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Abstract. In this paper we give a characterization of the height of K3 surfaces in charac-
teristic p > 0. This enables us to calculate the cycle classes in families of K3 surfaces of the
loci where the height is at least h. The formulas for such loci can be seen as generalizations
of the famous formula of Deuring for the number of supersingular elliptic curves in charac-
teristic p. In order to describe the tangent spaces to these loci we study the first cohomology
of higher closed forms.

0. Introduction

Elliptic curves in characteristic p come in two sorts: ordinary and supersin-
gular. The distinction can be expressed in terms of the formal group of an
elliptic curve. Multiplication by p on the formal group takes the form

[p](t) = at ph + higher order terms, (1)

where a �= 0 and t is a local parameter. The number h satisfies 1 ≤ h ≤ 2
and is called the height. By definition, the elliptic curve is ordinary if h = 1
and supersingular if h = 2. There is a classical formula of Deuring for the
number of supersingular elliptic curves over an algebraically closed field k
of characteristic p: ∑

E supers./∼=

1

#Aut(E)
= p− 1

24
,

where the sum is over supersingular elliptic curves over k up to isomorphism.
If one views K3 surfaces as a generalization of elliptic curves, one

can make a similar distinction of K3 surfaces in characteristic p by using
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the formal Brauer group as Artin showed. The formal Brauer group is
a 1-dimensional formal group associated to the second étale cohomology
with coefficients in the multiplicative group. Multiplication by p in this
formal group has the form (1), but now we have 1 ≤ h ≤ 10 or h = ∞,
the latter if multiplication by p is zero. The height can be used to define
a stratification of the moduli spaces of K3 surfaces. A generic K3 surface
will have h = 1; those with h = ∞ are most special in this respect and
called supersingular.

In this paper we first express the height of a K3 surface in terms of the
action of the Frobenius morphism on the second cohomology group with
coefficients in the sheaf W(OX ) of Witt vectors of the structure sheaf OX .
The natural co-filtration Wn(OX ) of W(OX ) induces co-filtrations on the co-
homology which correspond to approximations of the formal group. Using
this characterization we can calculate the cycle classes of the strata in the
moduli space where the height ≥ h. This is done by interpreting the loci
as degeneracy loci of maps between bundles. The resulting formulas can
be viewed as a generalization of Deuring’s formula. Generalizations of
Deuring’s formula to principally polarized abelian varieties were worked
out in joint work of Ekedahl and one of us and can be found in [G]. The
supersingular locus comes with a multiplicity.

In order to describe the tangent spaces to our strata we use differential
forms rather than crystalline cohomology. We calculate the dimensions of
cohomology groups H1(Zi) and H1(Bi), where the sheaves Zi and Bi are
the sheaves of certain closed forms introduced by Illusie. We study the di-
mensions of the cohomology groups H1(Zi) and H1(Bi) and of their images
in H1(X,�1). We think that these spaces are quite helpful to understand
the geometry of surfaces in characteristic p.

1. Witt vector cohomology

Let X be a non-singular complete variety defined over an algebraically
closed field k of characteristic p > 0. We denote by Wn = Wn(OX ) the
sheaf of Witt rings of length n as defined by J.-P. Serre, cf. [S]. The sheaf
Wn(OX ) is a coherent sheaf of rings which comes with three operators:

i) Frobenius F : Wn(OX )→ Wn(OX ),
ii) Verschiebung V : Wn(OX )→ Wn+1(OX ),
iii) Restriction R : Wn+1(OX )→ Wn(OX ),

defined by the formulas

F(a0, a1, . . . , an−1) =
(
ap

0 , ap
1 , . . . , ap

n−1

)
,

V(a0, a1, . . . , an−1) = (0, a0, a1, . . . , an−1),

R(a0, a1, . . . , an) = (a0, a1, . . . , an−1).
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They satisfy the relations

RVF = FRV = RFV = p.

The cohomology groups Hi(X, Wn(OX )) are finitely generated Wn(k)-
modules. The projective system {Wn(OX ), R}n=1,2,... induces a sequence

. . .←− Hi(X, Wn(OX ))
R←−Hi(Wn+1(OX ))←− . . .

so that we can define

Hi(X, W(OX )) = proj. lim Hi(X, Wn(OX )).

This is a W(k)-module, but not necessarily a finitely generated W(k)-module,
cf. Sect. 3. The semi-linear operators F and V act on it and they satisfy the
relations FV = VF = p.

2. Formal groups

Smooth formal Lie groups of dimension 1 over an algebraically closed field
k of characteristic �= 0 are characterized by their height, cf. [H], [Ma].
To a smooth formal Lie group � of dimension one one can associate its
covariant Dieudonné module M = D(�), a free W(k)-module. It possesses
two operators F and V with the following properties: the operator F is
σ -linear, the operator V is σ−1-linear and topologically nilpotent and they
satisfy FV = VF = p. Here σ denotes the Frobenius map on k. Then M is
a free W(k)-module with the following properties:

a) dim(�) = dimk(M/VM),
b) height(�) = rankW(M).

Note that one has the equalities

rankW (M) = dimk(M/pM) = dimk(M/FM)+ dimk(M/VM).

3. The formal Brauer group of Artin-Mazur

For a proper variety X/k one may consider the formal completion of the
Picard group. The group of S-valued points of P̂ic(X) fits into the exact
sequence

0 −→ P̂ic(X)(S) −→ H1(X × S,Gm) −→ H1(X,Gm)

for any local artinian scheme S with residue field k. Here cohomology is étale
cohomology. This idea of studying infinitesimal properties of cohomology
was generalized to the higher cohomology groups Hr(X,Gm) by Artin and
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Mazur, cf. [A-M]. Their work leads to contravariant functors �r : Art → Ab
with

�r(S) = ker{Hr(X × S,Gm) −→ Hr(X,Gm)},
which under suitable circumstances are representable by formal Lie groups.
For a K3 surface X this is the case and we find for r = 2 the formal Brauer
group � = �X = �2. Its tangent space is

T� = H2(X, OX ).

For a K3-surface X we have two possibilities:

i) h(�) = ∞ and � = Ĝa, the formal additive group. The K3-surface is
called supersingular (in the sense of Artin).

ii) h(�) <∞. Then � is a p-divisible formal group. Moreover, it is known
that 1 ≤ h(�) ≤ 10. This follows from the following theorem of Artin,
cf. [A]. We shall write simply h for h(�).

(3.1) Theorem. If the formal Brauer group �X of a K3 surface X is p-
divisible then its height satisfies the relation 2h ≤ B2 − ρ, where B2 is the
second Betti number and ρ the rank of the Néron-Severi group.

For the proof one combines Theorem (0.1) of [A] with Deligne’s [D] result
on lifting K3 surfaces, see also [I]. We give a proof in Sect. 10. This theorem
implies that if ρ = 22 then necessarily we have h = ∞. If h �= ∞ then
it follows that 1 ≤ h ≤ 10. One should view h = 1 as the generic case.
It was conjectured by Artin that if h = ∞ then ρ = 22. This is known
for elliptic K3 surfaces, see [A]. Note that a surface with ρ = 22 is called
supersingular by Shioda, cf. [Sh].

The following result by Artin and Mazur is crucial:

(3.2) Theorem. The Dieudonné module of the formal Brauer group �X is
given by

D(�X ) ∼= H2(X, W(OX )).

For the proof we refer to [A-M]. The point to notice is that

D(�X ) = H2(X, DGm) = H2(X, W(OX )).

(3.3) Remark. Note that this explains why the Witt vector cohomology is
sometimes not finitely generated: if �X

∼= Ĝa then H2(X, W(OX )) is not
finitely generated over W(k) because D(Ĝa) = W(k)[[T ]].
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4. Vanishing of cohomology

We collect a number of results on the vanishing of cohomology groups for
K3 surfaces that we need in the sequel.

(4.1) Lemma. Let X be a K3 surface. We have H1(X, Wn(OX )) = 0 for
all n > 0, hence H1(X, W(OX )) = 0.

Proof. Since X is a K3 surface we have by definition H1(X, OX ) = 0.
The lemma is deduced from this by induction on n. Assume that
H1(X, Wn−1(OX )) = 0. Then the exact sequence

0 −→ Wn−1(OX )
V−→Wn(OX )

Rn−1−→OX −→ 0

induces an exact sequence

H1(X, Wn−1(OX ))
V−→H1(Wn(OX ))

Rn−1−→ H1(X, OX ).

This implies that H1(X, Wn(OX )) = 0. ��
(4.2) Lemma. For a projective surface X with H1(X, OX ) = 0 the induced
map R : H2(X, Wn(OX )) → H2(X, Wn−1(OX )) is surjective with kernel∼= H2(X, OX ).

Proof. This follows from the exact sequence

0 → OX −→ Wn(OX )
R−→Wn−1(OX )→ 0

and the vanishing of H1(X, OX ) and of H3(X, OX ). ��
(4.3) Lemma. In H2(X, Wn(OX )) we have

RV(H2(X, Wn(OX ))) = V(H2(X, Wn−1(OX ))).

Proof. The commutativity of the diagram

Wn(OX )
V−→ Wn+1(OX )�R

�R

Wn−1(OX )
V−→ Wn(OX )

gives in cohomology a commutative diagram

H2(X, Wn(OX ))
V−→ H2(X, Wn+1(OX ))�R

�R

H2(X, Wn−1(OX ))
V−→ H2(X, Wn(OX )).

The surjectivity of the left hand R, which follows from the preceding lemma,
implies the claim. ��
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(4.4) Lemma. Assume that for some n > 0 the map F : H2(X,

Wn(OX )) −→ H2(X, Wn(OX )) vanishes. Then for all 0 ≤ i ≤ n the map
F : H2(X, Wi(OX )) −→ H2(X, Wi(OX )) is zero. Moreover, for all
0 ≤ i ≤ n the module H2(X, Wi(OX )) is a vector space over k.

Proof. The first result follows from the commutativity of the diagram

H2(X, Wn(OX ))
Rn−i−→ H2(X, Wi(OX ))�F

�F

H2(X, Wn(OX ))
Rn−i−→ H2(X, Wi(OX ))

and Lemma (4.2). The second claim follows from p = FVR and k ∼=
Wi(k)/pWi(k). ��
(4.5) Lemma. Assume that X is a K3 surface. The following two sequences
are exact:

0 → H2(X, Wn−1(OX ))
V−→ H2(X, Wn(OX ))

Rn−1−→ H2(X, OX )→ 0,

0 → H2(X, W(OX ))
V−→ H2(X, W(OX ))

R′−→ H2(X, OX )→ 0,

where R′ is the map induced by Wn(OX )
Rn−1−→W1(OX ) as n →∞.

Proof. The first exact sequence follows from the exact sequence

0 → Wn−1(OX )
V−→ Wn(OX )

Rn−1−→ OX → 0

and Lemma (4.2). Because the projective system H2(X, Wn(OX )) satisfies
the Mittag-Leffler condition we may take the projective limit. ��

5. Characterization of the height

Let X be a K3 surface and let �X be its formal Brauer group in the sense of
Artin-Mazur. The isomorphism class of this formal group is determined by
its height h. The following theorem expresses this height in terms of Witt
vector cohomology.

(5.1) Theorem. The height satisfies h(�X ) ≥ i + 1 if and only if the
Frobenius map F : H2(X, Wi(OX ))→ H2(X, Wi(OX )) is the zero map.

(5.2) Corollary. We have the following characterization of the height:

h(�X ) = min{i ≥ 1 : [F : H2(Wi(OX ))→ H2(Wi(OX ))] �= 0}.
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Proof of the theorem. “⇐” In case h(�X ) = ∞ the implication ⇐ is im-
mediate. So we may consider the case where the height of �X is finite.
Assume that the map F : H2(X, Wi(OX )) → H2(X, Wi(OX )) is the zero
map. We set

M = D(�) ∼= H2(X, W(OX )), the covariant Dieudonné module.

Since dimk(H2(X, W(OX ))/VH2(X, W(OX )) = 1 by Lemma (4.5), we
have by b) in Sect. 2

dimk(H2(X, W(OX ))/FH2(X, W(OX )) = h − 1.

The surjectivity of the projection H2(X, W(OX )) −→ H2(X, Wi(OX ))

implies the surjectivity of

H2(X, W(OX ))/FH2(X, W(OX )) −→
H2(X, Wi(OX ))/FH2(X, Wi(OX )).

By assumption we have H2(X, Wi(OX ))/FH2(X, Wi(OX )) ∼= H2(X,

Wi(OX )) and by Lemma (4.5) we have

dimk H2(X, Wi(OX )) = i,

i.e. we find h − 1 ≥ i, or equivalently, h ≥ i + 1.
Conversely, we now prove “⇒”. If h(�X ) = ∞ then �X = Ĝa, the

formal additive group of dimension 1. So F acts as zero on D(Ĝa) =
D(�X ) = H2(X, W(OX )). As in Lemma (4.4) we conclude that F acts on
H2(X, Wi(OX )) as the zero map. Therefore we may assume that h(�X ) =
h <∞. We thus assume that h(�X ) ≥ i + 1. We set

H = H2(X, W(OX ))

and have

V h−1 H ⊂ . . . ⊂ V 2 H ⊂ VH ⊂ H.

Under projection this is mapped surjectively to

0 ⊂ V h−2 H2(OX ) ⊂ . . . ⊂ VH2(Wh−2(OX )) ⊂ H2(X, Wh−1(OX )).

All the inclusions are strict because of Lemma (4.5).

Claim. We have V h−1 H2(X, W(OX )) = FH2(X, W(OX )).
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Proof of the claim. Since our modules are free over W we deduce from
Manin’s results [M] (but see also [H] because we use the covariant theory):

D(�X ) ∼= W[F, V ]/W[F, V ](F − V h−1).

Note that F − V h−1 is written on the right. But we can transfer it to the left
using FV = p = VF as follows:

F
( ∑

ai j Fi V j
) =∑

aσ
i j FFi V j =

∑(
aσ

i j Fi V j
)
F =

=
∑(

aσ
i j Fi V j

)
V h−1 = V h−1( ∑

aσh

i j Fi V j
)
.

This together with Theorem (3.2) proves the claim.

We now find FH2(Wh−1(OX )) = 0. By Lemma (4.4) we conclude that
F acts on H2(Wi(OX )) for i ≤ h − 1 as zero. ��
(5.3) Corollary. The height of �X is ∞ if and only if the Frobenius endo-
morphism F : H2(X, W10(OX ))→ H2(X, W10(OX )) is zero.

Proof. If the height is finite, then we know by Artin and Mazur (see (3.1))
that we have h ≤ 10. ��
(5.4) Corollary. Set H = H2(X, W10(OX )) and consider the filtration

{0} ⊂ R9V 9 H ⊂ R8V 8 H ⊂ . . . ⊂ Rh−1V h−1 H ⊂ . . . ⊂ H.

If h is the height of �X then F(H) = Rh−1V h−1(H).

Proof. The (h − 1)-th step V h−1 H2(W(OX )) in the filtration

V 10H2(W(OX )) ⊂ V 9 H2(W(OX )) ⊂ . . . ⊂ H2(W(OX ))

maps surjectively to the corresponding step Rh−1V h−1 H of the filtration
on H . By our claim we have

V h−1 H2(W(OX )) = FH2(W(OX )).

This implies the assertion. ��
(5.5) Corollary. If h(�X ) = h <∞ and if {ω, Vω, V 2ω, . . . , V h−1ω} is a
W-basis of H2(X, W(OX )) then F acts as zero on H2(X, Wi(OX )) if and
only if F(ω̄) = 0, with ω̄ the image of ω in H2(X, Wi(OX )).

(5.6) Corollary. If h(�X )=h<∞, then dimk ker[F :H2(Wi)→ H2(Wi)]
= min{i, h − 1}.
Proof. By Lemma (4.5) and Corollary (5.2), we have dimk ker[F :
H2(Wi) → H2(Wi)] = i if i ≤ h − 1. Assume i ≥ h. Using the no-
tation in Corollary (5.5), we know that 〈V i−h+1 Ri−h+1ω̄, V i−h+2 Ri−h+2ω̄,

V i−h+3 Ri−h+3ω̄, . . . , V i−1 Ri−1ω̄〉 is a basis of ker F. ��



On a stratification of the moduli of K3 surfaces 267

The case h ≥ 2 is characterized by the vanishing of Frobenius on
H2(OX ). We now formulate in an inductive way a similar characterization
of the condition h ≥ n+1. If for a K3 surface X one assumes that F is zero
on H2(Wi) (i = 1, . . . n − 1) then one has FH2(Wn) ⊂ V n−1 H2(OX ) and
F vanishes on VH2(Wn−1). Since we have a natural (σ−1)n−1-isomorphism
H2(OX ) ∼= V n−1 H2(OX ), one has an induced homomorphism

φn : H2(OX) ∼= H2(Wn)/VH2(Wn−1)→ V n−1 H2(OX ) ∼= H2(OX ). (2)

This map is σn-linear. The following theorem is clear by the construction
of φn .

(5.7) Theorem. Suppose F is zero on H2(Wi) for i = 1, . . . n − 1. Then F
vanishes on H2(Wn) if and only if φn : H2(OX )→ H2(OX ) vanishes.

6. Closed differential forms

Let F : X → X(p) be the relative Frobenius morphism of a K3 surface X.
By means of the Cartier operator C : �•X,closed → �•X we can define
sheaves Bi�

1
X of rings inductively by B0�

1
X = 0, B1�

1
X = dOX and

C−1(Bi�
1
X) = Bi+1�

1
X . Similarly, we define sheaves Zi�

1
X inductively by

Z0�
1
X = �1

X , Z1�
1
X = �1

X,closed, the sheaf of d-closed forms and by setting

Zi+1�
1
X := C−1(Zi�

1
X

)
.

Usually we simply write Bi and Zi . The sheaves Bi and Zi can be viewed
as locally free subsheaves of (Fi)∗�1

X on X(pi ). They were introduced by
Illusie in [Il] and can be used to provide de Rham-cohomology with a rich
structure. The inverse Cartier operator gives rise to an isomorphism

C−i : �1
X(pi )

�−→Zi/Bi

or a σ−i-linear isomorphism �1
X
∼= Zi/Bi. Note that we have the inclusions

0 = B0 ⊂ B1 ⊂ . . . ⊂ Bi ⊂ . . . ⊂ Zi ⊂ . . . ⊂ Z1 ⊂ Z0 = �1
X .

We also have an exact sequence

0 → Zi+1 −→ Zi
dCi−−−→d�1

X → 0. (3)

(6.1) Lemma. If X is a K3 surface X we have i) H0(Bi) = 0 for all i ≥ 0;
ii) the natural inclusion Bi → Bi+1 induces an injective homomorphism
H1(Bi)→ H1(Bi+1).
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Proof. i) The natural injection Bi → �1
X induces an injection H0(Bi) →

H0(�1
X) and we know H0(�1

X) = 0. ii) This follows from i) and the exact
sequence

0 → Bi −→ Bi+1
Ci−→B1 → 0

with C the Cartier operator. ��
There is a close relationship between the Witt vector cohomology

and the cohomology of Bi as follows. Serre introduced in [S] a map
Di :Wi(OX ) −→ �1

X of sheaves in the following way:

Di(a0, a1, . . . , ai−1) = api−1−1
0 da0 + . . .+ ap−1

i−2 dai−2 + dai−1.

It satisfies Di+1V = Di , and Serre showed that this induces an injective
map of sheaves of additive groups

Di : Wi(OX )/FWi(OX ) −→ �1
X

inducing an isomorphism

Di : Wi(OX )/FWi(OX )
∼−→Bi�

1
X . (4)

The exact sequence 0 → Wi
F−→Wi −→ Wi/FWi → 0 gives rise to the

exact sequence

0 → H1(Wi/FWi)→ H2(Wi)
F−→H2(Wi)→ H2(Wi/FWi)→ 0 (5)

and we thus have an isomorphism H1(Wi/FWi) ∼= ker[F : H2(Wi) →
H2(Wi)]. Combining the result on the dimension of the kernel of F on
H2(Wi) from Sect. 5 with (4) we get an interpretation of the height h in
terms of the groups H1(Bi).

(6.2) Theorem. We have

dim H1(Bi) =
{

min{i, h − 1} if h �= ∞,

i if h = ∞.

The Verschiebung induces an exact sequence

0 → Wi/FWi
V−→Wi+1/FWi+1 → OX/FOX → 0

and this gives rise to

0 → H1(Wi/FWi)
V−→H1(Wi+1/FWi+1) −→ H1(OX/FOX)→ . . .

i.e., Verschiebung induces for all i an injective map. Moreover, it is surjective
if and only if h �= ∞ and i ≥ h − 1.
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We have a commutative diagram (with βi the natural map induced by
Bi ⊂ �1

X)

H1(Wi/FWi)
Di−→ H1

(
�1

X

)�∼= �=
H1

(
Bi�

1
X

) βi−−−→ H1
(
�1

X

)
We study the kernel of Di , equivalently the kernel of the natural map
βi : H1(Bi�

1
X)→ H1(�1

X) in Sects. 9–11.

(6.3) Lemma. The Euler-Poincaré characteristics of Bi and Zi are given
by χ(Bi) = 0 and χ(Zi) = −20.

Proof. Since the kernel and the cokernel of F on H2(Wi) have the same
dimension by (5) the result for Bi follows from (4) and (5). The identity
χ(Bi) + χ(�1

X) = χ(Zi) resulting from the isomorphism Zi/Bi
∼= �1

X
implies the result. ��

7. De Rham cohomology

The de Rham cohomology of a K3 surface is the hypercohomology of the
complex (�•X, d). The dimensions h p,q of the graded pieces are given by
the Hodge diamond.

1
0 0

1 20 1
0 0

1

On H2
dR we have a perfect pairing 〈 , 〉 given by Poincaré duality; cf. [D].

The Hodge spectral sequence with Ei j
1 = H j(X,�i

X) converges to
H∗

dR(X). The second spectral sequence of hypercohomology has as E2-
term Ei j

2 = Hi(H j(�•X)) abutting to Hi+ j
dR (X/k). But the Cartier operator

yields an isomorphism of sheaves

C−1 : �i
X(p)

∼−→Hi
(
F∗(�•X/k)

)
,

so that we can rewrite this as

Ei j
2 = Hi(X ′,H j(�•)) ∼= Hi

(
X ′,� j

X ′
)⇒ H∗

dR(X),

where X ′ = X(p) is the base change of X under Frobenius. We thus get two
filtrations on the de Rham cohomology: the Hodge filtration

(0) ⊂ F2 ⊂ F1 ⊂ H2
dR,
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and the so-called conjugate filtration

(0) ⊂ G1 ⊂ G2 ⊂ H2
dR.

We have rank(F1) = rank(G2) = 21, rank(F2) = rank(G1) = 1 and

(F1)⊥ = F2 and G⊥
1 = G2.

We have also

F1/F2 ∼= H1(X,�1
X

)
, G2/G1

∼= H1(X,�1
X

)
,

cf. [D]. Moreover, from the description with the second spectral sequence it
follows that G1 is the image under Frobenius of H2

dR and also of H2(X, OX ).
The conjugate filtration is an analogue of the complex conjugate of the
Hodge filtration in characteristic zero.

The relative position of these two filtrations is an interesting invariant of
a K3 surface. We have the three cases

a) F1 ∩ G1 = {0};
b) G1 ⊂ F1; G1 �= F2;
c) G1 = F2.

The first case happens if and only if F : H2(X, OX ) → H2
dR(X) →

H2(X, OX ) is not zero, i.e. if h = 1. Such X are called ordinary. The
second case happens if h ≥ 2, while the last case is by definition the super-
special case. In this case the two filtrations coincide. It is known that two
superspecial K3 surfaces are isomorphic (as unpolarized varieties)(cf. [O]).

We have the following result of Ogus (cf. [O]) which provides us with
an interpretation of H1(Z1).

(7.1) Proposition. We have an isomorphism F1 ∩ G2
∼= H1(X, Z1).

Proof. The map z1 : H1(Z1) → H2
dR given by { fi j} "→ (0, { fi j }, 0) is

injective. Indeed, if { fi j} represents an element in the kernel, then it is of the
form (δhi j , dhi j + ω j − ωi, dωi) for a hi j ∈ C1(OX), ωi ∈ C0(�

1
X). Then

the ωi are closed and hi j defines a cocycle. Since H1(OX) = 0 we can write
dhi j = η j − ηi and fi j is a coboundary. The image is contained in F1 and
is orthogonal to the image G1 of Frobenius. Indeed, take a class F(a) and
consider the cupproduct 〈F(a), z1( fi j)〉. Applying the Cartier operator we
see that it is zero. But C : H4

dR → H4
dR is a bijection. Hence the image lies

in F1 ∩G2. This implies that dim H1(Z1) ≤ 20 if X is not superspecial and
≤ 21 for superspecial X. The exact sequence

0 → H1(B1)→ H1(Z1)
C−→H1(�1

X

)→ H2(B1)→ H2(Z1)→ 0

implies together with the value of h1(B1) = h2(B1) and χ(Z1) = −20
that h1(Z1) = 20 unless X is superspecial. But if X is superspecial
then because of F2 = G1 the Cartier operator gives an isomorphism
C : H1(Z1)/H1(B1) ∼= H1(�1

X) implying that h1(Z1) = 21. ��
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8. An extension of de Rham cohomology

We define an extension of de Rham cohomology by considering an en-
larged complex. (It captures the [0, 1)-part of crystalline cohomology.) It is
defined as follows. We denote by Hi

dRWn
(X/S) the cohomology of the dou-

ble complex CWn of additive groups which is defined by the commutative
diagram:

∂ ↑ ∂ ↑ ∂ ↑
C2(Wn(OX/S))

Dn−→ C2
(
�1

X/S

) d−→ C2
(
�2

X/S

)
∂ ↑ ∂ ↑ ∂ ↑

C1(Wn(OX/S))
Dn−→ C1

(
�1

X/S

) d−→ C1
(
�2

X/S

)
∂ ↑ ∂ ↑ ∂ ↑

C0(Wn(OX/S))
Dn−→ C0

(
�1

X/S

) d−→ C0
(
�2

X/S

)
,

where Ci are the i-th Čech cochains, Dn are the maps induced by the
differential of Serre given in Sect. 6, the differentials d are defined by the
exterior differentiation of differential forms and the vertical differentials are
taken in the Čech sense. As usual, we denote by δ the differential of the single
complex associated with CWn . An element of H2

dRWn
(X/S) is represented

by a triple (α0, α1, α2) ∈ C2(Wn(OX/S))⊕ C1(�
1
X/S)⊕ C0(�

2
X/S). In case

n = 1, H2
dRW1

(X/S) is nothing but the de Rham cohomology H2
dR(X/S).

On H2
dRWn

(X/S) we have the Hodge filtration

0 ⊂ F2 ⊂ F1 ⊂ H2
dRWn

(X/S).

Here the Fi (for i �= 0) is naturally isomorphic to the Fi-part in the Hodge
filtration of H2

dR(X/S). We have a natural isomorphism

H2
dRWn

(X/S)/F1 ∼= H2(X, Wn(OX/S)).

Since the Frobenius morphism F is a zero map on F1, we have an induced
homomorphism

F : H2(X, Wn(OX/S)) −→ H2
dRWn

(X/S).

The map V n−1 : OX/S −→ Wn(OX/S) gives rise to a homomorphism

V n−1 : Ci(OX/S) −→ Ci(Wn(OX/S)).

Using this homomorphism and taking the identity mapping from Ci(�
j
X/S)

to Ci(�
j
X/S), we have a homomorphism of complexes of additive groups

CW1 −→ CWn. Therefore, we have a homomorphism of additive groups:

V n−1 : H2
dR(X/S) −→ H2

dRWn
(X/S).
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Let X0 be a K3 surface over a field k and assume now that F : H2(Wi(OX0))−→ H2(Wi(OX0)) is zero for i = 1, . . . , n − 1. Then, by the same
argument as in Sect. 5, we have FH2

dRWn
(X0) ⊂ V n−1 H2

dR(X0). There-
fore, using the inverse of the natural isomorphism of additive groups
H2

dR(X0) ∼= V n−1 H2
dR(X0) ⊂ H2

dRWn
(X0), we have a homomorphism

�n : H2(Wn(OX0))
F−→V n−1 H2

DR(X0) ∼= H2
DR(X0).

Since we have H2(Wn(OX0))/VH2(Wn−1(OX0))
∼=H2(OX0)

∼=H2
DR(X0)/F1,

and since �n maps VH2(Wn−1(OX0)) to F1, the map �n induces a homo-
morphism from H2(OX0) to H2(OX0). This homomorphism coincides with
the map φn which was constructed in Sect. 5.

We now take a basis ω0 of H0(X0,�
2
X0
) and take the dual basis ζ0 of

H2(X0, OX0). Via the Hodge filtration of H2
dR(X0), we can naturally regard

H0(X0,�
2
X0
) as a subspace of H2

dR(X0). Therefore, we may assume ω0 is
an element of H2

dR(X0).
Since Rn−1 : H2(Wn(OX0)) → H2(OX0) is surjective, there exists an

element α0 ∈ H2(Wn(OX0)) such that Rn−1(α0) = ζ0. Then, by Theo-
rems (5.1) and (5.7) we have the following proposition.

(8.1) Proposition. Suppose that for a K3 surface X0 the map F :
H2(Wi(OX0))→ H2(Wi(OX0)) is zero for i = 1, . . . , n−1. Then, with the
notation introduced above, h(�X0) ≥ n+1 if and only if 〈�n(α0), ω0〉 = 0.

9. The dimensions of the spaces of closed forms

We study the dimensions of the spaces H1(X, Bn) and H1(X, Zn). We also
consider their images in H2

dR(X) and this gives a finer structure on these de
Rham cohomology groups.

Let us consider the natural map βn induced in H1 by the inclusion
Bn ⊂ �1

X :
βn : H1(Bn) −→ H1(�1).

(9.1) Proposition. If βn is not injective then βm is not injective for every
m ≥ n and dim H1(Bm) < dim H1(Bm+1).

Proof. The maps βn are compatible with the natural maps H1(Bn) →
H1(Bn+1) and by (6.1) these maps H1(Bn) → H1(Bn+1) are injective. If
βn is not injective it follows that βn+1 is not injective. To prove the second
statement, we start with the case n = 1. If β1 : H1(B1) → H1(�1

X) is not
injective then there exists a non-trivial cocycle fi j ∈ C1(OX/FOX ) and a
1-cochain ωi of 1-forms such that d fi j = ω j − ωi . Since for affine open
sets U the Cartier map H0(�1

U,closed) → H0(�1
U) is surjective we can find
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closed forms ω̃i and regular functions gi j on Ui ∩ U j such that we have
a relation

f p−1
i j d fi j + dgi j = ω̃ j − ω̃i. (6)

Note that this implies that the map H1(B2) → H1(Z1) has a non-trivial
kernel. Suppose that the left-hand-side of (6) represents an element in the
image of H1(B1) = H1(dOX ) → H1(B2). Then we find a relation dhi j =
ω̂ j − ω̂i with ω̂i closed. Then since C annihilates dhi j the Cω̂i define
a global 1-form and this must be zero. Hence we can write ω̂i = dφi and
this shows that dhi j represents the zero-class in H1(dOX ), contrary to the
assumption. Hence we find a non-trivial element in H1(B2) which does not
lie in the image of the natural inclusion H1(B1) → H1(B2). Carrying out
this argument for all n proves the claim. ��
(9.2) Corollary. Assume that h < ∞. Then for all n ≥ 1 the natural
map βn : H1(Bn)→ H1(X,�1

X) is injective and the image has dimension
min{n, h − 1}.
Proof. Since by (6.2) dim H1(Bn) stabilizes for h �= ∞, non-injectivity
would contradict the preceding proposition. ��

Note that the natural map H1(Bn) −→ H1(�1
X) is not necessarily in-

jective for h = ∞ because dim H1(Bn) > 20 for n > 20. In the case of
h �= ∞, we often identify H1(Bn) with the image of the natural inclusion
H1(Bn)→ H1(�1

X) in Corollary (9.2).
Let Zn → �1

X be the natural inclusion. We have an induced map

zn : H1(Zn) −→ H1
(
�1

X

)
.

We would like to characterize both the image and the kernel of this map.
We often write Im(H1(Zn)) for the image of zn.

(9.3) Lemma. i) We have Im(H1(Bn)) ⊆ Im(H1(Zn))
⊥, in particular,

Im(H1(Bn)) ⊆ Im(H1(Bn))
⊥. ii) Assume that h <∞. If C : H1(Bn+1)→

H1(Bn) is surjective then we have the equality Im(H1(Zn)) =
Im(H1(X, Bn))

⊥.

Proof. We first show that Im(H1(Bn)) and Im(H1(Zn)) are orthogonal.
Let α ∈ Im(H1(B1)) and β ∈ Im(H1(Z1)). Then we find an element
α ∧ β ∈ H2(�2

X)
∼= k representing the cup product 〈α, β〉. If we apply

Cartier to α∧β a suitable number of times then it is zero. Now use the exact
sequence

0 → d�1
X −→ �2

X,closed
C−→�2

X → 0, (7)
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and the fact that�2
X,closed = �2

X . Then, we have from the long exact sequence
the exact sequence

H2
(
d�1

X

) −→ H2
(
�2

X

) C−→H2
(
�2

X

)→ 0.

The fact that dim H2(�2
X ) = 1 implies that C : H2(�2

X ) → H2(�2
X ) is

an isomorphism as a p-linear mapping. Therefore, for x ∈ H2(�2
X ) we

have x = 0 if and only if Cn(x) = 0 for some n. Hence, we conclude
α ∧ β = 0. We now prove equality by induction. For n = 1 we have
Im(H1(B1))

⊥ = Im(H1(Z1)) because Im(H1(B1)) is the kernel G1/F2 of
the Cartier operator and Im(H1(Z1)) is F1∩G2 = F1∩G⊥

1 . Suppose that we
have proved that Im(H1(Bi))

⊥ = Im(H1(Zi)) for i ≤ n. Ifβ ∈ Im(H1(Z1))

is orthogonal to allα ∈ Im(H1(Bn+1)) then we have 〈Cα,Cβ〉 = 0 and since
C : H1(Bn+1)→ H1(Bn) is surjective this implies that Cβ ∈ Im(H1(Zn)),
i.e. β ∈ Im(H1(Zn+1)). ��
(9.4) Lemma. The Cartier operator C : H1(Bn)→ H1(Bn−1) is surjective
for n ≤ h − 1. Moreover, for n ≤ h − 1 <∞ we have dim Im(H1(Zn)) =
20− n.

Proof. Note that we know that h1(Bn) = n for n ≤ h − 1 and thus the
exact sequence 0 → B1 → Bn → Bn−1 → 0 implies that C : H1(Bn) →
H1(Bn−1) is surjective for n ≤ h − 1. The rest follows from (9.3). ��
(9.5) Corollary. If h �= ∞ we have the following orthogonal filtration in
H1(�1):

0 ⊂ H1(B1) ⊂ H1(B2) ⊂ . . . ⊂ H1(Bh−1) ⊂ Im(H1(Zh−1)) ⊂
⊂ Im(H1(Zh−2)) ⊂ . . . ⊂ Im(H1(Z1)) ⊂ H1

(
�1

X

)
. (8)

The exact sequence (3) gives for i = 0 rise to the exact sequence

0 → H0
(
d�1

X

) −→ H1(Z1) −→ H1
(
�1

X

) d−→H1
(
d�1

X

) −→ H2(Z1)→
The natural map H1(Z1) → H1(�1) is the composition of H1(Z1) →
H2

dR and the projection H2
dR → F1/F2, i.e. by (7.1) it is the map

F1 ∩ G2 → F1/F2. This is an isomorphism for h = 1 and it has a 1-di-
mensional kernel otherwise. It follows that

dim H0(d�1) = dim H1(d�1) =
{

0 if h = 1

1 if h �= 1.

From the exact sequence

0 → H0(d�1
X

) −→ H1(Zn+1)
ψn+1−−−→H1(Zn) −→ H1(d�1

X

)→
with ψn+1 the map induced by inclusion we deduce that for h �= 1

ψn+1 is surjective ⇐⇒ dim H1(Zn+1) > dim H1(Zn). (9)



On a stratification of the moduli of K3 surfaces 275

(9.6) Lemma. For h �= ∞ we have dim H1(Zn) = 20.

Proof. If h = 1 we have h0(d�1
X ) = 0 and h1(d�1

X ) = 0 hence all ψn are
isomorphisms. Since we know h1(Z0) = 20 the result follows for h = 1. If
h �= 1 then H0(d�1

X )
∼= k. For n ≤ h − 1 we have Im(H1(Zn)) = 20 − n

by Lemma (9.3) and dim H1(Bn) = min{n, h − 1}. Suppose there exists
an n (n ≤ h − 1) such that ψn is surjective. Take the smallest such n.
Then, the image of zn coincides with the image of zn−1, which contradicts
dim Im(H1(Zn)) �= Im(H1(Zn−1)). Hence, h1(Zn) = 20 for n ≤ h − 1.
Consider for n = h the commutative diagram of exact sequences

0 0� �
B1 = B1� �

0 −→ Bn −→ Zn
Cn−→ �1

X −→ 0�C

�C

�=
0 −→ Bn−1 −→ Zn−1

Cn−1−→ �1
X −→ 0� �

0 0 .

The diagram shows that Ch : H1(Zh) −→ H1(�1
X ) factors through the

image of Ch−1. This implies that dim H1(Zh) − (h − 1) ≤ 20 − (h − 1).
Since h1(Zn) ≥ 20 for all n ≥ 1 we get h1(Zh) = 20. We can repeat this
argument for H1(Zm) with m ≥ h. ��

10. Chern classes of line bundles and closed forms

We start with a well-known result due to Ogus [O, Cor. 1.5]. We give here
the proof by Shafarevich [Sh] for the reader’s convenience.

(10.1) Proposition. The map c1 : NS(X)/pNS(X) −→ H2
dR is injective

and factors through F1 H2
dR.

Proof. (Shafarevich) We take an affine open covering {Ui} of X. A class
in H2

dR is represented by a tripel (a, b, c) ∈ C2(OX )⊕ C1(�1
X )⊕ C0(�2

X ).
The boundaries are of the form (δhi j , dhi j +ω j −ωi, dωi) with (hi j , ωi) ∈
C1(OX )⊕C0(�1

X ). So if a Chern class c1(L), represented by (0, d log fi j , 0),
is zero in H2

dR then there exists (hi j , ωi) ∈ C1(OX )⊕C0(�1
X ) with dωi = 0

and δhi j = 0 and we have d log fi j = ω j − ωi + dhi j . By the relation
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δ(hi j) = 0 the hi j defines a class in H1(X, OX ) = 0, so we have hi j =
η j−ηi with ηi regular and we can replace ωi by ωi+dηi and obtain a relation

d log fi j = ω j − ωi with ωi closed. (10)

Applying the Cartier operator we find

d log fi j = Cω j − Cωi. (11)

Subtracting (1) from (2) we find Cωi−ωi = Cω j−ω j . This defines a global
1-form which must be zero. Hence we see Cωi = ωi and it follows that
ωi = d logφi (after shrinking the Ui if necessary). We find

d log fi j = d log φiφ
−1
j ,

hence
fi j = φiφ

−1
j ψ

p
i j

for some ψi j ∈ O(Ui ∩ U j). Thus modulo a p-th power L is trivial. The
proof also shows that the image lands in F1 H2

dR. ��
(10.2) Proposition. If h < ∞ then we have 〈c1(NS(X))〉 ∩ Im(H1(Bn))

= {0} for all n. Moreover, c1(NS(X)) is orthogonal with Im(H1(Bn)) for
all n.

Proof. First we show that c1(NS(X)) ∩ Im(H1(Bn)) = (0) for all n > 0.
If it is not, then take a minimal n such that Im(H1(Bn)) contains a Chern
class 0 �= [d log fi j ]. We can write a (non-trivial) relation as

d log fi j = βi j + ω j − ωi, (12)

where the βi j are forms in Bn, but not in Bn−1. Apply the inverse Cartier
operator as in (9.1) to get a relation

d log fi j = β̃i j + ω̃ j − ω̃i (13)

where the ω̃i are closed forms with C(ω̃i) = ωi and the β̃i j are forms in
Bn+1 with C(β̃i j) = βi j . Subtracting (12) from (13) shows that β̃i j − βi j is
a boundary. Since βi j defines a non-zero element of H1(Bn) which is not in
the image of H1(Bn−1) the cocycle β̃i j gives an element of H1(Bn+1) not
in the image of H1(Bn). Hence the left hand side is not zero in H1(Bn+1)

and this shows that H1(Bn+1)→ H1(�1) is not injective.
Suppose now that 〈c1(NS(X))〉 ∩ Im(H1(Bn)) �= 0. Considering all n

which satisfy this condition, we then have a relation with m ≥ 2 minimal

d log f (1)
i j +

m∑
ν=2

aνd log f (ν)
i j = βi j + ω j − ωi.
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We may assume that m ≥ 2 and that aν �∈ Fp for all ν ≥ 2. Then by applying
C−1 as before we find

d log f (1)
i j +

m∑
ν=2

ap
ν d log f (ν)

i j = β̃i j + ω̃ j − ω̃i,

where the ω̃i are closed and Cω̃i = ωi . Subtracting the two relations we find
a shorter relation (m smaller but with n maybe larger). This contradiction
shows that 〈c1(NS(X))〉 ∩ Im(H1(Bn)) = 0.

The orthogonality of 〈c1(NS(X))〉 and Im(H1(Bn)) follows from the
fact that 〈c1(NS(X))〉 ⊂ Im(H1(Zn)) and Lemma (9.3). ��
(10.3) Proposition. Suppose that h <∞. Then the Chern class map

c1 ⊗ k : NS(X)/pNS(X)⊗ k → H1(X,�1
X )

is injective.

Proof. Suppose we have a relation
∑r

ν=1 aνc1(Lν) = ω j − ωi for line
bundles Lν and aν ∈ k. We may assume that a1 = 1 and that the relation is the
shortest possible (r minimal). Furthermore, we can assume that aν/aµ �∈ Fp

for ν �= µ; otherwise we can easily find a shorter one. Now apply the inverse
Cartier operator C−1 to the relation as we did before. We find a new relation

dgi j + c1(L1)+
r∑

ν=2

ap
ν c1(Lν)− ω̃i + ω̃ j = 0,

where the gi j are regular on Ui ∩ U j . If the cocycle dgi j defines a zero
class in H1(X,�1

X ), we can write dgi j = η j − ηi , and we can replace the
relation by a shorter one by subtracting the two relations contradicting the
minimality of r. Hence {dgi j } defines a non-zero class in H1(X,�1

X) and
we find a non-zero element in Im(H1(B1)) ∩ 〈c1(NS(X))〉. ��

As a corollary of (6.2), (10.2) and (10.3) we now find the well-known
result of Artin and Mazur on the rank ρ of the Néron-Severi group:

(10.4) Corollary. For h �= ∞ we have ρ ≤ 22− 2h.

(10.5) Remark. A line bundle L defined by transition functions fi j defines
a cocycle d log fi j with values in Zn�

1
X for all n ≥ 0. We thus can view the

class c1(L) as a class in H1(Zn) for all n ≥ 0 as well as in H2
dR. If h <∞

the maps
c1 ⊗ k : NS(X)/pNS(X)⊗ k −→ H1(Zn)

are injective for all n ≥ 0.
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11. The supersingular case

The map c1 : NS/pNS → H2
dR is injective and factors through H1(Z j) for

all j ≥ 1. However, the map c1 ⊗ k : NS ⊗ k → H2
dR is not necessarily

injective. For X supersingular in Shioda’s sense, i.e. ρ = B2 = 22, it cannot
be injective since dimk H1(Z1) = 20 or 21, the latter if X is superspecial.

We define for j = 0, 1 . . .

U j := ker
{
c1 ⊗ k : NS ⊗ k → H1(Z j)

}
and we set

dim U1 = σ0.

Using the natural maps H1(Zi) → H1(Zi−1) we have U j+1 ⊆ U j for
j = 0, 1, 2, . . . . We define two bijective operators on NS ⊗ k

ϕ = 1⊗ F and γ = 1⊗ F−1,

with the Frobenius action F : a "→ ap on the second factor k.

(11.0) Remark. If we assume that ρ = B2 = 22 (i.e. the truth of the Artin
conjecture that h = ∞ implies ρ = 22) then one can show that the invariant
σ0 just introduced equals the Artin invariant σ0, i.e. the intersection form on
the lattice NS(X) has discriminant

disc(NS(X)) = −p2σ0 .

(11.1) Lemma. We have γ(U j+1) ⊆ U j; equivalently, we have U j+1 ⊆
ϕ(U j). Moreover, we have U j+1 ⊆ U j ∩ ϕ(U j).

Proof. This follows from the commutativity of the diagram

NS ⊗ k
γ−→ NS ⊗ k�c1⊗k

�c1⊗k

H1(Z j+1)
C−→ H1(Z j)

with C the Cartier operator. The second result follows from this and the
inclusion U j+1 ⊂ U j . ��

Now choose an element umin = u( j)
min �= 0 of minimal length in U j

under the assumption that U j is non-zero, i.e. write umin = ∑m
i=1 ai[Li] and

require m ≥ 2 to be minimal. We also may assume – and we shall – that
a1 = 1.

(11.2) Lemma. For j ≥ 1 we have umin �∈ ϕ(U j). Similarly we have
umin �∈ γ(U j). If X is not superspecial the conclusion holds also for j = 0.
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Proof. If umin ∈ ϕ(U j) is such a minimal element with a1 = 1 thenγ(umin)−
umin would be a shorter element or zero. If it is zero, then umin ∈ NS⊗Fp∩
U1 = {0}. For j = 0 the argument is similar. Note that NS⊗Fp∩U0 �= {0}
if and only if X is superspecial, cf. [O 1], Cor. 1.4.

(11.3) Lemma. The map c1⊗k : ϕ(U j)→ H1(Z j+1) factors via H1(B1)→
H1(Z j+1) and the induced map ϕ(U j)→ H1(B1) is surjective if U j �= {0}.
Proof. If u ∈ U j there exist closed forms ζx ∈ Z j(Vx) for some open
covering Vx such that (c1 ⊗ k)(u) is a coboundary: ζβ − ζα. Now use the
local surjectivity of C to write

(c1 ⊗ k)(ϕ(u)) = ζ̃β − ζ̃α + φαβ

with ζ̃x ∈ Z j+1, Cζ̃x = ζx , φαβ ∈ B1 on a suitable open covering. Then this
φαβ defines a cocycle, thus an element in H1(B1) ⊂ H1(Z j+1).

To prove the surjectivity, choose a non-zero element umin ∈ U j . Suppose
that φαβ = ηβ − ηα with η ∈ B1. Then ϕ(umin) ∈ U j , hence Umin ∈ γ(U j)

which contradicts Lemma (11.2).

(11.4) Corollary. We have U j+1 = U j ∩ ϕ(U j) and dim(U j+1) =
max{dim(U j)− 1, 0}.
Proof. The kernel of c1⊗k : ϕ(U j)→ H1(Z j+1) equals U j+1 by (11.1) and
has codimension 1 by (11.3). Since U j �= ϕ(U j), and since their intersection
contains U j+1 we must have U j+1 = U j ∩ ϕ(U j). The statement about
dimensions follows.

If we assume that σ0 ≥ 1 then we have a strictly increasing sequence

{0} = Uσ0+1 ⊂ Uσ0 ⊂ . . . ⊂ U2 ⊂ U1 (14)

and this implies:

(11.5) Proposition. The map c1 ⊗ k factors through an injection

NS(X)/pNS(X)⊗ k → H1(Zσ0+1).

We can generalize the result of Corollary (11.4).

(11.6) Lemma. We have ϕk(U j) ∩U j = U j+k. In particular ϕσ0(U1) ∩U1

= {0}.
Proof. We prove this by induction on k, the case k = 1 was proved in (11.4).
Suppose it holds for k. Then

ϕk+1(U j) ∩U j ⊂ ϕ[ϕk(U j−1) ∩U j−1] ⊂ ϕ(U j+k−1).
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On the other hand we have

ϕ(U j+k−1) ∩ ϕk+1(U j) ⊂ ϕ(U j ∩ ϕk(U j)) = ϕ(U j+k).

But by an easy induction one has

ϕ(U j+k) ∩U j ⊂ U j+k+1.

In view of dim(ϕk+1(U j) ∩U j) ≥ dim(U j)− (k + 1) the result follows.

(11.7) Lemma. Suppose that U1 �= {0} and let umin ∈ U1. Then γ(umin) ∈
U0\U1. In particular, (c1 ⊗ k)(γ(umin)) ∈ H0(�2) ⊂ H1(Z1) ⊂ H2

dR.

Proof. Since γ(umin) does not lie in U1, but lies in U0 we see that (c1 ⊗ k)
(γ(umin)) must lie in the kernel of H1(Z1)→ H1(�1), which is H0(�2

X ).

(11.8) Lemma. The Chern class map c1 ⊗ k : ϕm(U j) −→ H1(Z j+m)

factors through H1(Bm). For any t ≥ 1 the natural image of H1(Bt) in
H1(Zσ0+1) is contained in the image of NS(X)/pNS(X)⊗ k under c1 ⊗ k.

Proof. As in the proof of (11.3) we can write (c1 ⊗ k)(u) = ζβ − ζα with
ζx ∈ Z j(Vx). Now use the local surjectivity of C to write

ϕm(u) = ζ̃β − ζ̃α + φαβ

with ζ̃ ∈ Z j+m , Cm ζ̃x = ζx , φαβ ∈ Bm . Then this φαβ defines a cocycle,
thus an element in H1(Bm) ⊂ H1(Z j+m). This proves the first statement.

We prove the second statement by induction. Note that by (11.3)
the image of H1(B1) in H1(Zσ0+1) is contained in the image of
NS(X)/pNS(X) ⊗ k under c1 ⊗ k. Let α be an element of the image
of H1(Bt) and β = Cα in the image of H1(Bt−1). Then β = (c1 ⊗ k)(v)
for some v ∈ NS⊗ k. But then α− (c1⊗ k)(ϕ(v)) is an element of H1(B1).
By induction this is in the image of (c1 ⊗ k)(NS ⊗ k). Hence α lies in the
image of (c1 ⊗ k)(NS ⊗ k).

(11.9) Proposition. Let σ0 ≥ 1. The dimension of the image of H1(Bσ0) in
H1(Z1) equals σ0. The image in H1(�1

X ) is σ0 − 1-dimensional.

Proof. The first statement follows directly from (11.6) and (11.8). Arguing
similarly for U0 we find that c1 ⊗ k : ϕσ0(U0) → H1(�1

X ) factors through
the natural map H1(Bσ0) → H1(�1

X ). The intersection ϕσ0(U0) ∩ U0 has
dimension 1.

(11.10) Theorem. For a K3 surface X with B2 = ρ and Artin invariant σ0,
we have dim(Im H1(Zσ0)) = 21 − σ0 for the image in H1(�1

X ) and it is
generated by Chern classes.
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Proof. Since we have

〈c1(NS(X)/pNS(X))〉 ⊂ Im H1(Zσ0) ⊂ (Im H1(Bσ0))
⊥ ⊂ H1

(
�1

X

)
and dim〈c1(NS(X)/pNS(X))〉 = dim(Im H1(Bσ0))

⊥ = 20 − (σ0 − 1) by
(11.9), we have

〈c1(NS(X)/pNS(X))〉 = Im H1(Zσ0) = (Im H1(Bσ0))
⊥

and so dim Im H1(Zσ0) = 21− σ0. ��
Since the codimension of Im H1(Zi+1) in ImH1(Zi) is at most one, we
conclude that

Im H1(Zσ0) = Im H1(Zσ0−1) ⊂ Im H1(Zσ0−2) ⊂ . . .

⊂ Im H1(Z1) ⊂ H1
(
�1

X

)
and Im H1(Zn) = Im H1(Zσ0) for n ≥ σ0. Here, the inclusions are
strict inclusions. Moreover, we see that the injection c1 ⊗ k :
NS(X)/pNS(X)⊗ k → H1(Zσ0+1) is an isomorphism:

c1 ⊗ k : NS(X)/pNS(X)⊗ k ∼= H1(Zσ0+1).

We now need the following lemma.

(11.11) Lemma. Let X be a K3 surface X with B2 = ρ and Artin invari-
ant σ0. For every n ≥ 0 the natural map H1(Zσ0+n+1) → H1(Zσ0+n) is
surjective.

Proof. By Theorem (11.10) the dimension of the image of H1(Zσ0) in
H1(�1) is 21−σ0. By (14) it follows that the image of H1(Zσ0−1) in H1(�1)

has dimension at least 22− σ0 − 1. Since the map H1(Zσ0+1) → H1(�1)

factors through H1(Zσ0) the map H1(Zσ0+1)→ H1(Zσ0)must be surjective.
We now prove that if the natural mapping H1(Zn+1) → H1(Zn) is

surjective, then so is H1(Zm+1) → H1(Zm) for any m ≥ n. Suppose that
the natural homomorphism H1(A, Zn+1) → H1(A, Zn) is surjective. By
the diagram of exact sequences

0 → B1 −→ Zn+2
C−→ Zn+1 → 0�= �ιn+2

�ιn+1

0 → B1 −→ Zn+1
C−→ Zn → 0

we have a diagram of exact sequences

→ H1(X, B1)→ H1(X, Zn+2)
C−→ H1(X, Zn+1)→ H2(X, B1)�= �ιn+2

�ιn+1

�=
→ H1(X, B1)→ H1(X, Zn+1)

C−→ H1(X, Zn) → H2(X, B1).
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From this diagram we see that the natural homomorphism H1(X, Zn+2)→
H1(X, Zn+1) is also surjective. So this lemma now follows by induction.

��
(11.12) Corollary. Let X be a K3 surface X with B2 = ρ and Artin
invariant σ0. For n ≥ σ0 we have Im(H1(Bn)) = Im(H1(Zn))

⊥ and
dim Im(H1(Bn)) = σ0 − 1.

Proof. By the proof of (11.10), we have ImH1(Zσ0)
⊥ = ImH1(Bσ0). There-

fore, for n ≥ σ0, we have

ImH1(Zn)
⊥ = ImH1(Zσ0)

⊥ = ImH1(Bσ0) ⊂ ImH1(Bn).

On the other hand, by the proof of (9.3), we have ImH1(Zn)
⊥ ⊃ ImH1(Bn).

Hence, we get the desired results. ��
Since c1 ⊗ k : NS(X)/pNS(X) ⊗ k −→ H1(Zi) is injective for i ≥

σ0 + 1, we have the following proposition.

(11.13) Proposition. For a K3 surface X with B2 = ρ the following four
conditions are equivalent.

(i) The natural map H1(Zi)→ H1(Zi−1) is surjective.
(ii) The Cartier operator C : H1(Zi)→ H1(Zi−1) is surjective.
(iii) dim H1(Z10) ≥ 31− i.
(iv) σ0 ≤ i.

12. The Kodaira-Spencer map

Let X0 be a K3 surface, and let π : X −→ S be the versal formal
k-deformation of X0. Then, as is well-known (cf. [D]), we have S =
Spfk[[t1, . . . , t20]] with variables t1, . . . , t20. We denote by ∇ the Gauss-
Manin connection of H2

dR(X/S):

∇ : H2
dR(X/S) −→ �1

S/k ⊗ H2
dR(X/S).

We take a basis ω of H0(X,�2
X/S). Then, ∇ composed with cup product

with ω gives an isomorphism:

ρω : H1
(
X,�1

X/S

) ∼−→�1
S/k.

We denote by m the maximal ideal of the closed point of S. By evaluating
ρω at zero we have an isomorphism:

ρω,0 : H1
(
X0,�

1
X0/k

) ∼−→m/m2.
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(12.1) Remark. Ogus gave an explicit expression of the isomorphism ρω

as follows. For an element α ∈ H1(X,�1
X/S) we choose a lifting α′ ∈

F1 H2
dR(X/S) of α. Since 〈α′, ω〉 = 0, we have

ρω(α) = 〈∇α′, ω〉 = −〈α′,∇ω〉.
For details, see the paper by Deligne/Illusie [D], cf. also Ogus [O].

13. Horizontality

We consider the moduli space M = M2d of K3 surfaces with a polarization
of degree 2d in characteristic p. Let (X, D) be a polarized K3 surface with
a polarization of degree 2d. The existence of this moduli spaces follows
from work of Gieseker. We view these moduli spaces as algebraic stacks.
If the Chern class c1(D) is not zero in the de Rham cohomology of X then
the moduli space is formally smooth at [(X, D)].

We shall assume for simplicity that the degree 2d of the polarization
is prime to p. Let furthermore π : X −→ M2d be the universal family of
polarized K3 surfaces over k. We set

M(h) := {s ∈ M : h(Xs) ≥ h}.
Then, by Artin [A], M(h) is an algebraic subvariety of codimension ≤ h− 1
in M for h = 1, . . . , 10. We shall show that their codimension is h − 1.

The direct image sheaves R2π∗Wi(OX ) are coherent sheaves of rings,
but not coherent OM-modules. If there would exist a suitable Grothendieck
group of such objects we could calculate Chern classes by using Theo-
rem (5.1). Since we do not know how to do this, we resort to a different
method to calculate cycle classes of loci of given height.

Let X0 be a K3 surface, and assume that the height of the formal Brauer
group �X0 is greater than or equal to h, i.e., X0 corresponds to a point
in M(h). Then the Frobenius morphism is zero on H2(X, Wi(OX/S)) for
i = 1, . . . , h − 1. We let S be a formal neighborhood of M(h) at the point,
and we also denote by ∇ the Gauss-Manin connection of H2

dR(X/S). We
consider the Hodge filtration 0 ⊂ F2 ⊂ F1 ⊂ H2

dR(X/S), and construct, in
the same way as in Sect. 8, a homomorphism

�h : H2(Wh(OX/S)) −→ H2
dR(X/S).

We take a basis ω of H0(�2
X/S) and take the dual basis ζ of H2(OX/S).

We take a lifting ζ̃ ∈ H2
dR(X/S) of ζ . Then we have 〈ζ̃ , ω〉 = 1. Since

Rn−1 : H2(Wn(OX/S)) → H2(OX/S) is surjective, we take an element
α ∈ H2(Wh(OX/S)) such that Rh−1(α) = ζ . We set

gh = 〈�h(α), ω〉.
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Since �h(α) − gh ζ̃ is orthogonal to ω, it follows that �h(α) − gh ζ̃ is
contained in the F1-step of the Hodge filtration. Therefore, using the natural
isomorphism H2

dR/F1 ∼= H2(OX/S), we conclude that

φh(ζ) = ghζ in H2(OX/S),

where φh was defined in Sect. 5. This means that the equation gh = 0
gives the scheme theoretic locus of zero of φh , and by Proposition (8.1), the
support of this locus in M(h) coincides with M(h+1).

(13.1) Proposition. Under the notation and assumptions made above, the
image Im �h is horizontal with respect to the Gauss-Manin connection.

Proof. It suffices to prove ∇(�h(α)) = 0. The element α is represented
by a cocycle αi jk = (α

(0)
i jk, . . . , α

(h−1)
i jk ) with respect to a suitable affine

open covering {Ui} of X/S. Since the Frobenius morphism is zero on
H2(Wh−1(OX/S)), there exists a cochain γi j ∈ �(Ui ∩ U j, Wh−1(OX/S))
such that FR(α) = ∂{γi j} = {γ jk− γik+ γi j}(∈ C2(Wh−1)). Hence we have

F(α)− ∂({(γi j, 0)}) = {(0, . . . , 0, gi jk)}. (15)

Put γ̃i j = (γi j , 0), an element in�(Ui∩U j, Wh(OX/S)). Then φh(ζ) = {gi jk}
and

�h(α) = (gi jk,−Dh(γ̃i j), 0) ∈ C2(OX/S)⊕ C1
(
�1

X/S

)⊕ C0
(
�2

X/S

)
.

We write this as
�h(α) = {(gi jk, bi j , 0)}.

We have to calculate ∇(�h(α)). We use the explicit description of the
Gauss-Manin connection. Katz and Oda define in [K-O] two operators

L S : Cq(�
p)→ Cq(�

p+1), L S((β)(i0, . . . , iq)) = di
S(β(i0, . . . , iq))

and

λ : Cq(�
p)→ Cq+1(�

p), λ(β)(i0, . . . , iq+1)

= (−1)p(I i0 − I i1)(β(i1, . . . , iq+1)).

Here we follow the notation of loc. cit. The (substitution) operator I i0 is
given by

∑p
t=1 subs(dxt "→ di0

S ) and is zero for p = 0. In our case this
gives L S(gi jk) = di

S(gi jk) ∈ C2(�
1), λ(gi jk) = 0 and L S(bi j ) = di

S(bi j ) ∈
C1(�

2), λ(b)(i jk) = −(I i − I j)(bjk) ∈ C2(�
1). So we find

∇(�h(α)) = di
Sbi j + di

Sgi jk − I ib jk + I jb jk. (16)

Here the first term lies in C1(�
2).
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Using di
S instead of d we can make an operator Di

h,S similar to the
operator Dh defined by Serre. It is zero on the image of Frobenius and so
the relation (15) gives

−Di
h,S(∂{γi j}) = di

S(gi jk).

This says di
S(gi jk) = I i(bjk − bik + bi j ). Collecting the terms we get

∇(�h(α)) = di
Sbi j + I i(−bik + bi j )+ I jb jk.

Put ci j = −Dh(γi j ). Now note that we have

di
S(Dh(γi j)) = d

(
Di

h,Sγi j
)
.

Therefore the right hand side of (16) is a boundary in the total complex. We
conclude ∇�h(α) = 0 in �1

S/k ⊗ H2
DR(X/S). ��

14. The tangent spaces to the stratification

We denote by D0 the polarization class of X0 of degree 2d and we shall
assume that it is prime to p. Let M(h) be the closed locus of the moduli
space M = M2d of polarized K3 surfaces given by the condition height
≥ h for h = 1, . . . , 10 and h = ∞. We now determine the tangent space
of M(h) at the point x0 = (X0, D0). We denote by Im H1(X0, Z�) the
image of H1(X0, Z��

1
X0
) in H1(X0,�

1
X0
) induced by the natural inclusion

Z��
1
X0
→ �1

X0
.

(14.1) Proposition. Suppose that (X0, D0) represents a point x0 of M(h)−
M(∞). Then for 1 ≤ h ≤ 10 the tangent space of M(h) at x0 is in a natural
way isomorphic to Im H1(X0, Zh−1) ∩ c1(D0)

⊥.

Proof. Note that by (9.2) the map H1(X0, Bh−1) → H1(X0,�
1
X0
) is in-

jective. Since we have H1(X0, Bh−1) ⊂ c1(D0)
⊥, by Corollary (10.2) and

Lemma (9.3), it suffices to prove that 〈H1(X0, Bh−1), c1(D0)〉 is the normal
space of M(h) at x0. We will show this by induction. Note that we know
dim H1(X0, B�) = � for � = 0, . . . , h − 1.

Suppose h = 1. Then, we have H1(X0, B0) = 0, and by the general
theory of moduli spaces the tangent space of M(1) = M at x0 is given by
c1(D0)

⊥ ⊂ H1(X0,�
1
X0
).

Now, we assume that the statement holds until h. We use the notation
above. Then, by (8.1) M(h+1) is defined by gh = 〈�h(α), ω〉 = 0 in M(h).
Using Proposition (13.1), we have

dgh = 〈∇�h(α), ω〉 + 〈�h(α),∇ω〉
= 〈�h(α),∇ω〉 .
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We denote by m (resp. m0) the maximal ideal which corresponds to the
point x0 in the versal formal moduli space around x0 (resp. in the formal
moduli around x0 in M(h)). Then, under the natural homomorphism

H1
(
X0,�

1
X0

) ∼= m/m2 −→ m0/m2
0

−�h(α)(0) corresponds to the cotangent vector gh by the argument of
Ogus [O]. The kernel of this homomorphism is isomorphic to 〈H1(X0, Bh−1),

c1(D0)〉 by induction. We have

−�h(α)(0) = −{Dh(γ̃i j)}

= −
{ h−1∑

m=0

(γ
(m)
i j )ph−m−1d log γ

(m)
i j

}
and Dh : H2(Wh(OX0)/FWh(OX0))→ H1(X0,�

1
X0
) is injective by Corol-

lary (9.2). Since �(α)(0) lies in H1(X0, Bh) but not in H1(X0, Bh−1), we
conclude that gh /∈ m2

0. By induction we thus see that the tangent space to
M(h+1) can be identified with H1(X0, Zh) ∩ c1(D0)

⊥. ��
This argument does not work for h = ∞, but can be made to work for

the supersingular points for which the subspace 〈Im(H1(Bh)), c1(D)〉 of
H1(�1) has dimension h. In Sect. 12 we gave conditions for this. Under
the assumption that ρ = B2 this is the case if the Artin invariant σ0 of
a supersingular K3 surface satisfies σ0 > h. We thus find:

(14.2) Theorem. For h = 1, . . . , 10 the open stratum M(h), if not empty, is
purely of dimension (20−h) and nonsingular at any point of the stratum M(h)

where the subspace 〈Im(H1(Bh−1)), c1(D0)〉 of H1(�1
X0
) has dimension h.

In particular, it is non-singular at non-supersingular points and assuming
the Artin conjecture at all supersingular points with Artin invariant σ0 ≥ h
and c1(D0) �∈ Im(H1(Bh)).

We refer here to a forthcoming preprint of Ogus for a description of the
singularities of the strata. Ogus proved in [O, Prop. 2.6] that for p �= 2
the stratum M(2) has a quadratic singularity at the superspecial points.
A variation of his argument there shows that at a point with Artin invariant
σ0 = h − 1 the singular locus has multiplicity 2. In particular the stratum
M(11) has multiplicity 2 at points with σ0 = 10, cf. his forthcoming preprint
and the discussion in the next section.

15. The loci of K3 surfaces of given height

We now come to the description of the cycle classes of the strata defined by
the height. Let M(h) be the closed stratum of the moduli space M = M2d
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where the height of the formal group�X is at least h, with the convention that
M(11) = M(∞). For simplicity we shall assume that p does not divide 2d. By
our characterization of h these strata can be given a natural scheme structure
and these are reduced for h �= ∞ by our results in Sect. 14. It is known by
Artin that the strata M(h) for h = 1, . . . , 11 have codimension ≤ h − 1 in
M2d, see [A].

Define a line bundle V on M by V = π∗(�2
X /M) and let the first Chern

class be v.

(15.1) Theorem. Let M = M2d be the moduli stack of polarized K3
surfaces over k with a polarization of degree 2d prime to p. Then for
h = 1, . . . , 10, 11 the scheme-theoretic locus M(h) of surfaces with height
≥ h, if not empty, is of codimension h − 1 and for h �= 11 it is a local
complete intersection. The class of M(h) in the Chow group CHh−1

Q (M) is
given by

(p− 1)(p2 − 1) . . . (ph−1 − 1)vh−1.

Proof. We prove this by induction. Let M be the moduli space of polarized
K3 surfaces of degree 2d as above. We know that the generic K3 surface
has height 1, and so for h = 1 the formula is correct. The codimension of
M(h) is ≤ h − 1 for 1 ≤ h ≤ 10 as follows from (5.7). For h = 2 the locus
M(2) is the non-ordinary locus. This locus is characterized by the fact that
the Frobenius map H2(X, OX )→ H2(X, OX ) vanishes. This is a p-linear
map and the corresponding OM-linear map is (R2π∗OX )(p) → R2π∗OX
with associate cycle class (p − 1)v. Locally, at a point of M(2) an equation
is given by g1 = 0, see the proof of (14.1) and dg1 �= 0. So if M(2) is not
empty then it is purely 18-dimensional.

Suppose now that the class of M(h−1) is given by the class in the formula.
By Proposition (5.7) the locus in M(h−1) where the height increases is
given by the vanishing of the map φh−1 : (R2π∗OX )(ph−1) → R2π∗(OX ),
equivalently, by the vanishing of a section of V ph−1−1. By (14.1) it follows
that for a local equation gh = 0 we have dgh �= 0. Hence the locus is
reduced for h �= ∞ and the class on M(h−1) is given by (ph−1 − 1)v.

Let jh : M(h) → M(h−1) and j : M(h−1) → M be the natural inclusions.
Then the class of the locus M(h) in CHh−1

Q (M) is given by

j∗ jh∗[M(h)] = j∗([M(h−1)] · j∗h−1(ph−1− 1)v) = (ph−1− 1)v · ( j∗[M(h−1)])
by the projection formula. ��

The locus M(11) comes with a multiplicity in the formula because of
(14.2). For p �= 2 the multiplicity is 2. It makes sense to call the reduced
locus M(11)

red the supersingular locus.
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(15.2) Remark. In [G] a formula for the class of the supersingular locus on
the moduli space of principally polarized abelian surfaces was given. Com-
parison with Kummer surfaces shows that this is compatible with multipli-
city 2 along the supersingular locus, cf. [G-K].

We shall now assume that the line bundle V = π∗(�2
X /M) is ample on

the moduli space. It is known by the theory of Baily and Borel (see [B-B])
that V is ample on the moduli spaces in characteristic 0; indeed, modular
forms of sufficiently high weight define an embedding.

(15.3) Theorem. Suppose that the class v is ample. Let X → S with S
complete be a proper smooth family of polarized K3 surfaces with constant
h �= ∞. Then this family is isotrivial.

Proof. It follows from the preceding theorem that the strata S(h) − S(h+1)

where the height is constant are quasi-affine for h = 1, . . . , 10.

We do not know whether the class v is ample on the moduli spaces M2d,
but we expect it to be so.

Suppose that there exists a good Baily-Borel compactification. By this
we mean that there exists a projective variety (stack) M2d containing M2d

such that M2d −M2d is 1-dimensional and consists of a configuration of el-
liptic modular curves. This is the case in characteristic zero, cf. Kondo [Ko].
Then it follows from our theorem that a family of K3 surfaces with h ≥ 3
does not degenerate. Indeed, it follows from our formula that a class of the
form vm with m ≥ 3 has zero intersection with the ‘boundary components’.
This implies that for each boundary component the locus with h ≥ 3 ei-
ther has empty intersection with this boundary component or contains it.
The boundary components form a connected set and the generic point of
each component corresponds to a degenerate K3 surface corresponding to
an ordinary elliptic curve. For the degenerate surfaces the height is 1 or 2.
Compare the discussion in [R-Z-Sh].

16. An extension for other varieties

Though the theorem in Sect. 5 was formulated for K3 surfaces it holds for
a more general class of surfaces.

(16.1) Theorem. Suppose that X is a smooth algebraic surface such that

i) Pic0(X) is reduced,
ii) dim H2(X, OX ) = 1.

Then �2 is represented by a formal group of dimension 1 and its
height satisfies h(�X ) ≥ i + 1 if and only if the Frobenius map F on
H2(X, Wi(OX )) is the zero map.
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(16.2) Corollary. For such a surface we have the following characteriza-
tion of the height:

h(�X ) = min{i ≥ 1 : [F : H2(Wi(OX ))→ H2(Wi(OX ))] �= 0}.
Proof. The proof is analogous to the proof given for K3 surfaces. Instead
of the vanishing of H1(X, OX ) one uses the vanishing of the Bockstein op-
erators. Recall that H1(X, Wn(OX )) is the subgroup of k[ε]/(εn+1)-valued
points of the connected component of the Picard scheme P at the origin,
cf. [Mu]. A k[ε]/ε2-valued point (tangent vector) is tangent to Pred at the
origin if and only if it can be lifted to k[ε]/(εn)-valued point for all n. That
is, these correspond precisely to the elements of H1(X, OX ) that can be
lifted to H1(X, Wn(OX )) for all n. So if P = Pred then all elements of
H1(X, OX ) can be lifted and this implies the analogues of Lemmas (4.2)
and (4.5) that we need.

(16.3) Example. 1) An abelian surface satisfies the assumptions. 2) A sur-
face of general type with H1(OX ) = 0 and pg = 1. Examples of such
surfaces are surfaces with K2 = pg = 1. These have h1(X, OX ) = 0
and are resolutions of surfaces of type (6,6) in weighted projective space
P(1, 2, 2, 3, 3), cf. [C].

A nonsingular complete algebraic variety X of dimension n is called
a Calabi-Yau variety if the canonical invertible sheaf ωX is trivial and
Hi(X, OX) = 0 for 1 ≤ i ≤ n − 1. By a criterion of Artin-Mazur [A-M],
the Artin-Mazur formal group �n is pro-representable by a one-dimensional
formal Lie group for such a variety. In the same way as in Sect. 5, we have
also a characterization of the height of the formal group �n .

(16.4) Proposition. For a Calabi-Yau variety X of dimension n we have
the following characterization of the height:

h
(
�n

X

) = min{i ≥ 1 : [F : Hn(Wi(OX))→ Hn(Wi(OX ))] �= 0}.

Acknowledgements. Both authors would like to thank the Max-Planck-Institut in Bonn for
excellent working conditions during their visit in 1998/99. The second author would like to
thank NWO and the University of Amsterdam for their support and hospitality during his
stay in Amsterdam in 1997. We would like to thank Arthur Ogus for sharing some of his
ideas with us.

References

[A] M. Artin: Supersingular K3 surfaces. Ann. Scient. Ec. Norm. Sup. 7, 543–568
(1974)

[A-M] M. Artin, B. Mazur: Formal groups arising from algebraic varieties. Ann. Scient.
Ec. Norm. Sup. 10, 87–132 (1977)



290 G. van der Geer, T. Katsura

[B-B] W.L. Baily, Jr.; A. Borel: Compactification of arithmetic quotients of bounded
symmetric domains. Ann. of Math. 84(2), 442–528 (1966)

[C] F. Catanese: Surfaces with K2 = pg = 1 and their period mapping. Algebraic
geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lec-
ture Notes in Math. 732, 1–29. Berlin, Heidelberg, New York: Springer 1979

[D] P. Deligne: Relèvement des surfaces K3 en caractéristique nulle. Prepared for
publication by Luc Illusie. Lecture Notes in Math. 868, Algebraic surfaces (Or-
say, 1976-78), 58–79. Berlin, New York: Springer 1981

[G] G. van der Geer: Cycles on the moduli space of abelian varieties. In: Moduli of
Curves and Abelian Varieties. The Dutch Intercity Seminar on Moduli. C. Faber,
E. Looijenga (eds.) Aspects of Mathematics. Wiesbaden: Vieweg 1999

[G-K] G. van der Geer, T. Katsura: Formal Brauer groups and the moduli of abelian
surfaces. math.AG/9912169

[H] M. Hazewinkel: Formal Groups and Applications. Boston, Orlando: Academic
Press 1978

[Il] L. Illusie: Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. ENS
12, 501–661 (1979)

[K-O] N. Katz, T. Oda: On the differentiation of de Rham cohomology classes with
respect to parameters. J. Kyoto Univ. 8, 199–213 (1968)

[Ko] S. Kondo: On the Kodaira dimension of the moduli spaces of K3 surfaces.
Compositio Math. 89, 251–299 (1993)

[Ma] Yu.I. Manin: The theory of commutative formal groups over fields of finite
characteristic. Russian Math. Surv. 18, 1–80 (1963) (= Usp. Mat. Nauk. 18, 3–90
(1963))

[Mu] D. Mumford: Lectures on Curves on an Algebraic Surface. Annals of Math.
Studies 59. Princeton: Princeton University Press 1966

[O] A. Ogus: Supersingular K3 crystals. Astérisque 64, 3–86 (1979)
[R-Sh] A.N. Rudakov, I. R. Shafarevich: Surfaces of type K3 over fields of finite char-

acteristic. J. Soviet Math. 1476-1533 (1983)
[R-Z-Sh] A.N. Rudakov, T. Zink, I.R. Shafarevich: The effect of height on degenerations of

algebraic K3 surfaces. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 46, 117–134,
192 (1982)

[Sc] F. Scattone: On the compactification of moduli spaces for algebraic K3 surfaces.
Memoirs of the A.M.S. 70 (347) (1987)

[S] J.-P. Serre: Sur la topologie des variétés algébriques en caractéristique p. Sym-
posion Internacional de topologia algebraica 1958, pp. 24–53

[Sh] T. Shioda: Supersingular K3 surfaces. Algebraic Geometry (Proc. Summer Meet-
ing, Univ. Copenhagen, Copenhagen, 1978). Lecture Notes in Math. 732, 564–
591. Berlin, Heidelberg, New York: Springer 1979


