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Abstract. In this paper we give a characterization of the height of K3 surfaces in charac-
teristic p > 0. Thisenables usto calculate the cycle classesin families of K3 surfaces of the
loci where the height isat least h. The formulas for such loci can be seen as generalizations
of the famous formula of Deuring for the number of supersingular elliptic curvesin charac-
teristic p. In order to describe the tangent spaces to theseloci we study the first cohomol ogy
of higher closed forms.

0. Introduction

Elliptic curvesin characteristic p comein two sorts: ordinary and supersin-
gular. The distinction can be expressed in terms of the formal group of an
elliptic curve. Multiplication by p on the formal group takes the form

[pl(t) = at” + higher order terms, (D

wherea # Oand t isalocd parameter. The number h satisfies1 < h < 2
and is called the height. By definition, the eliptic curveisordinary if h = 1
and supersingular if h = 2. Thereisaclassical formula of Deuring for the
number of supersingular elliptic curves over an algebraically closed field k
of characterigtic p:

Z 1 _p-1
E apme/= #AUt(E) 24
wherethesumisover supersingular elliptic curvesover k uptoisomorphism.
If one views K3 surfaces as a generalization of elliptic curves, one
can make a similar distinction of K3 surfaces in characteristic p by using
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the forma Brauer group as Artin showed. The formal Brauer group is
al-dimensiona formal group associated to the second étale cohomology
with coefficients in the multiplicative group. Multiplication by p in this
formal group has the form (1), but now wehave 1 < h < 10 or h = o0,
the latter if multiplication by p is zero. The height can be used to define
a stratification of the moduli spaces of K3 surfaces. A generic K3 surface
will have h = 1; those with h = co are most special in this respect and
called supersingular.

In this paper we first express the height of a K3 surface in terms of the
action of the Frobenius morphism on the second cohomology group with
coefficients in the sheaf W(Oy) of Witt vectors of the structure sheaf Oy.
The natural co-filtration W, (Ox) of W(Ox) induces co-filtrations on the co-
homology which correspond to approximations of the formal group. Using
this characterization we can calculate the cycle classes of the strata in the
moduli space where the height > h. This is done by interpreting the loci
as degeneracy loci of maps between bundles. The resulting formulas can
be viewed as a generdization of Deuring's formula. Generalizations of
Deuring's formula to principally polarized abelian varieties were worked
out in joint work of Ekedahl and one of us and can be found in [G]. The
supersingular locus comes with a multiplicity.

In order to describe the tangent spaces to our strata we use differential
forms rather than crystalline cohomology. We calculate the dimensions of
cohomology groups H(Z;) and H(B;), where the sheaves Z; and B; are
the sheaves of certain closed forms introduced by Illusie. We study the di-
mensions of the cohomology groups H(Z;) and H(B;) and of their images
in H1(X, Q1). We think that these spaces are quite helpful to understand
the geometry of surfacesin characteristic p.

1. Witt vector cohomology

Let X be a non-singular complete variety defined over an algebraicaly
closed field k of characteristic p > 0. We denote by W, = W,(Ox) the
sheaf of Witt rings of length n as defined by J.-P. Serre, cf. [§]. The sheaf
W, (Oy) isacoherent sheaf of rings which comes with three operators:

i) Frobenius F : W,(Ox) — W,(0Ox),
i) Verschiebung V : W,(Ox) — W, 1(Ox),
i) Restriction R: Wh1(Ox) — W,(Ox),

defined by the formulas
F(aO’ als AR ) an—l) = (ags a]‘_Js ey aﬁfl)’
V(ao, &, ... ,8-1) = (0,0, &1, ... , a-1),
R(@ao, a1, ... ,a) = (a0, &, ... , &-1)-
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They satisfy the relations
RVF = FRV = RFV = p.

The cohomology groups H'(X, W,(Ox)) are finitely generated W (K)-
modules. The projective system {W,(Ox), R}n=1.2.... induces a sequence

C e HIUOX, Wa(0x) <2 H (Why1(Ox)) <— . ..
s0 that we can define
H'(X, W(Ox)) = proj. lim H' (X, W, (Ox)).

ThisisaW(k)-module, but not necessarily afinitely generated W(k)-modul e,
cf. Sect. 3. The semi-linear operators F and V act on it and they satisfy the
relations FV = VF = p.

2. Formal groups

Smooth formal Lie groups of dimension 1 over an algebraically closed field
k of characteristic # 0 are characterized by their height, cf. [H], [Mal.
To a smooth formal Lie group ® of dimension one one can associate its
covariant Dieudonné module M = D(®), afree W(k)-module. It possesses
two operators F and V with the following properties: the operator F is
o-linear, the operator V is o~*-linear and topologically nilpotent and they
satisfy FV = VF = p. Here o denotes the Frobenius map on k. Then M is
afree W(k)-module with the following properties:

a) dim(®) = dim(M/VM),
b) height(®) = ranky(M).

Note that one has the equalities
rankw(M) = dim(M/pM) = dim(M/FM) + dim(M/VM).

3. Theformal Brauer group of Artin-Mazur

For a proper variety X/k one may consider the formal completion of the
Picard group. The group of Svalued points of Pic(X) fits into the exact
sequence

0 — Pic(X)(S) — HYX x S Gm) — HYX, Gm)

for any local artinian scheme Swithresiduefield k. Herecohomology isétale
cohomology. Thisidea of studying infinitesimal properties of cohomology
was generalized to the higher cohnomology groups H" (X, Gn,) by Artin and
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Mazur, cf. [A-M]. Their work leadsto contravariant functors ®" : Art — Ab
with

P'(9 = ker{H' (X x S Gm) —> H' (X, Gm)},

which under suitable circumstances are representable by formal Lie groups.
For aK 3 surface X thisisthe case and we find for r = 2 the formal Brauer
group ® = &y = ®2. Itstangent spaceis

To = HZ(X, Ox).
For a K3-surface X we have two possihilities:

i) h(®)=occand ® = Ga, the formal additive group. The K3-surface is
called supersingular (in the sense of Artin).

i) h(®) < co. Then ® isa p-divisible formal group. Moreover, itisknown
that 1 < h(®) < 10. Thisfollows from the following theorem of Artin,
cf. [A]. We shall write simply h for h(®).

(3.1) Theorem. If the formal Brauer group ®x of a K3 surface X is p-
divisible then its height satisfies the relation 2h < B, — p, where B, isthe
second Betti number and p the rank of the Néron-Severi group.

For the proof one combines Theorem (0.1) of [A] with Deligne's [D] result
onlifting K3 surfaces, seealso[l]. Wegiveaproof in Sect. 10. Thistheorem
implies that if p = 22 then necessarily we have h = co. If h # oo then
it follows that 1 < h < 10. One should view h = 1 as the generic case.
It was conjectured by Artin that if h = oo then p = 22. This is known
for elliptic K3 surfaces, see [A]. Note that a surface with p = 22 is called
supersingular by Shioda, cf. [Sh].
The following result by Artin and Mazur is crucial:

(3.2) Theorem. The Dieudonné module of the formal Brauer group ®x is
given by

D(®x) = H?(X, W(Ox)).
For the proof we refer to [A-M]. The point to notice is that
D(®x) = H*(X, DGm) = H(X, W(Ox)).

(3.3) Remark. Note that this explains why the Witt vector cohomology is
sometimes not finitely generated: if ®x = G, then H?(X, W(Ox)) is not
finitely generated over W(K) because D(G,) = W(K)[[T]].
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4. Vanishing of conomology

We collect a number of results on the vanishing of cohomology groups for
K3 surfaces that we need in the sequel.

(4.1) Lemma. Let X be a K3 surface. We have H(X, W,(Ox)) = O for
all n > 0, hence H1(X, W(Ox)) = 0.

Proof. Since X is a K3 surface we have by definition H1(X, Ox) = O.
The lemma is deduced from this by induction on n. Assume that
H(X, W,_1(Ox)) = 0. Then the exact sequence

n—1
0 —> Wy_1(Ox)—5 W, (0x) 250y — 0

induces an exact sequence

HL(X, Wh_1(0x0))—L> HY(Wa(Ox)) T H(X, Ox).
Thisimplies that H(X, W;,(Ox)) = 0. O

(4.2) Lemma. For aprojective surface X with H(X, Ox) = 0theinduced
map R: H2(X, Wh(Ox)) — HZ(X, W,_1(Ox)) is surjective with kernel
= H2(X, Oy).

Proof. Thisfollows from the exact sequence

0 — Ox —> Wa(Ox)—>Wh_1(Ox) = 0
and the vanishing of H(X, Ox) and of H3(X, Ox). o
(4.3) Lemma. In H?(X, W,(Ox)) we have
RV(H?(X, Wa(0x))) = V(H*(X, Wy-1(0x))).
Proof. The commutativity of the diagram
Wa(Ox) —> Wh1(Ox)
s [n
Wo1(0x) —>  Wh(Ox)
gives in cohomology a commutative diagram

H2(X, Wn(Ox)) — H2(X, Why1(Ox))
R R
H2(X, W,_1(Ox)) —> H2(X, W,(Ox)).

Thesurjectivity of theleft hand R, which followsfrom the preceding lemma,
implies the claim. O
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(4.4) Lemma. Assume that for some n>0 the map F: H?%(X,
W, (Ox)) — H2(X, Wx(Ox)) vanishes. Then for all 0 <i < n the map
F: H2(X, W (Ox)) — H2(X, W (Ox)) is zero. Moreover, for all
0 <i < nthemodule H?(X, W (Ox)) is a vector space over k.

Proof. Thefirst result follows from the commutativity of the diagram

H?(X, W, (Ox)) LN H2(X, Wi (Ox))
F . F
H2(X, Wa(Ox)) S HZ(X, Wi (0x))

and Lemma (4.2). The second claim follows from p = FVR and k =
Wi (K)/ pWi (K). O

(4.5) Lemma. Assumethat X isa K3 surface. The following two sequences
are exact:

0 — H2(X, Wh_1(0x)) ~5 H2(X, Wh(0x)) & HZ(X, 05) — 0.
0 — H2(X, W(Ox)) —& H2(X, W(Ox)) —> HZ(X, Ox) — 0,
where R isthe map induced by Wn(Ox)gwl(Ox) asn — oo.
Proof. Thefirst exact sequence follows from the exact sequence
0 Wh_1(0x) 5 Wa(Ox) & Oy — 0
and Lemma (4.2). Because the projective system H?(X, W,,(Ox)) satisfies

the Mittag-L effler condition we may take the projective limit. O

5. Characterization of the height

Let X beaK3 surface and let @y beitsformal Brauer group in the sense of
Artin-Mazur. The isomorphism class of thisformal group is determined by
its height h. The following theorem expresses this height in terms of Witt
vector cohomology.

(5.1) Theorem. The height satisfies h(®yx) > i + 1 if and only if the
Frobenius map F: H?(X, W (Ox)) — H?(X, W (Ox)) isthe zero map.

(5.2) Corollary. We have the following characterization of the height:

h(®x) = min{i > 1: [F : H3(W;(Ox)) — H?(W,(Ox))] # O}
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Proof of the theorem. “<" In case h(®x) = oo the implication < isim-
mediate. SO we may consider the case where the height of @ is finite.
Assume that the map F: H2(X, W (Ox)) — H?(X, W(Ox)) is the zero
map. We set

M = D(®) = H?(X, W(Ox)), the covariant Dieudonné module.

Since dim(H?(X, W(Ox))/VH?(X, W(Ox)) = 1 by Lemma (4.5), we
have by b) in Sect. 2

dime(H2(X, W(Ox))/FH2(X, W(Ox)) = h — 1.

The surjectivity of the projection H2(X, W(Ox)) — H?(X, W;(Ox))
implies the surjectivity of

H2(X, W(Ox))/FH?(X, W(Ox)) —>
H2(X, Wi (Ox))/FH2(X, Wi (Ox)).

By assumption we have H?(X, W, (Ox))/FH2(X, W;(Ox)) = H2(X,
W, (Ox)) and by Lemma (4.5) we have

dimg H2(X, Wi (Ox)) =i,

i.e.wefindh —1>1i, orequivaently, h > i + 1.

Conversely, we now prove “=". If h(®x) = oo then &x = Ga, the
formal additive group of dimension 1. So F acts as zero on D(Ga) =
D(®x) = H?(X, W(Ox)). Asin Lemma (4.4) we conclude that F acts on
H?(X, Wi (Ox)) asthe zero map. Therefore we may assume that h(®x) =
h < co. Wethus assume that h(®y) > i + 1. We set

H = H?(X, W(Ox))

and have
V'"IH c...c V?H c VH C H.

Under projection thisis mapped surjectively to
0c V"2H2(Oy) C ... € VH2(Wh_2(Ox)) C H2(X, Wh_1(Ox)).
All the inclusions are strict because of Lemma (4.5).

Claim. We have VP—1H2(X, W(Ox)) = FH2(X, W(Ox)).
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Proof of the claim. Since our modules are free over W we deduce from
Manin’s results [M] (but see also [H] because we use the covariant theory):

D(dx) = W[F, V]/W[F, V](F — V1),

Note that F — V"1 iswritten on the right. But we can transfer it to the left
using FV = p = VF asfollows:

F(Y aiF'Vi) =) agFFivi =Y (afF'VI)F =
_ Z (& Fivj)vhfl _ Vhfl(zaﬂh FiVj).
Thistogether with Theorem (3.2) proves the claim.

We now find FH2(W,_1(Ox)) = 0. By Lemma (4.4) we conclude that
F actson H2(W; (Ox)) fori < h — 1 as zero. O

(5.3) Corollary. The height of ® is oo if and only if the Frobenius endo-
morphism F : H2(X, Wi(Ox)) — H?(X, Wio(Ox)) is zero.

Proof. If the height isfinite, then we know by Artin and Mazur (see (3.1))
that we have h < 10. O

(5.4) Corollary. Set H = H?(X, Wyo(Ox)) and consider the filtration
O cRVHCRVEH C...c R"WWMIH c...cH.
If h isthe height of ®x then F(H) = R™~1V-1(H).
Proof. The (h — 1)-th step V"-1H2(W(Ox)) in thefiltration
VIOH2(W(Ox)) c VIHZ(W(Ox)) C ... € H3(W(Ox))

maps surjectively to the corresponding step R™1V"—1H of the filtration
on H. By our claim we have

VITHZ(W(Ox)) = FH?(W(Ox)).
Thisimplies the assertion. O

(5.5) Corollary. Ifh(®x) = h < oo and if {w, Vw, V2w, ... , V' 1w} isa
W-basis of H2(X, W(Ox)) then F acts as zero on H2(X, Wi (Ox)) if and
only if F(&) = 0, with & the image of w in H2(X, Wi (Ox)).

(5.6) Corollary. If h(®x)=h < oo, then dim ker[F : H3(W)) — H?(W)]
=min{i,h —1}.

Proof. By Lemma (4.5) and Corollary (5.2), we have dimgker[F :
H2(W) — H2(W)] =i ifi < h—1 Assumei > h. Using the no-
tation in Corollary (5.5), we know that (VI -"1R -1, vi-h+2Ri-h+24,
Vi-h3RI-h+35 . VI-IR-14) isabasis of ker F. o
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The case h > 2 is characterized by the vanishing of Frobenius on
H?(Ox). We now formulate in an inductive way a similar characterization
of the condition h > n+ 1. If for aK3 surface X one assumesthat F iszero
on H3(W) (i = 1,...n — 1) then one has FH?(W,,) c V"1H?(0x) and
F vanishes on VH?(W,_1). Since we have anatural (o ~1)"1-isomorphism
H?(0x) = V""1H?(Oy), one has an induced homomorphism

fn: H2(Ox) = HAWh)/VHA(W,_1) — V" 1H?(Ox) = H2(Ox). (2)

This map is o"-linear. The following theorem is clear by the construction
of ¢n.

(5.7) Theorem. Suppose F iszeroon H?(W,) fori =1,...n— 1. Then F
vanishes on H2(W,,) if and only if ¢, : H?(Ox) — H?(Ox) vanishes.

6. Closed differential forms

Let F : X — X pe the relative Frobenius morphism of a K3 surface X.
By means of the Cartier operator C : Qf o — 2% We can define
sheaves BiQ} of rings inductively by BoQ} = 0, B;Q% = dOx and
C LB Q)) = Bi;1Q%. Similarly, we define sheaves Z; % inductively by
ZoQY = QY Z1QY = Q% yoeeq the sheaf of d-closed forms and by setting

Zi1Qy = CHZ,95).

Usually we simply write B; and Z;. The sheaves B; and Z; can be viewed
as locally free subsheaves of (F'),Q% on X(P). They were introduced by
[llusiein [I1] and can be used to provide de Rham-cohomology with arich
structure. The inverse Cartier operator gives rise to an isomorphism

ct.Ql, —Z/B

or ac ~'-linear isomorphism 52%( = Zi/B;. Note that we have the inclusions
0=ByCcBiC...CBC...CZ C...CZ1CZp=Q}%.
We also have an exact sequence

0— Ziy — z—dok — o &)
(6.1) Lemma. If X isaK3 surface X we havei) H°(B;) = Ofor all i > O;
ii) the natural inclusion B; — Bj,; induces an injective homomorphism
H(Bi) — HY(Bi;1).
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Proof. i) The natural injection B; — Q% induces an injection H°(B;) —
HO(©3) and we know H%(Q}) = 0. i) This follows from i) and the exact
sequence

0— B — Bi+1£>Bl—> 0

with C the Cartier operator. O

There is a close relationship between the Witt vector cohomology
and the cohomology of B; as follows. Serre introduced in [S] a map
Di :W,(Ox) — Q% of sheavesin the following way:

. RN L p—1 4 .
Di(ap, &, ... ,&-1) = 8 dag+...+a ,da_p + da_;.

It satisfies Dj,1V = Dj, and Serre showed that this induces an injective
map of sheaves of additive groups

Di : Wi (Ox)/FW (Ox) —> 2
inducing an isomorphism

Di : W (Ox)/FW (Ox)— B Q. (4)

The exact sequence 0 — V\/i—F>V\/i —> W;/FW, — 0 givesrise to the
exact sequence

0— H(W,/FW) — H2(W)—>H?(W) — H*(W/FW) >0 (5)

and we thus have an isomorphism HY(W /FW) = ker[F : H?(W) —
H2(W)]. Combining the result on the dimension of the kernel of F on
H2(W;) from Sect. 5 with (4) we get an interpretation of the height h in
terms of the groups H(B)).

(6.2) Theorem. We have

minfi,h — 1) if h+ oo,

dmHYB) =
ImHAE) =, it h=oo.

The Verschiebung induces an exact sequence
0 — Wi/FW—>W1/FW.; — Ox/FOx — 0
and this givesriseto

\%
0— H*(W/PW)—>H'(Wi1/FWy1) — HY(Ox/FOx) — ...

i.e., Verschiebunginducesfor al i aninjectivemap. Moreover, itissurjective
if andonly if h # ccandi > h — 1.
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We have a commutative diagram (with g; the natural map induced by
B C Q%()

HiW/ P = (@)

HY(BiQL) —2 HY(QL)
We study the kernel of Dj, equivalently the kernel of the natural map
Bi : HY(BiQY) — H(Q)) in Sects. 9-11.

(6.3) Lemma. The Euler-Poincaré characteristics of B; and Z; are given
by x(Bi) = 0and x(Zi) = —20.

Proof. Since the kernel and the cokernel of F on H?(W,) have the same
dimension by (5) the result for B; follows from (4) and (5). The identity
x(B) + x(Q%) = x(Z;) resulting from the isomorphism Z;/B; = Q%
implies the result. 0

7. De Rham cohomology

The de Rham cohomology of a K3 surface is the hypercohomology of the
complex (2%, d). The dimensions hP9 of the graded pieces are given by
the Hodge diamond.

On H2; we have a perfect pairing (, ) given by Poincaré duality; cf. [D].

The Hodge spectral sequence with Eilj = HI(X, szix) converges to
Hir(X). The second spectral sequence of hypercohomology has as Es-
term Eizj = H‘(Hj(s23<)) abutting to Hfj;j(X/k). But the Cartier operator
yields an isomorphism of sheaves

C QL —H (Fa(Q%)
S0 that we can rewrite this as
Ey = H'(X, #/(@") = H(X, 2)) = Hir(0.

where X’ = XP isthe base change of X under Frobenius. We thus get two
filtrations on the de Rham cohomology: the Hodge filtration

(0) Cc F?2c F'c HZ,
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and the so-called conjugate filtration
(0) € G1 C G, C Ha:.
We have rank(F!) = rank(G,) = 21, rank(F?) = rank(G;) = 1 and
(Fht=F? and G =G
We have adso
FI/F2= HY(X, Q%), G2/G1= HY(X, 2%).

cf. [D]. Moreover, from the description with the second spectral sequence it
followsthat G, istheimage under Frobenius of HZ, and also of H2(X, Ox).
The conjugate filtration is an analogue of the complex conjugate of the
Hodge filtration in characteristic zero.

Therelative position of these two filtrations is an interesting invariant of
aK3 surface. We have the three cases

a F'NGy={0);
b) G, c F%; G, # F?;
c) G = F2.

The first case happens if and only if F : H2(X, Ox) — HZ&(X) —
H?(X, Oyx) is not zero, i.e. if h = 1. Such X are caled ordinary. The
second case happensif h > 2, whilethe last case is by definition the super-
special case. In this case the two filtrations coincide. It is known that two
superspecial K3 surfaces are isomorphic (as unpolarized varieties)(cf. [Q]).

We have the following result of Ogus (cf. [O]) which provides us with
an interpretation of H(Z,).

(7.1) Proposition. We have an isomorphism F1 N G, = H(X, Z,).

Proof. The map z; : HY(Zy) — H§R given by {f;;} — (0,{f;;},0) is
injective. Indeed, if { f;;} represents an element inthe kernel, thenitisof the
form (Shij, dhij + 0w — wj, dwi) for ahij € C1(Ox), wj € Co(Q%(). Then
the w; are closed and h;; definesacocycle. Since H1(Ox) = Owecanwrite
dhi; = n; —n and fij is acoboundary. The image is contained in F* and
is orthogonal to the image G, of Frabenius. Indeed, take a class F(a) and
consider the cupproduct (F(a), z,( fij)). Applying the Cartier operator we
seethat it iszero. But C : Hj; — Hix isabijection. Hence the image lies
in F1 N G,. Thisimpliesthat dim H(Z;) < 20if X isnot superspecia and
< 21 for superspecial X. The exact sequence
0— HY(By) — HYZ)-S HY(Q%) — H?(By) — H*(Zy) — 0

implies together with the value of h(B;) = h?(B;) and x(Z1) = —20
that h'(Z;) = 20 unless X is superspecia. But if X is superspecial
then because of F? = G; the Cartier operator gives an isomorphism
C: HY(Zy)/HY(By) = HY(Q}) implying that h(Z;) = 21. O
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8. An extension of de Rham cohomology

We define an extension of de Rham cohomology by considering an en-
larged complex. (It captures the [0, 1)-part of crystalline cohomology.) Itis
defined as follows. We denote by Hg,, (X/S) the cohomology of the dou-
ble complex CW, of additive groups which is defined by the commutative
diagram:
a1 a1 a1
Dn d
C2(Wa(Ox/s)) — C2(R2%,5) — Cz(Qi/s)
a1 a1 a1
Dn d
C1(Wh(Ox/s)) — C1(R2%,5) — Cl(Qg(/s)
a1 a1 a1
Dn d
Co(Wh(Ox/s)) — Co(Qi/s) — CO(Qi/S),
where C; are the i-th Cech cochains, D, are the maps induced by the
differential of Serre given in Sect. 6, the differentials d are defined by the
exterior differentiation of differential formsand the vertical differentials are

takeninthe Cech sense. Asusual, we denote by é thedifferential of thesingle
complex associated with CW,. An element of Hi,, (X/S) is represented

by atriple (ao, a1, @2) € Co(Wh(Ox;s)) ® Cu(R2%,5) ® Co(£2%,s)- In case
n = 1, Hgw, (X/9) is nothing but the de Rham cohomology HZ:(X/S).
On Hiaw, (X/S we have the Hodge filtration

0C F?C F' C Hizw, (X/9S).

Herethe F' (fori # 0) is naturally isomorphic to the F'-part in the Hodge
filtration of H3;(X/S). We have a natural isomorphism

Haaw, (X/S)/F* = HA(X, W, (Ox/s9)).-

Since the Frobenius morphism F is a zero map on F!, we have an induced
homomorphism

F : H3(X, Wh(Ox/9)) —> Haw, (X/9.
Themap V"1 : Ox/s — Wh(Ox,s) givesrise to ahomomorphism
V" Ci(Ox/s) —> Ci(Wh(Ox;9))-

Using this homomorphism and taking the identity mapping from C; (22 §< /9)

to G (Q& ,s), we have a homomorphism of complexes of additive groups
CW; — CW,. Therefore, we have a homomorphism of additive groups:

VP HER(X/S) — Hiaw, (X/9.
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Let Xo beaK3 surface over afield k and assume now that F : H2(W, (Ox,))
—> H%(W(Oy,)) is zero for i = 1,...,n — 1. Then, by the same
argument as in Sect. 5, we have FHZy, (Xo) C V" tHE:(Xo). There-
fore, using the inverse of the natural isomorphism of additive groups
Hir(Xo) = V" THE(X0) C Hiaw, (Xo), we have ahomomorphism

F _ ~
@y, 0 H2(Wh(Ox,)) —> VP THEL(Xo) = H3R(Xo).

Sincewehave H2(Wa (0x,))/VH?(Wa-1(Ox,)) =H?(Ox,) = HEg(Xo)/F1,
and since &, maps VHZ(Wn_l(OXO)) to F1, the map ®,, induces a homo-
morphism from H2(Oy,) to H?(Ox,). This homomorphism coincides with
the map ¢, which was constructed in Sect. 5.

We now take a basis wy of HO(Xo, Qio) and take the dual basis ¢q of
H2(Xo, Ox,)- Viathe Hodge filtration of H3;(Xo), we can naturally regard
HO(Xo, 2%,) as a subspace of Hg;(Xo). Therefore, we may assume wy is
an element of H3;(Xo).

Since R : H2(W,(Ox,)) — H?%(Oy,) is surjective, there exists an
element ap € H?(W;,(Ox,)) such that R"(ag) = ¢o. Then, by Theo-
rems (5.1) and (5.7) we have the following proposition.

(8.1) Proposition. Suppose that for a K3 surface X, the map F:
H2(W; (Ox,)) — H?(W;(Ox,)) iszerofori =1,...,n—1.Then, withthe
notation introduced above, h(®x,) > n+1ifandonlyif (&, (), we) = 0.

9. Thedimensions of the spaces of closed forms

We study the dimensions of the spaces H(X, B,) and H1(X, Z,). We also
consider their imagesin Hi;(X) and this gives afiner structure on these de
Rham cohomology groups.
Let us consider the natural map B, induced in H! by the inclusion
B, C Q%:
Bn: HY(Bn) — HY(@M.

(9.1) Proposition. If g8, is not injective then B, is not injective for every
m > nanddimHY(By) < dimHY(Bn1).

Proof. The maps p, are compatible with the natura maps H(B,) —
H(B,+1) and by (6.1) these maps HY(B,) — H(B,,1) areinjective. If
Bn isnot injective it follows that 8,1 is hot injective. To prove the second
statement, we start with the casen = 1. If B; : HY(By) — HY(QY) isnot
injective then there exists a non-trivial cocycle fi; € C*(Ox/FOx) and a
1-cochain w; of 1-forms such that dfij; = w; — ;. Since for &ffine open
sets U the Cartier map HO(QY) o) — HO(QY) is surjective we can find
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closed forms @; and regular functions g;; on U; N U; such that we have
areation

fP7Ndf +dgj = @) — @ (6)

Note that this implies that the map H(B,) — H(Z;) has a non-trivial
kernel. Suppose that the left-hand-side of (6) represents an element in the
image of H(B;) = H}(dOx) — H(B,). Then wefind arelation dh;; =
; — & with &; closed. Then since C annihilates dh;; the Ca; define
aglobal 1-form and this must be zero. Hence we can write @; = d¢; and
this shows that dh;; represents the zero-class in H 1(dOy), contrary to the
assumption. Hence we find anon-trivial element in H(B,) which does not
lie in the image of the natural inclusion H(B;) — H(B,). Carrying out
this argument for al n proves the claim. O

(9.2 Corollary Assume that h < oo. Then for all n > 1 the natural

map B, : HYX(B,) — H(X, Q4 %) isinjective and the image has dimension
min{n, h — 1}.

Proof. Since by (6.2) dim H(B,,) stabilizes for h # oo, non-injectivity
would contradict the preceding proposition. 0

Note that the natural map H(B,) — H(QY) is not necessarily in-
jective for h = oo because dimHY(B,) > 20 for n > 20. In the case of
h # oo, we often identify H(B,) with the image of the natural inclusion

HY(Bn) — H(Q%) in Corallary (9.2).
Let Z, — Q¥ bethe natural inclusion. We have an induced map

zZ, : HY(Zn) — HY(QY).

We would like to characterize both the image and the kernel of this map.
We often write Im(H*(Z,))) for the image of z,.

(9.3) Lemma. i) We have Im(HY(B,)) < Im(H(Z,))*, in particular,
Im(H(By)) € Im(H(By))*. ii) Assumethat h < co. If C : HY(B,11) —
H(B,) is surjective then we have the egquality Im(HY(Z,) =
Im(H(X, By))* .

Proof. We first show that Im(H*(B,)) and Im(H(Z,)) are orthogonal.
Let « € Im(HY(By)) and B € Im(H(Zy)). Then we find an element
a A B € HZ(Q2) = k representing the cup product («, B). If we apply
Cartier toa A B astitable number of timesthen it iszero. Now use the exact
sequence

0— dQk — 92 goe—> Q% — O, 7
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andthefact that Q% oeq = £2%. Then, wehavefromthelong exact sequence
the exact sequence
H2(d2k) — H%(Q2)—>H%(22) — 0.

The fact that dim H?(Q2) = limpliesthat C : H3(Q%) — H2(Q2) is
an isomorphism as a p-linear mapping. Therefore, for x € H2(Q2) we
have x = 0 if and only if C"(x) = 0 for some n. Hence, we conclude
a A B = 0. We now prove equality by induction. For n = 1 we have
Im(HY(By)* = Im(H(Z1)) because Im(H(B,)) isthe kernel G;/F? of
the Cartier operator and Im(H*(Z,)) isF*NG, = F*NG . Supposethat we
haveprovedthat Im(HY(Bj))* = Im(H(Z;))fori < n.If 8 € Im(H(Z,))
isorthogonal toal o € Im(H*(B,.1)) thenwehave (Ca, C8) = Oandsince
C: HY(B11) — HY(B,) issurjective thisimpliesthat C8 € Im(H(Z,)),
i.e f e lm(HY(Zn)). O
(9.4) Lemma. TheCartier operator C : H1(B,) — H(B,_1) issurjective
for n < h — 1. Moreover, for n < h — 1 < co we havedimIm(H(Z,)) =
20 —n.

Proof. Note that we know that h'(B,) = n for n < h — 1 and thus the
exact sequence 0 — B; — B, — B,_1 — Oimpliesthat C : H(B,) —
H(B,_1) issurjective for n < h — 1. Therest follows from (9.3). O

(9.5) Corollary. If h # oo we have the following orthogonal filtration in
H(QY):
0cC HY(By) C HY(By) C ... € HY(Bh_1) € IM(HY(Zh-1)) C
C IM(HY(Zh—p)) C ... C Im(HY(Zy) c HY(2%). )
The exact sequence (3) givesfor i = 0 rise to the exact sequence
0— HO(dQY) — HY(Zy) — HY(QL)-DHY(dQY) — H2(Zy) —

The natural map H(Z;) — HY(Q') is the composition of H1(Z;) —
H3 and the projection H%: — F!/F?, i.e by (7.1) it is the map
F1N G, — F!/F,. Thisis an isomorphism for h = 1 and it has a 1-di-
mensional kernel otherwise. It follows that
dim Hod?) = dim Hi@ay = 10 T =1
1 if h#£1
From the exact sequence

Ynt1

0 — H%(dQ%) — HYZni)——>HYZ,) — HY(d2}) —
with v, 1 the map induced by inclusion we deduce that for h # 1
Yni1 issurjective <= dimHY(Z,,1) > dmHY(Z,). 9)
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(9.6) Lemma. For h # oo we have dim HY(Z,) = 20.

Proof. If h = 1 we have h°(dQ}) = 0 and h’(dQ2}) = 0 henceall ¥, are
isomorphisms. Since we know h'(Zg) = 20 the result followsfor h = 1. If
h # 1then HO(dQ%) = k. Forn < h — 1we have Im(HY(Z,)) =20 —n
by Lemma (9.3) and dim HY(B,)) = min{n, h — 1}. Suppose there exists
ann (n < h—1) such that v, is surjective. Take the smallest such n.
Then, the image of z, coincides with the image of z,_1, which contradicts
dimIm(HY(Z,)) # Im(HYZ,_1)). Hence, h*(Z,) = 20forn < h — 1.
Consider for n = h the commutative diagram of exact sequences

0 0
B, = B
4 v .
0— By, — Zn — Qy—0
c c =
i v ot

The diagram shows that C" : H(Z,) — H(Q}) factors through the
image of C"1. Thisimplies that dimH(Z,) — (h — 1) < 20— (h — 1).
Since h(Z,) > 20 for al n > 1 we get h'(Z,) = 20. We can repeat this
argument for H(Z,,) withm > h. o

10. Chern classes of line bundles and closed forms

We start with a well-known result due to Ogus [O, Cor. 1.5]. We give here
the proof by Shafarevich [Sh] for the reader’s convenience.

(10.1) Proposition. The map ¢; : NS(X)/pNS(X) — HZ, is injective
and factors through F1HZ,.

Proof. (Shafarevich) We take an affine open covering {U;} of X. A class
in HZ, isrepresented by atripel (a, b, ¢) € C2(Ox) & CH(QL) @ C%(Q%).
The boundaries are of the form (sh;j, dhij + @; — wj, dwi) with (hjj, @) €
CL(Ox)®C2%(22%). Soif aChernclassc, (L), represented by (0, d log fij, 0),
iszeroin HZ; then there exists (hij, @) € C1(Ox) & Co(QY) with dw; = 0
and dh;; = 0 and we have dlog fj; = w; — w; + dh;;. By the relation
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8(hij) = 0 the h;j defines aclass in H'(X, Ox) = 0, so we have hj; =
n; —ni with n; regular and we can replace w; by w; +dn; and obtain arelation

dlog fij = wj — wj with «; closed. (10)
Applying the Cartier operator we find
dlog fij = Ca)j — Cuwj. (12)

Subtracting (1) from (2) wefind Cw; —w; = Cwj —wj. Thisdefinesaglobal
1-form which must be zero. Hence we see Cw; = w; and it follows that
w; = dlog¢; (after shrinking the U; if necessary). We find

dlog fij = dlog o™,

hence

fij = i, 10
for some ;; € O(U; N Uj). Thus modulo a p-th power L istrivial. The
proof also shows that the image landsin F1HZ,. i

(10.2) Proposition. If h < oo then we have (¢ (NS(X))) N Im(H(B,))
= {0} for all n. Moreover, c;(NS(X)) is orthogonal with Im(H(B,)) for
al n.

Proof. First we show that c;(NS(X)) N Im(H(B,)) = (0) for al n > 0.
If it is not, then take a minimal n such that Im(H(B,,)) contains a Chern
class 0 # [dlog fi;]. We can write a (non-trivial) relation as

dlog fij = Bij + wj — wi, (12)

where the g;; are formsin By, but not in B,_;. Apply the inverse Cartier
operator asin (9.1) to get arelation

dlog fij:Bij'i‘&)j_&)i (13)

where the &; are closed forms with C(&;) = w; and the f; j are formsiin
Bns1 With C(Bij) = fBi. Subtracting (12) from (13) showsthat Bij — fij is
aboundary. Since g;; defines anon-zero element of H(B,) whichisnotin
the image of H(B,,_;) the cocycle Bi; gives an element of HY(B,.) not
in the image of H1(B,,). Hence the left hand side is not zero in H(By,1)
and this shows that H1(B,,1) — H(Q') isnot injective.

Suppose now that (c;(NS(X))) N Im(HY(B,)) # 0. Considering all n
which satisfy this condition, we then have arelation with m > 2 minimal

m
dlog f{Y + > "a,dlog £ = i + w; — w;.
v=2
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Wemay assumethat m > 2andthat a, ¢ IF, foral v > 2. Thenby applying
C—! asbefore we find

m
dlog f\" + ) "aPdlog f\" = B + &; — .
v=2

wherethe @; are closed and Cw; = wj. Subtracting the two relations wefind
a shorter relation (m smaller but with n maybe larger). This contradiction
shows that (c;(NS(X))) N Im(HY(B,)) = 0.

The orthogonality of (c;(NS(X))) and Im(H(B,)) follows from the
fact that (c1(NS(X))) C Im(H(Z,)) and Lemma (9.3). o

(10.3) Proposition. Suppose that h < oco. Then the Chern class map
c1 ®@k: NS(X)/pNS(X) ® k - HY(X, Q%)
isinjective.

Proof. Suppose we have a relation Zf)zl a,ci(L,) = w; — o for line
bundlesL, anda, € k. Wemay assumethata; = 1andthattherelationisthe
shortest possible (r minimal). Furthermore, we can assumethat a,/a, ¢ IFp,
for v # w; otherwise we can easily find ashorter one. Now apply theinverse
Cartier operator C—* to the relation aswe did before. We find anew relation

r
dg;j + (L) + ) abe(L,) — @ + @) =0,
v=2

where the g;; are regular on U; N U;. If the cocycle dg;; defines a zero
classin HY(X, ©%), we can write dgij = n; — n;, and we can replace the
relation by a shorter one by subtracting the two relations contradicting the
minimality of r. Hence {dg;;} defines a non-zero class in H(X, ©%) and
we find a non-zero element in Im(H(B1)) N (c1(NS(X))). O

As a corollary of (6.2), (10.2) and (10.3) we now find the well-known
result of Artin and Mazur on the rank p of the Néron-Severi group:

(10.4) Corollary. For h £ oo we have p < 22 — 2h.

(10.5) Remark. A line bundle L defined by transition functions f;; defines
acocycledlog fi; with valuesin Z,Q3 for all n > 0. We thus can view the
classci(L) asaclassin H(Z,) for al n > 0 aswell asin H§R. If h < o0
the maps

c1 @ k: NS(X)/pNS(X) ® k — H(Z,)
areinjectivefor al n > 0.



278 G. van der Geer, T. Katsura

11. Thesupersingular case

Themap ¢; : NS/pNS — HZ isinjective and factors through H(Z;) for

al j > 1. However,themapc; ® k: NS k — H§R is not necessarily

injective. For X supersingular in Shioda'ssense, i.e. p = B, = 22, it cannot

be injective since dim, H1(Z,) = 20 or 21, the latter if X is superspecial.
Wedefinefor j =0,1...

Uj :=ker{co®k: NS® k — HY(Z))}
and we set
dimU; = oyp.
Using the natural maps H*(Z;)) — H(Z_1) we have Uj,; < U; for
j =0,1,2, .... Wedefine two bijective operators on NS® k
p=1®F and y=10F

with the Frobenius action F : a — aP on the second factor k.

(11.0) Remark. If we assume that p = B, = 22 (i.e. the truth of the Artin
conjecture that h = oo implies p = 22) then one can show that the invariant
oo just introduced equals the Artin invariant oy, i.e. the intersection form on
the lattice NS(X) has discriminant

disc(NS(X)) = — p®©.

(11.1) Lemma. We have y(Uj;1) € Uj; equivalently, we have Uj;1 C
¢(Uj). Moreover, we have Uj 11 € U; N g(Uj).

Proof. Thisfollows from the commutativity of the diagram

NSk - NS®k

lq@k l01®k

C
HY(Zj20) = HY(Z))

with C the Cartier operator. The second result follows from this and the
inclusonUj 3 C Uj. O

Now choose an element Ungin = uﬁ{i)n # 0 of minimal length in U;
under the assumption that U; is non-zero, i.e. write Umin = Zim:l a[L;]and
require m > 2 to be minimal. We also may assume — and we shall — that
=1

(11.2) Lemma. For j > 1 we have uymin ¢ @(Uj). Smilarly we have
Umin € y(Uj). If X isnot superspecial the conclusion holds also for j = O.
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Proof. If umin € @(U;) issuchaminimal elementwitha; = 1then y(Umin)—
Umin Would be ashorter element or zero. If it iszero, then umin € NS® FpN
Ui = {0}. For j = Otheargument issimilar. Notethat NS® F,NUq # {0}
if and only if X issuperspecidl, cf. [O 1], Cor. 1.4.

(11.3) Lemma. Themapc;®k : p(Uj) — H(Zj,1) factorsviaH(By) —
H(Z;1) and theinduced map p(U;) — H(B,) issurjectiveif U; # {0}.

Proof. If u € U; there exist closed forms ¢, € Z;(Vy) for some open
covering Vy such that (c; ® k)(u) is a coboundary: ¢ — ¢,. Now use the
local surjectivity of C to write

(€ @K (9(U) = g — &y + bup

With ¢ € Zj 11, C&x = &x, dap € By On asuitable open covering. Then this
bqp defines acocycle, thus an element in H(B;) € HY(Zj,1).

To prove the surjectivity, choose anon-zero element Uyin € Uj. Suppose
that ¢op = ng — 1o With n € By. Then ¢(Umin) € Uj, hence Uyin € p(Uj)
which contradicts Lemma (11.2).

(11.4) Corollary. We have Uj;1=U;NeMU;) and dmUj;;) =
max{dim(U;) — 1, 0}.

Proof. Thekernel of c;®k : ¢(Uj) — H(Z;;1) equalsUj,, by (11.1) and
has codimension 1 by (11.3). SinceU; # ¢(U;), and sincetheir intersection
contains Uj;1 we must have Uj 1 = Uj N ¢(Uj). The statement about
dimensions follows.

If we assume that op > 1 then we have a strictly increasing sequence
{0} =Up1 CUy, C...CcUpyC Uy (14)
and thisimplies:
(11.5) Proposition. The map c¢; ® k factors through an injection
NS(X)/pPNS(X) ® k = H'(Zy41).
We can generalize the result of Corollary (11.4).

(11.6) Lemma. We have gok(Uj) NUj = Uj4k. Inparticular ¢°°(Uy) N Uy
= {0}.

Proof. We provethisby induction onk, thecasek = 1wasprovedin (11.4).
Suppose it holds for k. Then

P LU N U C ole*(Uj_1) NU; 1] C o(Uj k1)
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On the other hand we have
¢(Uj k-1 NHU)) C U Nk U)) = o(Uj 40
But by an easy induction one has
@(Uj10) NUj C Ujpipa
Inview of dim(¢*"1(U;) NU;j) > dim(U;) — (k + 1) the result follows.

(11.7) Lemma. Suppose that U; £ {0} and let upin € Uy, Then y(Unin) €
Uo\Us. In particular, (¢; ® K)(¥(Umin)) € HO(Q?) € HY(Zy) € HZ,.

Proof. Since y(umin) does not liein U4, but liesin Uy we see that (c; ® k)
(¥(Umin)) must liein the kernel of H(Z;) — HY(QY), whichis HO(Q2).

(11.8) Lemma. The Chern class map ¢; ® k : ¢™(Uj) — HYZj1m)
factors through H(By,). For any t > 1 the natural image of H(By) in
H1(Z,,+1) iscontained in the image of NS(X)/ pNS(X) ® k under ¢; ® k.

Proof. Asin the proof of (11.3) we can write (C; ® K)(u) = ¢g — &, With
{x € Zj(Vy). Now use the local surjectivity of C to write

@m(u) = Eﬂ - Za + ¢aﬁ

With ¢ € Zj m, C™ex = &x, Pup € Bm. Then this ¢, defines a cocycle,
thus an element in H(B) € H(Z;m). This proves the first statement.

We prove the second statement by induction. Note that by (11.3)
the image of H(B;) in H(Z,,1) is contained in the image of
NS(X)/pNS(X) ® k under ¢c; ® k. Let o be an element of the image
of HY(By) and B = Cu in the image of H1(B;_1). Then 8 = (¢1 ® K)(v)
for somev € NS® k. But then o — (¢; ® K) (¢(v)) isan element of H(By).
By induction thisisin the image of (¢; ® K)(NS® k). Hence « liesin the
image of (¢; ® K)(NS® K).

(11.9) Proposition. Let o > 1. The dimension of theimage of HY(B,,) in
H(Z;) equals oo. Theimagein H1(QY) is oo — 1-dimensional.

Proof. Thefirst statement follows directly from (11.6) and (11.8). Arguing
similarly for Up we find that ¢; ® k : ¢°°(Ug) — H(Q%) factors through
the natural map H(B,,) — H(Q%). The intersection ¢ (Up) N Ug has
dimension 1.

(11.10) Theorem. For aK3surface X with B, = p and Artin invariant oo,
we have dim(Im HY(Z,,)) = 21 — oy for the image in H1(Q}) and it is
generated by Chern classes.
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Proof. Since we have
(C1(NS(X)/PNS(X))) C Im HY(Z,,) € (Im HY(B,,))*™ C HY(Q%)
and dim(c; (NS(X)/pNS(X))) = dim(Im HY(B,,))* = 20 — (09 — 1) by
(11.9), we have
(c1(NS(X)/PNS(X))) = Im HY(Z5,) = (IM H*(By,)) ™
and sodimim HY(Z,,) = 21 — 0. O

Since the codimension of Im H(Z;,1) in ImH(Z;) is a most one, we
conclude that

ImHY(Z,,) = ImHY(Z,,_1) C ImHYZ,, ) C ...
C ImHYZy) ¢ HY(QY)
and Im HY(Z,) = Im H(Z,, for n > oo. Here, the inclusions are
strict inclusions. Moreover, we see that the injection ¢, ®Kk:
NS(X)/pNS(X) ® k — H(Z,,.1) isan isomorphism:
¢ ®k: NS(X)/pNS(X) ® k = HY(Zyp11).
We now need the following lemma.

(11.11) Lemma. Let X be a K3 surface X with B, = p and Artin invari-
ant og. For every n > 0 the natural map HY(Z,,1n11) — HY(Zspun) iS
surjective.

Proof. By Theorem (11.10) the dimension of the image of H(Z,,) in
H(Q1) is21—o00. By (14) it followsthat theimageof H1(Z,, 1) in H}(Q1)
has dimension at least 22 — o — 1. Since the map H(Z,,,,1) — HY(Q1)
factorsthrough H(Z,,) themap H(Z,,,1) — H(Z,,) must besurjective.

We now prove that if the natura mapping H(Z,.1) — H(Z,) is
surjective, then so is HY(Zn,1) — H(Zy,) for any m > n. Suppose that
the natural homomorphism H(A, Z,,1) — H(A, Z,) is surjective. By
the diagram of exact sequences

0— Bl—> Zn_;,_zi) Zn+1—>0

T

0— Bl—> Zn-&-li) Zn —0
we have a diagram of exact sequences
— HY(X, By) = HY(X, Zniz) - HY(X, Zny1) — HZ(X, By)
= n+2 tn+1 =

— HL(X, By) — HY(X, Zny1) —> HL(X, Zy) — H2(X, By).
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From this diagram we see that the natural homomorphism H(X, Z,.,) —
H(X, Z.,1) isalso surjective. So this lemma now follows by induction.
O

(11.12) Corollary. Let X be a K3 surface X with B, = p and Artin
invariant og. For n> oy we have Im(H(B,)) = Im(H'(Z,))* and
dimIm(HY(B,)) =09 — 1.

Proof. By theproof of (11.10), wehaveImH(Z,,)* = ImH(B,,). There-
fore, for n > op, we have

ImHY(Z))* = ImHY(Z,,)*" = ImH*(B,,) c ImHY(B,).

On the other hand, by the proof of (9.3), wehave ImH(Z,)* > ImH(B,).
Hence, we get the desired results. 0

Since ¢; ® k : NS(X)/pNS(X) ® k — H(Z)) isinjective for i >
oo + 1, we have the following proposition.

(11.13) Proposition. For a K3 surface X with B, = p the following four
conditions are equivalent.

(i) Thenatural map H(Z;) — H(Z_1) issurjective.

(i) The Cartier operator C : H(Z;) — H(Z;_,) issurjective.
(i) dimH1(Zy) > 31 —1i.

(iv) og <.

12. The Kodaira-Spencer map

Let Xo be a K3 surface, and let # : X — S be the versa formal
k-deformation of Xg. Then, as is well-known (cf. [D]), we have S =
SpfK[[ty, ..., too]] with variables ty, ... , tyo. We denote by V the Gauss-
Manin connection of H2;(X/S):

V: HR(X/S — Qf, ® HR(X/S).

We take a basis w of HO(X, Qi/s). Then, V composed with cup product
with w gives an isomorphism:

Pt HY(X, Q%(/s);wzé/k-

We denote by m the maximal ideal of the closed point of S. By evaluating
P & zero we have an isomorphism:

Pw,0 - Hl(XO, Qio/k)—w>m/mz.
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(12.1) Remark. Ogus gave an explicit expression of the isomorphism p,,
as follows. For an element « € H'(X, Q%) we choose a lifting o’ €
F1HZ (X/9) of a. Since (¢, w) = 0, we have

po(@) = (Vd', w) = —(d', Vo).
For details, see the paper by Deligne/lllusie [D], cf. also Ogus[Q].

13. Horizontality

We consider the moduli space M = Myq of K3 surfaces with a polarization
of degree 2d in characteristic p. Let (X, D) be apolarized K3 surface with
a polarization of degree 2d. The existence of this moduli spaces follows
from work of Gieseker. We view these moduli spaces as agebraic stacks.
If the Chern class ¢; (D) is not zero in the de Rham cohomology of X then
the moduli space isformally smooth at [(X, D)].

We shall assume for smplicity that the degree 2d of the polarization
isprimeto p. Let furthermore & : X —> Myqy be the universal family of
polarized K3 surfaces over k. We set

M® .= {se M :h(Xs > h}.

Then, by Artin[A], M®™ isan algebraic subvariety of codimension < h—1
inMforh=1,...,10. Weshal show that their codimensionish — 1.

The direct image sheaves R’ W, (Ox) are coherent sheaves of rings,
but not coherent Oy-modules. If there would exist a suitable Grothendieck
group of such objects we could calculate Chern classes by using Theo-
rem (5.1). Since we do not know how to do this, we resort to a different
method to calculate cycle classes of loci of given height.

Let Xo be aK3 surface, and assume that the height of the formal Brauer
group ®yx, is greater than or equal to h, i.e., Xo corresponds to a point
in M™. Then the Frobenius morphism is zero on H2(X, W, (Oxs)) for
i=1,...,h—1 Welet She aformal neighborhood of M™ at the point,
and we also denote by V the Gauss-Manin connection of HZ,(X/S). We
consider the Hodge filtration 0 ¢ F2 ¢ F! ¢ H3,(X/S), and construct, in
the same way asin Sect. 8, a homomorphism

®p 1 H2(Wh(Oxs)) —> HE(X/S).

We take a basis w of H°(Q§</s) and take the dua basis ¢ of H?(Ox/s).

We take a lifting ¢ € H2,(X/S) of ¢. Then we have (¢, w) = 1. Since
R : H2(W,(Ox;s)) — H?(Oxs) is surjective, we take an element
o € H2(Wh(Ox/s)) such that R"1(a) = ¢. We set

Oh = (Ph(@), w).
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Since ®p(a) — gnl is orthogona to w, it follows that ®n(a) — gl IS
contained inthe F1-step of the Hodge filtration. Therefore, using the natural
isomorphism H3;/F! = H2(Ox;s), we conclude that

$n(0) = gh¢  in H?(Oxy9),

where ¢ was defined in Sect. 5. This means that the equation g, = 0
gives the scheme theoretic locus of zero of ¢y, and by Proposition (8.1), the
support of thislocusin M®™ coincides with MT+D).

(13.1) Proposition. Under the notation and assumptions made above, the
image Im @y, is horizontal with respect to the Gauss-Manin connection.

Proof. It suffices to prove V(®h(e)) = 0. The element « is represented

by a cocycle aijc = (@ffy. ... .ef) ) with respect to a suitable affine

open covering {U;} of X/S. Since the Frobenius morphism is zero on
HZ(Wh_l(Ox/S)), there exists a cochain yi; € I'(U; N Uj, Wh-1(Ox/9)
suchthat FR(x) = 3{)/”'} = {ij_ )/ik-i-]/,j}(e Co(Wh_1)). Hence we have

Flo) — a({(yj, O} = {(0, ..., 0, Giji)}- (15

Put; = (yj. 0),andementin'(UiNU;, Wh(Ox/s)). Thenn(¢) = {gijk}
and

®p(@) = (Gijk. —Dn(7)). 0) € C2(Ox/s) ® C1(R%,s) ® Co(R%5)-

We write this as
O () = {(Gijk, bij, 0)).

We have to calculate V(®n(w)). We use the explicit description of the
Gauss-Manin connection. Katz and Oda define in [K-O] two operators

Ls: Cq(QP) — Cq(2P™), Ls((B)o, ... ,ig) = ds(Blo, ... . ig)
and
A Cq(RP) = Cqra(2P), (Ao, ... ,igr1)
= (=DPU — 1')(B(iq, ... ,igr1)-

Here we follow the notation of loc. cit. The (substitution) operator 1% is
given by P 1 Subs(dx; > d&) and is zero for p = 0. In our case this
gives Ls(Gijk) = dS(gljk) € CZ(Ql) A(gijk) =0 and I—S(bu) = ds(blj) €
C1(22), A(D)(i jk) = —(I' — 1) (bjy) € Co(2Y). Sowefind

V(®h()) = dsbij + dsgijk — I bjk + 1 ijk- (16)

Here the first term liesin C1(Q2).
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Using dj instead of d we can make an operator D}, ¢ similar to the
operator Dy, defined by Serre. It is zero on the image of Frobenius and so
the relation (15) gives

—D}, 51} = ds(Gij0)-
This says d‘s(gijk) = Ii(bjk — bk + byj). Collecting the terms we get
V(@n(@) = dghij + 1" (—bic+ bij) + 1T bje.
Put ¢i;j = —Dn(yj). Now note that we have
ds(Dn (1)) = d(D}, ¢#i))-

Therefore the right hand side of (16) isaboundary in the total complex. We
conclude V&, (a) = 0in Qé/k@) H3R(X/9. O

14. Thetangent spacesto the stratification

We denote by Dg the polarization class of Xq of degree 2d and we shall
assume that it is prime to p. Let M™ be the closed locus of the moduli
space M = Myy of polarized K3 surfaces given by the condition height
>hforh=1,...,10and h = co. We now determine the tangent space
of MM at the point xo = (Xo, Do). We denote by Im H(X,, Z,) the
image of H(Xo, Z,Q5%,) in H'(Xo, 2%,) induced by the natural inclusion
Z,Q%, — Q.

(14.1) Proposition. Suppose that (Xo, Do) represents a point xo of MM —
M© Then for 1 < h < 10 the tangent space of M™ at xq isin a natural
way isomorphic to Im H(Xg, Zn_1) N ¢1(Dg)*.

Proof. Note that by (9.2) the map H'(Xo, Bh_1) — H!(Xo, 2% ) isin-
jective. Since we have H(Xg, Bn_1) C ¢1(Dg)*, by Corollary (10.2) and
Lemma (9.3), it sufficesto provethat (H(Xg, Bn_1), c1(Dg)) isthe normal
space of MM at xq. We will show this by induction. Note that we know
dimH(Xo, B)) =¢fore =0,... ,h—1.

Suppose h = 1. Then, we have HY(Xo, Bg) = 0, and by the general
theory of moduli spaces the tangent space of M® = M at X, is given by
(Do)t € H(Xo, 2%,).

Now, we assume that the statement holds until h. We use the notation
above. Then, by (8.1) M™*D is defined by gy = (®h(), @) = 0in M™,
Using Proposition (13.1), we have

dgnh = (VP (a), ) + (Pn(a), Vo)
= (Pp(a), Vo) .



286 G. van der Geer, T. Katsura

We denote by m (resp. mg) the maximal ideal which corresponds to the
point Xo in the versal formal moduli space around X (resp. in the formal
moduli around xo in M™). Then, under the natural homomorphism

HY(Xo, Q%,) = m/m* — mg/mj

—&n(a)(0) corresponds to the cotangent vector g, by the argument of
Ogus[O]. Thekernel of thishomomorphismisisomorphicto (H*(Xg, Bn_1),
c1(Dp)) by induction. We have

—®p()(0) = —{Dn(yij)}
h—1
- _{ > (™" " dlog Vi(,-m)}
m=0

and Dy, : H?(Wh(Ox,)/FWh(Ox,)) — H(Xo. Q%) isinjective by Corol-
lary (9.2). Since ®(a)(0) liesin H(Xo, Bp) but not in H(Xo, Br_1), we
conclude that g, ¢ m3. By induction we thus see that the tangent space to
M®+D can be identified with H1(Xo, Z) N ¢1 (Do) . o

This argument does not work for h = oo, but can be made to work for
the supersingular points for which the subspace (Im(H(By)), ci(D)) of
H1(Q') has dimension h. In Sect. 12 we gave conditions for this. Under
the assumption that p = B, this is the case if the Artin invariant o of
asupersingular K3 surface satisfies o9 > h. We thus find:

(14.2) Theorem. Forh =1, ... , 10the open stratum M™ if not empty, is
purely of dimension (20—h) and nonsingul ar at any point of the stratum M ™
where the subspace (Im(H*(Bn_1)), c1(Do)) of H'(2}) has dimension h.
In particular, it is non-singular at non-supersingular points and assuming
the Artin conjecture at all supersingular points with Artininvariant og > h
and c1(Do) ¢ Im(H(Bn)).

We refer here to aforthcoming preprint of Ogus for a description of the
singularities of the strata. Ogus proved in [O, Prop. 2.6] that for p # 2
the stratum M® has a quadratic singularity at the superspecia points.
A variation of his argument there shows that at a point with Artin invariant
oo = h — 1 the singular locus has multiplicity 2. In particular the stratum
M@D has multiplicity 2 at points with g = 10, cf. hisforthcoming preprint
and the discussion in the next section.

15. Thelaoci of K3 surfaces of given height

We now come to the description of the cycle classes of the strata defined by
the height. Let M™ be the closed stratum of the moduli space M = Mayq
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wheretheheight of theformal group @ isat least h, withthe convention that
M@ = M© For simplicity weshall assumethat p doesnot divide 2d. By
our characterization of h these strata can be given anatural scheme structure
and these are reduced for h £ oo by our resultsin Sect. 14. It is known by
Artin that the strata M™ for h = 1, ... , 11 have codimension < h — 1in
Mog, See [A]

DefinealinebundeV on M by V = n*(Qi/M) and let the first Chern
classbe v.

(15.1) Theorem. Let M = Myq be the moduli stack of polarized K3
surfaces over k with a polarization of degree 2d prime to p. Then for
h=1,...,10, 11 the scheme-theoretic locus M™ of surfaces with height
> h, if not empty, is of codimension h — 1 and for h # 11 it is a local
complete intersection. The class of M®™ in the Chow group CH(B;l(M) is
given by

(p—D(P?—=1)...(p" = Do

Proof. We prove this by induction. Let M be the moduli space of polarized
K3 surfaces of degree 2d as above. We know that the generic K3 surface
has height 1, and so for h = 1 the formula is correct. The codimension of
M®™ js<h —1forl < h < 10 asfollows from (5.7). For h = 2 the locus
M® s the non-ordinary locus. This locus is characterized by the fact that
the Frobenius map H2(X, Ox) — H2(X, Ox) vanishes. Thisisa p-linear
map and the corresponding Oy-linear map is (R?7,0x)®® — R°m,Ox
with associate cycle class (p — 1)v. Locally, at apoint of M@ an equation
is given by g; = 0, see the proof of (14.1) and dg; # 0. So if M® is not
empty then it is purely 18-dimensional.

Suppose now that the class of M1 isgiven by the classin the formula.
By Proposition (5.7) the locus in MM~V where the height increases is
given by the vanishing of the map ¢n_1 : (R27.0x)P" ) — R27,(Ox),
equivalently, by the vanishing of a section of Vil By (14.1) it follows
that for a local equation g, = O we have dg, # 0. Hence the locus is
reduced for h # oo and the class on M-V isgiven by (p"~1 — 1)wv.

Let jn: M® - MDD and j : MO-D — M bethe natural inclusions.
Then the class of the locus M™ in CH(S‘l(M) is given by

JeindM®T = LAMOPT i (P = Do) = (P = Do (M)
by the projection formula. O

The locus M®D comes with a multiplicity in the formula because of
(14.2). For p # 2 the multiplicity is 2. It makes sense to call the reduced
locus M'%” the supersingular locus.



288 G. van der Geer, T. Katsura

(15.2) Remark. In[G] aformulafor the class of the supersingular locus on
the moduli space of principally polarized abelian surfaces was given. Com-
parison with Kummer surfaces shows that this is compatible with multipli-
city 2 along the supersingular locus, cf. [G-K].

We shall now assume that the line bundle V = ..(Q3,,,,) is ample on
the moduli space. It is known by the theory of Baily and Borel (see [B-B])
that V is ample on the moduli spaces in characteristic 0; indeed, modular
forms of sufficiently high weight define an embedding.

(15.3) Theorem. SQuppose that the class v is ample. Let X — Swith S
complete be a proper smooth family of polarized K3 surfaces with constant
h £ oo. Then thisfamily isisotrivial.

Proof. It follows from the preceding theorem that the strata S™ — S+
where the height is constant are quasi-affineforh =1, ... , 10.

We do not know whether the class v is ample on the moduli spaces My,
but we expect it to be so.

Suppose that there exists a good Baily-Borel compactification. By this
we mean that there exists a projective variety (stack) Moy containing Mg
such that Mg — Mayq is 1-dimensional and consists of aconfiguration of el-
liptic modular curves. Thisisthe casein characteristic zero, cf. Kondo [KQ].
Then it follows from our theorem that a family of K3 surfaces with h > 3
does not degenerate. Indeed, it follows from our formula that a class of the
form v™ with m > 3 has zero intersection with the * boundary components'.
This implies that for each boundary component the locus with h > 3 &i-
ther has empty intersection with this boundary component or contains it.
The boundary components form a connected set and the generic point of
each component corresponds to a degenerate K3 surface corresponding to
an ordinary dlliptic curve. For the degenerate surfaces the height is 1 or 2.
Compare the discussion in [R-Z-Sh].

16. An extension for other varieties

Though the theorem in Sect. 5 was formulated for K3 surfaces it holds for
amore general class of surfaces.

(16.1) Theorem. Suppose that X is a smooth algebraic surface such that

i) Pic®(X) is reduced,
i) dimH?(X, Ox) = 1.
Then &2 is represented by a formal group of dimension 1 and its

height satisfies h(®yx) > i + 1 if and only if the Frobenius map F on
H2(X, W, (Ox)) is the zero map.



On astratification of the moduli of K3 surfaces 289

(16.2) Coroallary. For such a surface we have the following characteriza-
tion of the height:

h(dx) = min{i > 1: [F : H3(W(Ox)) — HZ(W(Ox))] # 0}.

Proof. The proof is analogous to the proof given for K3 surfaces. Instead
of the vanishing of H1(X, Ox) one uses the vanishing of the Bockstein op-
erators. Recall that HY(X, W,,(Ox)) is the subgroup of k[e]/(e"*1)-valued
points of the connected component of the Picard scheme P at the origin,
cf. [Mu]. A K[e]/e2-valued point (tangent vector) is tangent to Py at the
origin if and only if it can be lifted to k[e]/(¢")-valued point for all n. That
is, these correspond precisely to the elements of HY(X, Ox) that can be
lifted to H1(X, W, (Ox)) for dl n. So if P = P,y then all elements of
H1(X, Ox) can be lifted and this implies the analogues of Lemmas (4.2)
and (4.5) that we need.

(16.3) Example. 1) An abelian surface satisfies the assumptions. 2) A sur-
face of general type with H'(Ox) = 0 and py; = 1. Examples of such
surfaces are surfaces with K2 = pg = 1. These have hi(X,0x) = 0
and are resolutions of surfaces of type (6,6) in weighted projective space
P(1, 2, 2,3, 3),cf. [C].

A nonsingular complete algebraic variety X of dimension n is called
a Caabi-Yau variety if the canonical invertible sheaf wy is trivial and
Hi(X, Ox) = 0for 1 <i < n — 1. By acriterion of Artin-Mazur [A-M],
the Artin-Mazur formal group ®" ispro-representable by aone-dimensional
formal Lie group for such avariety. In the same way asin Sect. 5, we have
also a characterization of the height of the formal group ®".

(16.4) Proposition. For a Calabi-Yau variety X of dimension n we have
the following characterization of the height:

h(®%) = min{i > 1: [F : H"(W (Ox)) — H"(W(Ox))] # 0}.
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