from 3 we may pull back to the moduli space
with a level 3 structure, and there the degree is an integer, since the corre-
sponding strata are schemes. Hence the denominator divides the degree of the
level 3 structure covering Ãg,3 → Ãg, which is independent of p.

Finally for (iv), it is clear that in the Chow ring of Ãg the class π∗[Uw] is
nonzero precisely when π : [Uw] → Vτp(w) is generically finite, since all fibers
have the same dimension by Proposition 9.6. This latter fact also gives that it
is generically finite precisely when Uw and Vτp(w) have the same dimension,
which is equivalent to #(w) = #(τp(w)). When this is the case, we get that
π∗[Uw] is a nonzero multiple of [Vτp(w)], again since the degree over each
component of Vτp(w) is the same by Proposition 9.6. Consider now instead
π∗[Uw] in the p-tautological ring and expand π∗[Uw] as a linear combination
of the [Vν ]. Then what we have just shown is that for every specialization to
characteristic p, at most one of the coefficients is nonzero. This implies that
in the p-tautological ring at most one of the coefficients is nonzero. If it is zero
then π∗[Uw] is always zero in all characteristic p specializations, and we get
#(w) �= #(τp(w)) for all p. If it is nonzero, then the coefficient is nonzero for
all sufficiently large p. This proves (iv). ��
To complete the proof of the theorem we need to prove the following propo-
sition.

Proposition 13.2. Let a be an element of the p-tautological ring for F̃g or
Ãg. Assume that there exists an n �= 0 such that for all elements b of the
tautological ring of complementary degree and all sufficiently large primes p
we have that deg(ab) ∈ Z[n−1], where a and b are the specializations to char-
acteristic p of a, respectively b. Then the coefficients of a are in Z[p].

Proof. If r(x) is one of the coefficients of a, then the assumptions say that
r(p) ∈ Z[n−1] for all sufficiently large primes p. Write r as g(x)/f(x) where f
and g are integer polynomials with no common factor. Thus there are integer
polynomials s(x) and t(x) such that s(x)f(x) + t(x)g(x) = m, where m is a
nonzero integer. If g is nonconstant there are arbitrarily large primes # such
that there is an integer k with #|f(k) (by, for instance, the fact that there is a
prime that splits completely in a splitting field of f). By Dirichlet’s theorem
on primes in arithmetic progressions there are arbitrarily large primes p such
that f(p) �= 0 and f(p) ≡ f(k) ≡ 0 mod #. By making # so large that # � |m,
we get that # � | g(q) (since s(q)f(q)+ t(q)g(q) = m) and hence # appears in the
denominator of r(q). By making # so large that # � |n, we conclude. ��
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Example 13.3. If w is a shuffle of a final element ν we have τ(w) = ν.

We can combine Theorem 13.1 with our results on the punctual flag spaces
to give an algebraic criterion for inclusion between E-O strata.

Corollary 13.4. Let ν′ and ν be final elements. Then for sufficiently large p
we have that ν′ ⊆ ν if there are w,w′ ∈ Wg for which w′ ≤ w, τ(w) = ν, and
τ(w′) = ν′.

Proof. Assume that there are w,w′ ∈ Wg for which w′ ≤ w, τ(w) = ν, and
τ(w′) = ν′. By Proposition 9.6 we have for π : F̃g → Ãg, the image relations
π(Uw) = Vν1 and π(Uw′) = Vν′

1
for some ν1 and ν′1, and by the theorem

ν1 = τ(w) and ν′1 = τ(w′) for sufficiently large p. Since w′ ≤ w we have that
Uw′ ⊆ Uw, which implies that πUw′ ⊆ π(Uw). ��

14 Comparison with S(g, p)

We shall now make a comparison with de Jong’s moduli stack S(g, p) of Γ0(p)-
structures (cf. [Jo93]). Recall that for a family A → S of principally polarized
g-dimensional abelian varieties a Γ0(p)-structure consists of the choice of a flag
0 ⊂ H1 ⊂ · · · ⊂ Hg ⊂ A[p] of flat subgroup schemes with Hi of order pi and
Hg totally isotropic with respect to the Weil pairing. We shall work exclusively
in characteristic p and denote by S(g, p) the mod p fiber of S(g, p). We now let
S(g, p)0 be the closed subscheme of S(g, p) defined by the condition that the
group scheme Hg be of height 1. This means that the (relative) Frobenius map
FA/S(g,p), where π : A → S(g, p) is the universal abelian variety, is zero on it.
For degree reasons we then get that Hg equals the kernel of FA/S(g,p). Using
the principal polarization we may identify the Lie algebra of π with R1π∗OA,
and hence we get a flag 0 ⊂ Lie(H1) ⊂ Lie(H2) ⊂ · · · ⊂ Lie(Hg) = R1π∗OA.
By functoriality this is stable under V . Completing this flag by taking its
annihilator in E gives a flag in Uw∅ , thus giving a map S(g, p)0 → Uw∅ .

Theorem 14.1. The canonical map S(g, p)0 → Uw∅ is an isomorphism. In
particular, S(g, p)0 is the closure of its intersection with the locus of ordinary
abelian varieties and is normal and Cohen–Macaulay.

Proof. Starting with the tautological flag {Ei} on Uw∅ we consider the induced
flag {Eg+i/Eg} in R1π∗OA. This is a V -stable flag of the Lie algebra of a
height 1 group scheme, so by, for instance, [Mu70, Theorem §14], any V -
stable subbundle comes from a subgroup scheme of the kernel of FA/S(g,p)

and thus the flag {Eg+i/Eg} gives rise to a complete flag of subgroup schemes
with Hg equal to the kernel of the Frobenius map and hence a map from Uw∅
to S(g, p)0 that clearly is the inverse of the canonical map.

The rest of the theorem now follows from Corollary 8.4. ��
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15 Appendix g = 3, 4

15.1 Admissible Strata for g = 3

In the following matrix one finds the loci lying in Uw∅ . In the sixth column
we give for each w an example of a final ν such that w → ν.

# Y w ν word w → ν

0 {1, 2, 3} [123] {0, 0, 0} Id [123] Superspecial
1 [132] {0, 0, 0} s2 [123] Fiber over s.s.
1 [213] {0, 0, 0} s1 [123] Fiber over s.s.
1 {2, 3} [124] {0, 0, 1} s3 [124] Moret-Bailly
2 [142] {0, 0, 1} s3s2 [135]
2 [214] {0, 0, 1} s3s1 [135]
2 [231] {0, 0, 0} s1s2 [123] Fiber over s.s.
2 [312] {0, 0, 0} s2s1 [123] Fiber over s.s.
2 {1, 3} [135] {0, 1, 1} s2s3 [135] f = 0, a = 2
3 [153] {0, 1, 1} s2s3s2 [236] Shuffle of {1, 2}
3 [241] {0, 0, 1} s3s1s2 [124]
3 [315] {0, 1, 1} s2s3s1 [124]
3 [321] {0, 0, 0} s1s2s1 [123] Fiber over s.s.
3 [412] {0, 0, 1} s3s2s1 [236] Shuffle of {1, 2}
3 {3} [145] {0, 1, 2} s3s2s3 [145] f = 0
3 {1, 2} [236] {1, 1, 1} s1s2s3 [236] a = 2
4 [154] {0, 1, 2} s3s2s3s2 [246] Shuffle of {2}
4 [326] {1, 1, 1} s1s2s3s1 [236]
4 [351] {0, 1, 1} s2s3s1s2 [236]
4 [415] {0, 1, 2} s3s2s3s1 [246] Shuffle of {2}
4 [421] {0, 0, 1} s3s1s2s1 [236]
4 {2} [246] {1, 1, 2} s3s1s2s3 [246] f = 1
5 [426] {1, 1, 2} s3s1s2s3s1 [356] Shuffle of {1}
5 [451] {0, 1, 2} s3s2s3s1s2 [356] Shuffle of {1}
5 {1} [356] {1, 2, 2} s2s3s1s2s3 [356] f = 2
6 {} [456] {1, 2, 3} s3s2s3s1s2s3 [456] f = 3

15.2 E-O Cycle Classes for g = 3

We give the cycle classes of the (reduced) E-O strata for g = 3.
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Y class

∅ 1
{1} (p− 1)λ1

{2} (p− 1)(p2 − 1)λ2

{1, 2} (p− 1)(p2 + 1)λ1λ2 − 2(p3 − 1)λ3

{3} (p− 1)(p2 − 1)(p3 − 1)λ3

{1, 3} (p− 1)2(p3 + 1)λ1λ3

{2, 3} (p− 1)2(p6 − 1)λ2λ3

{1, 2, 3} (p− 1)(p2 + 1)(p3 − 1)λ1λ2λ3

15.3 E-O Cycle Classes for g = 4

We give the cycle classes of the (reduced) E-O strata for g = 4.

Y class

∅ 1
{1} (p− 1)λ1

{2} (p− 1)(p2 − 1)λ2

{1, 2} (p− 1)(p2 + 1)λ1λ2 − 2(p3 − 1)λ3

{3} (p− 1)(p2 − 1)(p3 − 1)λ3

{1, 3} (p− 1)2(p + 1)((p2 − p + 1)λ1λ3 − 2(p2 + 1)λ4)
{2, 3} (p− 1)2((p6 − 1)λ2λ3 − (2p6 + p5 − p− 2)λ1λ4

{1, 2, 3} (p− 1)(p2+1)((p3 + 1)((p3 − 1)λ1λ2λ3 − 2(3p3+p2 − p + 3)λ2λ4)
{4} (p− 1)(p2 − 1)(p3 − 1)(p4 − 1)λ4

{1, 4} (p− 1)3(p + 1)(p4 + 1)λ1λ4

{2, 4} (p− 1)3(p8 − 1)λ2λ4

{1, 2, 4} (p− 1)2(p4 − 1)((p2 + 1)λ1λ2 − 2(p2 + p + 1)λ3)λ4

{3, 4} (p− 1)2(p2 + 1)(p3 − 1)(p2 − p + 1)((p + 1)2λ3 − pλ1λ2)λ4

{1, 3, 4} (p− 1)2(p4 − 1)(p6 − 1)λ1λ3λ4

{2, 3, 4} (p− 1)(p6 − 1)(p8 − 1)λ2λ3λ4

{1, 2, 3, 4} (p− 1)(p2 + 1)(p3 − 1)(p4 + 1)λ1λ2λ3λ4
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